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Abstract. In the present report, a novel concept of frequency response function (FRF) is
introduced for piezoelectric beam. First, a model of Timoshenko beam bonded with a
piezoelectric layer is established and used for deriving the conventional frequency re-
sponse function acknowledged as mechanical frequency response function (MERF). Then,
the output charge produced in the piezoelectric layer is calculated from the MFRF and
therefore obtained frequency-dependent function is called electrical frequency response
function (EFRF) for the integrated beam. This concept of FRF depends only on exciting
position and can be explicitly expressed through crack parameters. So that it provides a
novel instrument to modal analysis and structural health monitoring of electro-mechanical
systems, especially for crack detection in beams using distributed piezoelectric sensor. The
sensitivity of EFRF to crack has been examined and illustrated in numerical examples for
cracked Timoshenko beam.

Keywords: frequency response function; cracked Timoshenko beam; piezoelectric layer;
sensitivity analysis.

1. INTRODUCTION

The vibration-based method (VBM) has been proven to be the most productive tech-
nique in health monitoring of engineering structures and the important results obtained
recently in this field were reviewed in [1–3]. As is well known, the core problem in struc-
tural health monitoring (SHM) is detecting possible damage in a structure of interest
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which means identifying structure deteriorations such as cracks or debonding in layered
composites. The key in the application of the VBM for SHM is choosing damage indi-
cators that show whether a structure is damaged and the location, extent of damage if
it happened. Among the damage indicators, the global (nonlocal) ones such as natu-
ral frequencies for example were first chosen because of their easily measurement but
they are insensitive to local damage like cracks. The vibration mode shapes are more
sensitive to local damages; however, mode shapes are more difficult to measure exactly
by traditional structure testing techniques. As the original signature of natural frequen-
cies and mode shapes, the frequency response functions have been early employed for
structural damage detection problems [4–11]. However, most of the studies were based
on the damage-induced changes in the FRF’s shape measured still by a large number
of sensors in a discretized mesh. Recently, using the piezoelectric material as compo-
nents of a structure [12,13] for monitoring its condition offers an alternative technique for
measuring FRFs for structural damage detection and it allows a novel technique called
electro-mechanical impedance (EMI) method to be developed for SHM [14–17]. Nev-
ertheless, the so-called EMI method is limited to investigating the electro-mechanical
impedance measured with a piezoelectric transducer (sensor/actuator) in a very high-
frequency range. The measured response of a structure subjected to electric excitation
produced by a piezoelectric actuator in a high-frequency range often delivers weak sig-
nals to apply for structural damage detection. This drawback of the EMI technique could
be overcome by using only a distributed piezoelectric sensor for measuring the frequency
response of a structure subjected to mechanical excitation in the frequency range of the
structure’s fundamental frequency.

Thus, in the present study, a concept of frequency response function (FRF) is devel-
oped for a beam with a piezoelectric layer under mechanical excitation. First, a model
of Timoshenko beam bonded with a piezoelectric layer is established and used for de-
riving the conventional frequency response function acknowledged as mechanical fre-
quency response function (MERF). Then, the output charge produced in the piezoelectric
layer is calculated from the MFRF and therefore obtained frequency-dependent function
is called electrical frequency response function (EFRF) for the integrated beam. This con-
cept of FRF depends only on exciting position and can be explicitly expressed through
crack parameters. So that it provides a novel instrument to modal analysis and structural
health monitoring of electro-mechanical systems, especially for crack detection in beams
using distributed piezoelectric sensor. The sensitivity of EFRF to crack has been exam-
ined by using so-called spectral damge index [18] and illustrated in numerical examples
for cracked Timoshenko beam.
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2. GOVERNING EQUATIONS FOR VIBRATION OF CRACKED BEAM WITH
PIEZOELECTRIC LAYER

Let us consider a Timoshenko beam of length Lb = L width b and thickness hb
bonded with a piezoelectric layer of the same length (Lp = L) and width as the beam
and subjected to a concentrated force P(t) as shown in Fig. 1. According to the Timo-
shenko beam theory, constituting equations are represented as

u (x, z, t) = u0 (x, t)− zθ (x, t) , w (x, z, t) = w0 (x, t) , (1)

