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Abstract. In this work, the free vibration analysis of Timoshenko microbeams made of the
Functionally Graded Material (FGM) on the Winkler–Paternak elastic foundation based
on the Modified Coupled Stress Theory (MCST) is investigated. Material characteristics
of the beam vary throughout the thickness according to the power distribution and are es-
timated though Mori–Tanaka, Hashin–Shtrikman and Voigt homogenization techniques.
The Timoshenko microbeam model considering the length scale parameter is applied. The
free vibration differential equations of FGM microbeams are established based on the Fi-
nite Element Method (FEM) and Kosmatka’s shape functions. The influences of the size-
effect, foundation, material, and geometry parameters on the vibration frequency are then
analyzed. It is shown that the study can be applied to other FGMs as well as more complex
beam structures.
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1. INTRODUCTION

Functionally Graded Materials (FGMs) are inhomogeneous composites which have
attracted considerable attention due to their novel thermo-mechanical properties that en-
able them to be used in a wide range of applications in many industries such as aircrafts,
biomedical products, space vehicles... Micro–Electro-Mechanical Systems (MEMS) are
the new field in which FGMs have been utilized to achieve the desired performance.
Micro-sized structures as plates, sheets, beams, and framed structures are widely used
in MEMS devices, for example, electrically actuated micro electromechanical devices,
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atomic force microscopes... For this reason, microstructures made of FGMs are especially
attracting more and more attention due to their various potential applications.

The classical mechanical theories fail to satisfy the solution of the micro elements
because it is not effort the size-effect in the micro-scale. So, the non-classical theories
such as Modified Couple Stress Theory (MCST) [1] and Modified Strain Gradient Theory
(MSGT) [2] must be used in the mechanics of the micro structures which effort the size-
effect in the microstructure.

Simsek and Reddy [3, 4] examined static bending and free vibration of FGM mi-
crobeams based on the MCST and various higher order beam theories. Ansari et al. [5]
investigated free vibration characteristics of FGM microbeams based on the MSGT and
the Timoshenko beam theory (TBT). Kahrobaiyan et al. [6] developed a new compre-
hensive microbeam element on the basis of the MCST. The shape functions of the new
element are derived by solving the governing equations of MCST homogeneous Timo-
shenko beams. Using the differential quadrature method, Ke and Wang [7] investigated
the dynamic stability of FGM microbeams based on the MCST and the TBT. The material
properties of FGM microbeams are assumed to vary in thickness direction and are esti-
mated though Mori–Tanaka homogenization technique. Thai et al. [8] examined static
bending, buckling and free vibration behaviors of size-dependent FGM sandwich mi-
crobeams based on the MCST and the TBT. To avoid the use of a shear correction factor,
equilibrium equations were used to compute the transverse shear force and shear stress.
Using third-order shear deformation theory, Salamat-Talab et al. [9] investigated the static
and dynamic analysis of the FGM microbeam based on the MCST. By the Rayleigh–Ritz
method, Akgöz and Civalek [10] studied vibration responses of non-homogenous and
non-uniform microbeams using the Bernoulli–Euler beam theory (EBT) and the MCST.
The boundary conditions of the microbeam are considered as fixed at one end and free at
the other end. It is taken into consideration that material properties and the cross section
of the microbeam vary continuously along the longitudinal direction. Chen et al. [11]
investigated the static and dynamic responses of bi-directional functionally graded mi-
crobeams. The material properties vary along both thickness and axial directions. Shafiei
et al. [12] investigated the size dependent nonlinear vibration behavior of imperfect uni-
form and non-uniform FGM microbeams based on the MCST and the EBT.