σx = Eεx, τxz = κGγxz, εx = ∂u0/∂x − z∂θ/∂x, γxz = ∂w0/∂x − θ, (2)

where u(x, z, t), w(x, z, t) are axial and transverse displacements at arbitrary point in
cross-section at x and u0 (x, t) , w0 (x, t) are the displacements on the neutral plane; θ is
cross-section rotation; εx, γxz, σx, τ are deformation and strain components; κ is geometry
correction factor.
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2. Governing equations for vibration of cracked beam with piezoelectric layer 
Let us consider a Timoshenko beam of length 𝐿! = 𝐿 width 𝑏 and thickness ℎ! bonded with a 

piezoelectric layer of the same length (𝐿" = 𝐿) and width as the beam and subjected to a concentrated 
force 𝑃(𝑡) as shown in Fig. 1. According to the Timoshenko beam theory, constituting equations are 
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Governing equations for the piezoelectric layer treated as a homogeneous Timoshenko beam 
element are 
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𝜎"$ = 𝐶''
" 𝜀"$ − ℎ'(𝐷; 𝜏" = 𝐶))

" 𝛾"; ∈= −ℎ'(𝜀"$ + 𝛽((
" 𝐷, 

where 𝐶''
" , 𝐶))

"  are elastic and shear modulus, ℎ'(, 𝛽((
"  are piezoelectric and dielectric constants;  ∈ and 

𝐷 are electric field and displacement of the piezoelectric material. 
 

 
 

Fig.1. Cracked Timoshenko beam with piezoelectric layer under concentrated force 
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Fig. 1. Cracked Timoshenko beam with piezoelectric layer under concentrated force

Governing equations for the piezoelectric layer treated as a homogeneous Timo-
shenko beam element are

up (x, z, t) = up0 (x, t)− zθp (x, t) , wp (x, z, t) = wp0 (x, t) ,

εpx = u′
p0 − zθ′p , γp = w′

p0 − θp ,

σpx = Cp
11εpx − h13D, τp = Cp

55γp , ϵ = −h13εpx + β
p
33D,

(3)

where Cp
11, Cp

55 are elastic and shear modulus, h13, β
p
33 are piezoelectric and dielectric con-

stants; ϵ and D are electric field and displacement of the piezoelectric material.

Assume that the base beam and piezoelectric layer are perfectly bonded, and they
have the same cross-section rotation so that it should be satisfied the conditions

u
(

x,−hb

2
, t
)
= up

(
x,

hp

2
, t
)

, w (x,−hb/2, ) = wp
(
x, hp/2, t

)
, θ = θp , (4)
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that yield
up0 = u0 + θh, h =

(
hb + hp

)
/2, wp0 = w0 ,

εpx = u′
0 − (z − h) θ′, γp = w′

0 − θ.
(5)

Therefore, strain and kinetic energies of the integrated beam can be calculated as

Π = Πb + Πp = (1/2)
∫ L

0

{
A∗

11u′2
0 + 2A∗

12u′
0θ′ + A∗

22θ′2 + A∗
33
(
w′

0 − θ
)2

−2h13ApD
(
u′

0 + hθ′
)
+ β

p
33ApD2

}
dx, (6)

T = Tp + Tp = (1/2)
∫ L

0

{
I∗11u̇2

0 + 2I∗12u̇0θ̇ + I∗22θ̇2 + I∗11ẇ2
0
}

dx, (7)

where comma and dot denote derivative with respect to x and t respectively and

A∗
11 = EAb + Cp

11Ap , A∗
12 = Cp

11Aph, A∗
22 = EIb + Cp

11

(
Ip + Aph2) ,

A∗
33 = κGAb + Cp

55Ap , I∗11 = ρb Ab + ρp Ap, I∗12 = ρp Aph, I∗22 = ρb Ib + ρp Ip + ρp Aph2,

Ab = bhb, Ap = bhp, Ib = bh3
b/12, Ip = bh3

p/12.
(8)

The work done by transverse force P (t) applied at the position x0 on the beam is

W =
∫ L

0
P (t) δ (x − x0)w0 (x, t)dx, (9)

where δ (x) is Dirac’s function. Substituting expressions (6), (7) and (9) into the Hamil-
ton’s principle ∫ t2

t1

δ (T −Π+ W)dt = 0, (10)

yields (
I∗11ü0 − A∗

11u′′
0
)
+

(
I∗12θ̈ − A∗

12θ′′
)
+ h13ApD′ = 0,(

I∗12ü0 − A∗
12u′′

0
)
+

(
I∗22θ̈ − A∗

22θ′′
)
− A∗

33
(
w′

0 − θ
)
+ h13AphD′ = 0,

I∗11ẅ0 − A∗
33
(
w′′

0 − θ′
)
= P (t) δ (x − x0) , h13Ap

(
u′

0 + hθ′
)
− β

p
33ApD = 0.

(11)

Obviously, from the last equation in (11) one finds

D = h13
(
u′

0 + hθ′
)

/β
p
33 , (12)

that allows the remaining equations to be rewritten as(
I∗11ü0 − B∗

11u′′
0
)
+

(
I∗12θ̈ − B∗

12θ′′
)
= 0,(

I∗12ü0 − B∗
12u′′

0
)
+

(
I∗22θ̈ − B∗

22θ′′
)
− A∗

33
(
w′

0 − θ
)
= 0,

I∗11ẅ0 − A∗
33
(
w′′

0 − θ′
)
= P (t) δ (x − x0) ,

(13)

where
B∗

11 = A∗
11 − Aph2

13/β
p
33 = EAb + Ep Ap, B∗

12 = A∗
12 − Aphh2

13/β
p
33 = Ep Aph,

B∗
22 = A∗

22 − Aph2h2
13/β

p
33 = EIb + Cp

11 Ip + Ep Aph2, Ep = Cp
11 − h2

13/β
p
33.

(14)



Frequency response function of cracked Timoshenko beam measured by a distributed piezoelectric sensor 19

In case of external harmonic force, P (t) = P0 exp {iωt}, seeking solution of Eq. (13)
in the form

{u0 (x, t) , θ (x, t) , w0 (x, t)} = {U (x, ω) , θ (x, ω) , W (x, ω)} exp {iωt} , (15)

that leads the equations to

[A]
{

Z′′ (x, ω)
}
+ [B]

{
Z′ (x, ω)

}
+ [C] {Z (x, ω)} = {P (x, ω)} , (16)

Z′ = dZ/dx, Z′′ = d2Z/dx2, P (x, ω) = {0, 0, Q (x, x0)}T, Q (x, x0) = P0δ (x − x0), (17)

with the matrices

[A] =

 B∗
11 B∗

12 0
B∗

12 B∗
22 0

0 0 A∗
33

 , [B] =

 0 0 0
0 0 A∗

33
0 −A∗

33 0

 ,

[C] =

 ω2 I∗11 ω2 I∗12 0
ω2 I∗12 ω2 I∗22 − A∗

33 0
0 0 ω2 I∗11

 .

Also, putting expression (15) into (12) and calculating electric charge produced in the
piezoelectric layer under vibration of beam allow one to obtain

Q (t) =
∫ L

0
D (x, t) bdx = Qp (ω) exp {iωt} , (18)

where

Qp (ω) =
(
bh13/β

p
33

) ∫ L

0

[
U′ (x, ω) + hΘ′ (x, ω)

]
dx. (19)

The latter function Qp (ω) is acknowledged as electrical frequency response of the
beam to the concentrated load.

Assume furthermore that a crack of depth a occurs at position e in the host beam and
crack is represented by a pair of equivalent springs: translational spring of stiffness T and
rotational one of stiffness R. Thus, conditions should be satisfied at the crack position are

U (e + 0) = U (e − 0) + γaU′
x (e) , Θ (e + 0) = Θ (e − 0) + γbΘ′

x (e) ,

W (e + 0) = W (e − 0) , U′
x (e + 0) = U′

x (e − 0) ,

Θ′
x (e + 0) = Θ′

x (e − 0) , W ′
x (e + 0) = W ′

x (e − 0) + γbΘ′
x (e) ,

(20)

where γa = EA/T, γb = EIb/R are calculated from crack depth a for axial [19] and
flexural [20] vibrations as

γa = 2π
(
1 − ν2

0
)

hb fa (z) , γb = 6π
(
1 − ν2

0
)

hb fb (z) , z = a/hb, (21)
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f1 (z) = z2
(

0.6272 − 0.17248z + 5.92134z2 − 10.7054z3 + 31.5685z4 − 67.47z5

+ 139.123z6 − 146.682z7 + 92.3552z8
)

,

f2 (z) = z2
(

0.6272 − 1.04533z + 4.5948z2 − 9.9736z3 + 20.2948z4 − 33.0351z5

+ 47.1063z6 − 40.7556z7 + 19.6z8
)

.