In this work, free vibration of FGM microbeams on a Winkler–Pasternak elastic foun-
dation is studied based on the MCST, the TBT and the Mori–Tanaka, Hashin–Shtrikman
and Voigt homogenization techniques. The governing equations of vibration for the TBT
microbeam are derived by using the Finite Element Method (FEM) and Kosmatka’s shape
functions. A detailed study is performed to investigate the influences of material, foun-
dation parameter, dimensionless length scale parameter and slenderness ratio on the nat-
ural frequencies of FGM microbeams.
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2. PROBLEM AND FORMULATION

Consider an FGM microbeam of the length L and rectangular cross-section b × h on
the Winkler-Pasternak elastic foundation as shown in Fig. 1. It is assumed that the mate-
rials at bottom surface (z = h/2) and top surface (z = h/2) of the microbeam are metals
and ceramics, respectively. The local effective material properties of the FGM microbeam
can be calculated using the Mori–Tanaka, Hashin-Shtrikman and Voigt homogenization
techniques.
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Fig. 1. A FGM microbeam on a Winkler-Pasternak elastic foundation

According to the Mori–Tanaka homogenization technique [13], the effective bulk
modulus K and shear modulus G can be calculated by

K − Km

Kc − Km
=

Vc

1 + (1 − Vc)(Kc − Km)/(Km + 4Gm/3)
,

G − Gm

Gc − Gm
=

Vc

1 +
(1 − Vc)(Gc − Gm)

Gm + Gm (9Km + 8Gm) /(6Km + 12Gm)

,
(1)

where the subscripts m and c denote metal and ceramic materials, respectively; V de-
notes the volume fraction of the phase materials. The variation of the volume fraction of
constituents can be described by a power function as follows

Vc =

(
1
2
+

z
h

)n

, Vm = 1 −
(

1
2
+

z
h

)n

, (2)

where n is the volume fraction index. Effective material properties of the FGM mi-
crobeam such as Young’s modulus E, Poisson’s ratio ν, shear modulus G and mass den-
sity ρ can be determined as follows

E(z) =
9KG

3K + G
, ν(z) =

3K − 2G
2(3K + G)

, G(z) =
E (z)

2(1 + ν(z))
, ρ(z) = ρcVc + ρmVm, (3)

Hashin–Shtrikman have evaluated the effective bulk modulus K and shear modulus
G as follows

K = Kc +
Vm

1
Km − Kc

+
1 − Vm

Kc + Gc

, G = Gc +
Vm

1
Gm − Gc

+
(1 − Vm) (Kc + 2Gc)

2Gc(Kc + Gc)

. (4)
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The Voigt estimate is a frequently used estimate effective material properties P such
as E, G, ρ based on the case of a two-phase composite because of the simplicity of this
estimate

P = PmVm(z) + PcVc(z). (5)

The displacements at a point on the cross-section of the Timoshenko beam can be
represented as

u(x, z, t) = u0(x, t)− (z − h0)θ(x, t), w(x, z, t) = w0(x, t), (6)

where u0(x, t), w0(x, t) are the axial displacement, the deflection of a point on axis, respec-
tively; θ is the angle of rotation of the cross-section around the y axis; h0 is the distance
from the neutral axis to x-axis. The nonzero deformation and stress components using
the MCST are obtained as follows
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∂x
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)
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)
,

(7)

where λ, G are the Lame’s coefficient and shear modulus determined from E and ν as
follows

λ (z) =
ν (z) E (z)

[1 + ν (z)] [1 − 2ν (z)]
, G (z) =

E (z)
2 [1 + 2ν (z)]

, (8)

l is the scale material parameter, and mxy, χxy are components of the deviatoric couple
stress m and curvature χ tensors, respectively.

The strain energy U of the microbeam
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(9)

where ks is the shear correction factor and

(A11, A12, A22) =
∫
A

[λ(z) + 2G(z)]
(
1, z, z2)dA, A33 =

∫
A

G(z)dA, (10)
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A11, A12, A22 and A33 are the rigidities. The kinetic energy T of the microbeam is then
given by
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where I11, I12 and I22 are the mass moments

(I11, I12, I22) =
∫
A

ρ(z)
(
1, z, z2)dA. (12)

The strain energy UF of the Winkler–Pasternak foundation

UF =
1
2

L∫
0

[
Kww2 + Kp

(
dw
dx

)2
]

dx, (13)

where Kw and Kp define the spring and shear moduli of the Winkler–Pasternak elastic
foundation.