(22)

3. FREQUENCY RESPONSE FUNCTION OF CRACKED BEAM WITH
PIEZOELECTRIC LAYER

It is well-known from the theory of differential equations that general solution of
inhomogeneous equation (16) is composed from general solution of homogeneous equa-
tion and a particular solution of the inhomogeneous one

{Z (x, ω)} = {Z0 (x, ω)}+
{

Zq (x, ω)
}

, (23)

where
{

Zq (x, ω)
}
=

{
Uq (x, ω) ,Θq (x, ω) , Wq (x, ω)

}T is a particular solution of inho-
mogeneous equations (16) and {Z0 (x, ω)} is general solution of homogeneous equations,
an explicit expression of which was conducted in Ref. [21] for cracked beam as

{Z0 (x, ω)} = [Φ (x, ω)] {C} , (24)

with constant vector {C} = {C1, . . . , C6}T and matrices

[Φ (x, ω)] =
[
G0 (x, ω) + K (x − e)G′

0 (x, ω)
]

, (25)

[K (x)] =

{
[Gc (x)] : x > 0,
[0] : x ≤ 0,

[
K′ (x)

]
=

{ [
G′

c (x)
]

: x > 0,
[0] : x ≤ 0.

Matrices G0 (x, ω) and Gc (x) are given in Appendix A. Also, according to the theory
of differential equations, particular solution

{
Zq (x, ω)

}
can be found in in the form{

Zq (x, ω)
}
=

∫ x

0
[H (x − τ)] {P (τ, ω)}dτ = P0 {h3 (x − x0)} , (26)

where vector function h3 (x) = {h31 (x) , h32 (x) , h33 (x)}T is the third column vector of
matrix H (x) defined as solution of equation

[A]
[
H′′ (x)

]
+ [B] + [C] [H (x)] = {0} , [H (0)] = [0] , [A]

[
H′ (0)

]
= [I3] . (27)

Using expression (24), the vector function h3 (x) as a component solution of Eq. (27)
can be found as

{h3 (x)} =
[
H (x)

]
{d} , (28)

with matrix H (x) and vector d given in Appendix B.
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Constant vector {C} is determined by given boundary conditions, for example of
the simply supported beam, that are of the form

U (0) = W (0) = M (0) = N (L) = W (L) = M (L) = 0, (29)

where N (x) = B∗
11∂xU (x) − B∗

12∂xΘ (x) M (x) = B∗
12∂xU (x) − B∗

22∂xΘ (x). Namely, in
this case the vector is

{C} = −P0 [R (ω)]−1 {P̂ (ω)
}

,

where
P̂1 (ω) = 0, P̂2 (ω) = 0, P̂3 (ω) = 0, P̂6 (ω) = h33 (L − x0) ,

P̂4 (ω) =
[
B∗

11h′31 (L − x0)− B∗
12h′32 (L − x0)

]
,

P̂5 (ω) =
[
B∗

12h′31 (L − x0)− B∗
22h′32 (L − x0)

]
,

(30)

and

R (ω) =


α1
m1
β1

N1 (L)
M1 (L)
ϕ31 (L)

α2
m2
β2

N2 (L)
M2 (L)
ϕ32 (L)

α3
m3
β3

N3 (L)
M3 (L)
ϕ33 (L)

α1
−m1
−β1

N4 (L)
M4 (L)
ϕ34 (L)

α2
−m2
−β2

N5 (L)
M5 (L)
ϕ35 (L)

α3
−m3
−β3

N6 (L)
M6 (L)
ϕ36 (L)