Using the FEM, the beam is assumed to be divided into numbers of two-node beam
elements of length L. The vector of nodal displacements de for the element considering
the transverse shear rotation θ as an independent variable contains six components as

de =
{

ui, wi, θi, uj, wj, θj
}T , (14)

where ui, wi, θi, uj, wj, θj are the values of u0, w0 and θ at the node i and at the node j,
respectively. In Eq. (14) and hereafter, a superscript ‘T’ is used to denote the transpose of
a vector or a matrix. u0

w0
θ
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2 0 0
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de,

(15)
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where Nu is the Lagrange’s linear shape function, Nw and Nθ are Kosmatka’s shape func-
tions [14]
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and

φ =
12A22

ks A33L2 . (17)

The element stiffness and mass matrices of the microbeam element are obtained as
follows
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The stiffness matrices of the Winkler–Pasternak elastic foundation are obtained as
follows

ke,w =
1
2

Le∫
0

Kw (Nw)T Nwdx,

ke,p =
1
2

Le∫
0

Kp

(
∂Nw

∂x

)T ∂Nw

∂x
dx.

(20)

Having the element stiffness and mass matrices derived, the equations of motion for
the free vibration analysis can be written in the form

MD̈ + KD = 0, (21)

where D, M, and K are the structural nodal displacement vector, mass and stiffness ma-
trices obtained by assembling the element displacement vector de, the mass matrix me,
and stiffness matrices ke, kew and kep over the total elements, respectively.

3. NUMERICAL RESULT AND DISCUSSION

In this section, the free vibration of the FGM microbeam on the elastic foundation
is studied. It is considered the FGM microbeams consist of the aluminum (Al) and the
ceramic (SiC) with the material properties Em = 70 GP, νm = 0.3, ρm = 2702 kg/m3 for Al
and Ec = 427 GP, νc = 0.17, ρc = 3100 kg/m3 for SiC. The material scale parameter is equal
to l = 15 µm. The nondimensional frequencies µi are defined as follows

µi =
ωiL2

h

√
ρm

Em
. (22)

The Winkler–Paternak foundation coefficients are given in the nondimensional form

kw =
KwL4

Em I
, kp =

KpL2

Em I
, I =

bh3

12
. (23)

To validate the proposed FEM model, the results obtained from the present analysis
are compared with the analytical solutions given by Ansari et al. [5]. In Table 1, the
nondimensional fundamental frequencies of the simply supported microbeam with an
aspect ratio L/h = 10 and the volume fraction index n = 2 obtained in the present paper
are compared with the results by Ansari et al. A good agreement can be received for the
different material length scale parameters. The above comparisons validate the reliability
of the proposed FEM model.



38 Tran Van Lien, Le Thi Ha

Table 1. Comparison of fundamental frequency parameters for FGM microbeams
(L/h = 10, n = 2)

h (µm) 15 30 45 60 75 90

Ansari et al. 0.7983 0.5100 0.4341 0.4041 0.3894 0.3811
Present (M) 0.7655 0.5062 0.4349 0.4064 0.3924 0.3845
Present (H) 0.7976 0.5213 0.4444 0.4135 0.3983 0.3897
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Fig. 2. Effects of the L/h ratios on the first three nondimensional frequencies of the FGM
microbeams when kw = 50, kp = 30, n = 2 using homogenization techniques Voigt (V),