 , (31)

mj =
(

B∗
12αj − B∗

22
)

k j, j = 1, 2, 3, Nj (L) = B∗
11ϕ′

1j (L)− B∗
12ϕ′

2j (L) ,

Mj (L) = B∗
12ϕ′

1j (L)− B∗
22ϕ′

2j (L) , j = 1, 2, . . . , 6,

ϕij (x) , ϕ′
ij (x) , i = 1, 2, 3; j = 1, 2, . . . , 6 are elements and their derivatives of matrix

Φ (x, ω) defined in (A.2). Therefore, solution of Eq. (16) is finally found as

{Z (x, ω)} =
{

Zq (x, ω)
}
− P0 [Φ (x, ω)] [R (ω)]−1 {P̂ (ω)

}
,

or

{Z (x, ω)} = P0

{
h3 (x − x0)− [Φ (x, ω)] [R (ω)]−1 {P̂ (ω)

}}
. (32)

From latter equation one can obtain frequency response vector-function

{MFRF (x, x0, ω)} = {Z (x, ω)} /P0

= {FU (x, x0, ω) , FΘ (x, x0, ω) , FW (x, x0, ω)}T

=
{

h3 (x − x0)− [Φ (x, ω)] [R (ω)]−1 {P̂ (ω)
}}

,

(33)

that is, as usually, called mechanical frequency response function of the integrated beam.
Owning the mechanical frequency response function {MFRF (x, x0, ω)} , the correspond-
ing output charge called herein electrical frequency response function can be calculated
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according to Eq. (19) as

EFRF (x0, ω) =
(
bh13/β

p
33

) ∫ L

0

[
FU′ (x, x0, ω) + hFΘ′ (x, x0, ω)

]
dx

=
bh13

β
p
33

{ [
FU (L, x0, ω)− FU (0, x0, ω)− γaFU′ (e, ω)

]
+ h

[
FΘ (L, ω)− FΘ (0, ω)− γbFΘ′ (e, ω)

] }
,

(34)

with crack magnitudes γa, γb defined above in Eqs. (21)–(22). The obtained above elec-
trical frequency response function is the subject of numerical analysis accomplished in
consequent section.

4. NUMERICAL RESULTS AND DISCUSSION

Let’s consider the coherence between two frequency-dependent signals S1 (ω) and
S2 (ω) defined in a frequency segment [ωa, ωb] likely the modal assurance criterion [22,
23]

SI =
N

∑
k=1

S1 (ωk) S2 (ωk) /

[
N

∑
k=1

S2
1 (ωk) ·

N

∑
k=1

S2
2 (ωk)

]1/2

. (35)

This index lies between 0 and 1 and that equals 1 only if the two signals are fully
similar, so that it can be used for checking similarity of two functional signals and called
similarity index. Two given signals may be acknowledged as similar if the index calcu-
lated by Eq. (35) is close to 1, for example, equals 0.999.

For analysis of the effect of crack on the electrical frequency response function given
by Eq. (35), let’s to introduce so-called spectral damage index calculated from a pair of
frequency-dependent signals Q̂ (ω, e, a), Q̂0 (ω) measured respectively for cracked and
intact beams [18]

SDI (e, a) =
N

∑
k=1

Q̂ (ωk, e, a) Q̂0 (ω) /

[
N

∑
k=1

Q̂2 (ωk, e, a) ·
N

∑
k=1

Q̂02 (ωk)

]1/2

. (36)

Hence, deviation of the damage index from 1 represents a measure of the crack ef-
fect on the index, and as usual, it is acknowledged as the sensitivity of the signal under
consideration to crack. Note, if the compared signals are the electric frequency response
functions of the intact and cracked beam, EFRF (x0, ω, e, a), EFRF (x0, ω) , the spectral
damage index is dependent also on the location where the concentrated load is applied
x0, e.g. SDIEF = SDI (x0, e, a).
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SDIEF in dependence upon crack parameters and applied load position is numeri-
cally examined bellow with the following geometry and material constants [24]

Lb = Lp = L = 1 m, b = 0.1 m, hb = L/10,

Et = 390 MPa, ρt = 3960 kg/m3, µt = 0.25; Eb = 210 MPa, ρb = 7800 kg/m3, µb = 0.31,

Cp
11 = 69.0084 GPa, Cp

55 = 21.0526 GPa, ρp = 7750 kg/m3, h13 = −7.70394 × 108 V/m.

Table 1. Similarity of Electrical and Mechanical (Midspan) Frequency Response functions
for different load application positions and crack depth

Crack
depth

Load application position, x0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Uncrack 0.9991 0.9999 0.9993 0.9990 0.9993 0.9998 0.9999 0.9993 0.9986
0.1 0.9992 0.9999 0.9992 0.9991 0.9992 0.9998 0.9999 0.9993 0.9985
0.2 0.9997 0.9993 0.9992 0.9993 0.9991 0.9998 0.9998 0.9992 0.9984
0.3 0.9996 0.9988 0.9993 0.9996 0.9989 0.9998 0.9998 0.9992 0.9983
0.4 0.9983 0.9990 0.9996 0.9997 0.9987 0.9998 0.9998 0.9991 0.9982
0.5 0.9993 0.9997 0.9997 0.9988 0.9985 0.9998 0.9998 0.9990 0.9981

e/L = 0.5, hp/hb = 0.1

Table 2. Similarity of Electrical and Mechanical (Midspan) Frequency Response functions
in different piezoelectric layer thickness and crack depth

Crack
depth

Piezoelectric layer thickness, hp/hb

0.01 0.05 0.08 0.10 0.12 0.15 0.20 0.25 0.30

Uncrack 0.9991 0.9992 0.9992 0.9993 0.9993 0.9993 0.9993 0.9994 0.9994
0.1 0.9991 0.9991 0.9992 0.9992 0.9992 0.9993 0.9993 0.9993 0.9993
0.2 0.9989 0.9990 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9993
0.3 0.9987 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 0.9991 0.9991
0.4 0.9984 0.9985 0.9986 0.9987 0.9987 0.9988 0.9988 0.9989 0.9990
0.5 0.9982 0.9983 0.9984 0.9985 0.9985 0.9986 0.9987 0.9988 0.9988

Crack location, e/L = 0.5; Load application position, x0 = 0.5

First, similarity of electrical (EFRF (x0, ω)) and mechanical midspan
(MFRF (L/2, x0, ω)) frequency response functions is checked by using Eq. (35) and re-
sults are presented in Tables 1, 2 for various crack depth, loading location and piezoelec-
tric layer thickness with given crack location at beam midspan e/L = 0.5. Evidently,
similarity of MFRF and EFRF is well ensured for uncracked beam independently upon
loading position and distributed sensor thickness less than 30% beam thickness. In case
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of cracked beam crack depth may slightly reduce the similarity index of the FRFs and the
best choosing the sensor thickness shows to be 10% of beam thickness.

Fig. 2 demonstrates the spectral damage index of electrical frequency response func-
tion (EFRF) as a function of normalized crack location e/L with various relative crack
depth a/h in case of load applied at the beam middle, x0 = L/2. It can be seen that the
change in the EFRF due to crack location is similar to the variation of the first natural
frequency which reaches the maximum for the crack occurred at the beam middle. How-
ever, the change due to crack depth increases significantly in magnitude compared to the
natural frequency. This means the EFRF is much more sensitive to cracks than natural
frequencies.
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applied at the positions 𝑥#/𝐿 = 0.3	and	0.7 with fixed crack depth 𝑎/ℎ = 0.3. The effect of loading 
location on the crack-induced change in EFRF is noticeably distinguished only when the crack appears at 
positions between loading site and crack depth reaching 30% beam depth (Fig. 4). The sensitivity of EFRF 
loaded at position 𝑥# to crack undergoes an abrupt change at location 𝐿 − 𝑥# which may be explained by 
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Fig. 2. Spectral damage index versus crack location in various crack depth, x0 = L/2