Hashin–Shtrikman (H) and Mori–Tanaka (M) and different ratios h/l

Fig. 2 shows the variation of the first three nondimensional frequencies of the FGM
microbeams with Winkler–Paternak foundation coefficients kw = 50, kp = 30 and the vol-
ume fraction index n = 2 using homogenization techniques Voigt (V), Hashin–Shtrikman
(H), Mori–Tanaka (M) and different ratios h/l = 2 (Fig. 2(a)), h/l = 4 (Fig. 2(b)). It shows
that nondimensional frequencies using the Hashin-Shtrikman homogenization technique
are a little higher than nondimensional frequencies using the Mori–Tanaka homogeniza-
tion technique, but both of them are smaller than nondimensional frequencies using the
Voigt homogenization technique, specially for the higher frequencies. Moreover, nondi-
mensional frequencies using three homogenization techniques increase when the ratio
L/h increases. However, “turning point” ratios L/h, at which the given nondimensional
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frequency changes from the increase to the constant, are dependent on the given fre-
quency and the ratios h/l: the higher the frequency the higher the “turning point” ratio
L/h, the lower the ratio h/l the higher the “turning point” ratio L/h.

Fig. 3 shows the effects of the slenderness ratio h/l on the first three nondimensional
frequency of FGM microbeams with Winkler–Paternak foundation coefficients kw = 50,
kp = 30 and the volume fraction index n = 5 using homogenization techniques Voigt (V),
Hashin–Shtrikman (H), Mori–Tanaka (M) and different ratios L/h = 10 (Fig. 3(a)), L/h =

50 (Fig. 3(b)). It can be seen that first three nondimensional frequencies decrease when
the ratios h/l increase. Moreover, the difference of the second frequency and the third
frequency are remarkable when the ratio L/h and h/l are higher.
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Fig. 3. Effects of the slenderness ratios h/l on the first three nondimensional frequencies of the
FGM microbeams when kw = 50, kp = 30, n = 5 using homogenization techniques Voigt (V),

Hashin–Shtrikman (H) and Mori–Tanaka (M) and different ratios L/h

Fig. 4 shows the effects of the volume fraction index n on first three nondimen-
sional frequencies of FGM microbeams with Winkler–Paternak foundation coefficients
kw = 50, kp = 30, h/l = 2 using homogenization techniques Voigt (V), Hashin–Shtrikman
(H), Mori–Tanaka (M) and different ratios L/h: a) L/h = 10; b) L/h = 50. It can be
seen that first three nondimensional frequencies decrease when the volume fraction in-
dex n increases. Moreover, the difference between the second frequency and the third
frequency are remarkable when the ratio L/h and the volume fraction index n are higher.
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Fig 6 shows the effects of the Paternak elastic foundation coefficient kp on first three 
nondimensional frequencies of FGM microbeams with Winkler foundation coefficients kw=50, n=0.5 
and L/h=10 using homogenization techniques Voigt (V), Hashin–Shtrikman (H), Mori–Tanaka (M) and 
different ratios h/l=2 (Fig. 6a), h/l=8 (Fig. 6b). It can be seen first three nondimensional frequencies

b) 
Fig 4. Effects of the volume fraction index n on the first three nondimensional frequencies of the FGM 
microbeams when kw=50, kp=30, h/l=2 using homogenization techniques Voigt (V), Hashin–Shtrikman
(H) and Mori–Tanaka (M) and different ratios L/h: a) L/h=10; b) L/h=50. 
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Fig 5. Effects of the Winkler foundation coefficients kW on the first three nondimensional frequencies of 
the FGM microbeams when kp=20, n=2, L/h=10 using homogenization techniques Voigt (V), Hashin–
Shtrikman (H) and Mori–Tanaka (M) and different ratios h/l: a) h/l=1; b) h/l=6. 
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Fig. 4. Effects of the volume fraction index n on the first three nondimensional frequencies of the
FGM microbeams when kw = 50, kp = 30, h/l = 2 using homogenization techniques Voigt (V),
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Fig. 5. Effects of the Winkler foundation coefficients kw on the first three nondimensional frequen-
cies of the FGM microbeams when kp = 20, n = 2, L/h = 10 using homogenization techniques