There are depicted in Fig. 3 spectral damage index versus crack location in differ-
ent position of load applied at the positions x0/L = 0.3 and 0.7 with fixed crack depth
a/h = 0.3. The effect of loading location on the crack-induced change in EFRF is notice-
ably distinguished only when the crack appears at positions between loading site and
crack depth reaching 30% beam depth (Fig. 4). The sensitivity of EFRF loaded at position
x0 to crack undergoes an abrupt change at location L − x0 which may be explained by
the discontinuity of response to a concentrated point load. Therefore, it can be concluded
that the loads applied at the symmetric positions produce different sensitivity of EFRF
only to crack appeared at the positions between the loading locations. Fig. 5 shows the
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applied at the symmetric positions produce different sensitivity of EFRF only to crack appeared at the 
positions between the loading locations. Fig. 5 shows the effect of piezoelectric layer thickness on 
sensitivity of EFRF to crack, that revieals monotonic increase of the EFRF senstitivity to crack with 
piezolectric layer thickness until it is less than 15% of the beam thickness. The sensitivity starts 
decreasing for the layer thickness further growing from 0.15hb, especially, the sensitivity gets lossing a 
half fro the thickness increases from 20% t0 25% of beam thickness. In all the Figures we can see the 
nonsmoothed variation of the spectral damage index which might be caused by the discontinuity of 
beam response to the concentrated force. 
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various loading location x0, e/L= 0,5 
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various thickness of piezoelectric layer, x0/L=0.5 

5. Concluding remarks 
Thus, a new concept of frequency response function (FRF), called electrical frequency response 

function (EFRF) has been proposed in this report for a cracked Timoshenko beam bonded with a 
piezoelectric layer. This new concept of  FRF is defined as the output charge produced in the 
piezoelectric layer immediately together with the mechanical frequency response function (MFRF). 

The EFRF shows to be similar to the MFRF measured at the beam middle that confirms reliable 
utilization of piezeelectric layer as a distributed smart sensor for measuring mechanical response 
functions of a cracked beam structure. Moreover, there is conducted a representaion of the EFRF 
explicitly expressed through crackm parameters that provides a useful instrument for solving crack 
detection problem by using distributed piezoelectric sensor. 

The effect of cracks on EFRF has been examined by using the so-called spectral damage index 
defined as the similarity index of EFRFs for intact and cracked beams and acknowledged as the 
sensitivity of EFRF to crack. Numerical results show that the change in the spectral damage index is 
similar to the change in the first natural frequency due to crack but with much greater magnitude. This 
implies a much higher sensitivity of the EFRF to crack compared to that of natural frequencies. 

It's interesting to note that the distributed piezoelectric sensor is useful for measuring EFRF highly 
sensitive to cracks only for its thickness should be less than 20% beam thickness. Otherwise, the smart 
sensor of greater thickness may restore a cracked beam so that the piezoelectric sensor cannot reveal the 
appearance of a crack. 

Next study of the authors will focus on developing a procedure for crack detection in beam by 
measurement of electrical frequency response function. 
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Fig. 4. Spectral damage index versus crack depth in various loading location x0, e/L = 0.5

effect of piezoelectric layer thickness on sensitivity of EFRF to crack, that reveals mono-
tonic increase of the EFRF sensitivity to crack with piezoelectric layer thickness until it



26 Nguyen Tien Khiem, Tran Thanh Hai, Nguyen Thi Lan, Ho Quang Quyet, Pham Van Kha

is less than 15% of the beam thickness. The sensitivity starts decreasing for the layer
thickness further growing from 0.15hb, especially, the sensitivity gets losing a half for the
thickness increases from 20% to 25% of beam thickness. In all the Figures we can see
the nonsmoothed variation of the spectral damage index which might be caused by the
discontinuity of beam response to the concentrated force.
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Fig. 5. Spectral damage index versus crack location in various thickness of piezoelectric layer,
x0/L = 0.5

5. CONCLUDING REMARKS

Thus, a new concept of frequency response function (FRF), called electrical frequency
response function (EFRF) has been proposed in this report for a cracked Timoshenko
beam bonded with a piezoelectric layer. This new concept of FRF is defined as the out-
put charge produced in the piezoelectric layer immediately together with the mechanical
frequency response function (MFRF).

The EFRF shows to be similar to the MFRF measured at the beam middle that con-
firms reliable utilization of piezoelectric layer as a distributed smart sensor for measuring
mechanical response functions of a cracked beam structure. Moreover, there is conducted
a representation of the EFRF explicitly expressed through crack parameters that provides
a useful instrument for solving crack detection problem by using distributed piezoelec-
tric sensor.
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The effect of cracks on EFRF has been examined by using the so-called spectral dam-
age index defined as the similarity index of EFRFs for intact and cracked beams and ac-
knowledged as the sensitivity of EFRF to crack. Numerical results show that the change
in the spectral damage index is similar to the change in the first natural frequency due
to crack but with much greater magnitude. This implies a much higher sensitivity of the
EFRF to crack compared to that of natural frequencies.