Voigt (V), Hashin–Shtrikman (H) and Mori–Tanaka (M) and different ratios h/l
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Fig. 5 shows the effects of the Winkler elastic foundation coefficient kw on first three
nondimensional frequencies of FGM microbeams with Paternak foundation coefficients
kp = 30, n = 2 and L/h = 10 using homogenization techniques Voigt (V), Hashin–Shtrikman
(H), Mori–Tanaka (M) and different ratios h/l = 1 (Fig. 5(a)), h/l = 6 (Fig. 5(b)). It can be
seen that the value of the first three nondimensional frequencies increase unremarkably,
especially when the ratio h/l is small.
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increase when the foundation coefficients kp increase. Moreover, the difference between the second 
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+ There are “turning point” ratios L/h, at which the given nondimensional frequency changes from
the increase to the constant. These turning point ratios are dependent on the given frequency and the 
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+ Nondimensional frequencies using the Hashin-Shtrikman homogenization technique are a little
higher than nondimensional frequencies using the Mori-Tanaka homogenization technique, but both are 
smaller than nondimensional frequencies using the Voigt homogenization technique, especially for the 
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+ Effects of the Winkler elastic foundation coefficients kw on first three nondimensional
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especially the ratio h/l is small. 
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Fig. 6. Effects of the Paternak foundation coefficients kp on the first three nondimensional fre-
quencies of the FGM microbeams with kw = 20, n = 0.5, L/h = 10 and using homogenization

techniques Voigt (V), Hashin–Shtrikman (H), Mori–Tanaka (M) and different ratios h/l

Fig. 6 shows the effects of the Paternak elastic foundation coefficient kp on first three
nondimensional frequencies of FGM microbeams with Winkler foundation coefficients kw

= 50, n = 0.5 and L/h = 10 using homogenization techniques Voigt (V), Hashin–Shtrikman
(H), Mori–Tanaka (M) and different ratios h/l = 2 (Fig. 6(a)), h/l = 8 (Fig. 6(b)). It can be
seen first three nondimensional frequencies increase when the foundation coefficients kp

increase. Moreover, the difference between the second frequency and the third frequency
are remarkable when the ratio h/l is higher.

4. CONCLUSIONS

In this work, free vibration of FGM microbeams on the Winkler–Pasternak elastic
foundation is studied based on the MCST, the TBT and Mori–Tanaka, Hashin-Shtrikman
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and Voigt homogenization techniques. The differential equations of free vibration for
the TBT microbeam are derived by using the FEM and Kosmatka’s shape functions. The
influences of the size-effect, the volume fraction index, the slenderness ratio, and foun-
dation parameters on the first three nondimensional frequencies of the FGM microbeams
were discussed in detail. The obtained numerical results allow one to make the following
remarks:

- The material length scale parameter plays an important role in the frequencies of
microbeams. The nondimensional frequencies decrease when the slenderness ratios h/l
and the volume fraction index n increase.

- There are “turning point” ratios L/h, at which the given nondimensional frequency
changes from the increase to the constant. These turning point ratios are dependent on
the given frequency and the ratios h/l and L/h.

- Nondimensional frequencies using the Hashin–Shtrikman homogenization tech-
nique are a little higher than nondimensional frequencies using the Mori–Tanaka ho-
mogenization technique, but both are smaller than nondimensional frequencies using
the Voigt homogenization technique, especially for the higher frequencies.

- Effects of the Winkler elastic foundation coefficients kw on first three nondimen-
sional frequencies of FGM microbeams are fewer than one of the Pasternak elastic foun-
dation coefficients kp, especially the ratio h/l is small.

All the mentioned notices are a useful indication for vibration analysis of FGM mi-
crostructures. The study can be applied to more complex microstructures.
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