It’s interesting to note that the distributed piezoelectric sensor is useful for measur-
ing EFRF highly sensitive to cracks only for its thickness should be less than 20% beam
thickness. Otherwise, the smart sensor of greater thickness may restore a cracked beam
so that the piezoelectric sensor cannot reveal the appearance of a crack.

The next study of the authors will focus on developing a procedure for crack detec-
tion in beam by measurement of electrical frequency response function.
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APPENDIX A. EXPLICIT EXPRESSION OF GENERAL VIBRATION SHAPE FOR
PIEZOELECTRIC BEAM

{Z0 (x, ω)} = [Φ (x, ω)] {C} , (A.1)

where {C} = {C1, . . . , C6}T is a constant vector and matrix [Φ (x, ω)] is

[Φ (x, ω)] =
[
G0 (x, ω) + K (x − e)G′

0 (e, ω)
]

, (A.2)

[G0 (x, ω)] =

 α1ek1x α2ek2x α3ek3x α1e−k1x α2e−k2x α3e−k3x

ek1x ek2x ek3x e−k1x e−k2x e−k3x

β1ek1x β2ek2x β3ek3x −β1e−k1x −β2e−k2x −β3e−k3x

 , (A.3)

[K (x)] =

{
[Gc (x)] : x > 0,
[0] : x ≤ 0,

[
K′ (x)

]
=

{ [
G′

c (x)
]

: x > 0,
[0] : x ≤ 0,

(A.4)

[Gc (x, ω)] =



γa

3

∑
i=1

αiδi1 cosh kix γb

3

∑
i=1

αi (δi2 + δi3) cosh kix 0

γa

3

∑
i=1

δi1 cosh kix γb

3

∑
i=1

(δi2 + δi3) cosh kix 0

γa

3

∑
i=1

βiδi1 sinh kix γb

3

∑
i=1

βi (δi2 + δi3) sinh k2x 0


, (A.5)

δ11 = (k3β3 − k2β2) /∆, δ12 = (α3k2β2 − α2k3β3) /∆, δ13 = (α2 − α3) /∆,

δ21 = (k1β1 − k3β3) /∆, δ22 = (α1k3β3 − α3k1β1) /∆, δ23 = (α3 − α1) /∆,

δ31 = (k2β2 − k1β1) /∆, δ32 = (α2k1β1 − α1k2β2) /∆, δ33 = (α1 − α2) /∆,
∆ = k1β1 (α2 − α3) + k2β2 (α3 − α1) + k3β3 (α1 − α2) , (A.6)

αj =
(

ω2 I∗11 + k2
j B∗

11

)
/
(

ω2 I∗12 + k2
j B∗

12

)
, β j = k j A∗

33/
(

ω2 I∗11 + k2
j A∗

33

)
,

k j =
√

ηj, j = 1, 2, 3.

with η1, η2, η3 being roots of the characteristic equation det
[
λ2A + λB + C

]
= 0.

https://doi.org/10.4028/www.scientific.net/kem.167-168.256
https://doi.org/10.1088/2053-1591/ab8df5
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APPENDIX B. PARTICULAR SOLUTION IN FORCED VIBRATION OF
PIEZOELECTRIC BEAM

{H3 (x)} =
[
H (x)

]
{d} , (B.1)

with matrix [
H (x)

]
=

 ϕ11 + ϕ14 ϕ12 + ϕ15 ϕ13 + ϕ16
ϕ21 + ϕ24 ϕ22 + ϕ25 ϕ23 + ϕ26
ϕ31 + ϕ34 ϕ32 + ϕ35 ϕ33 + ϕ36

 , (B.2)

and vector
{d} =

{
α2 − α3 α3 − α1 α1 − α2

}T /D, (B.3)
where

D = 2A33 [β1k1 (α2 − α3) + β2k2 (α3 − α1) + β3k3 (α1 − α2)] , (B.4)
and ϕjk, j = 1, 2, 3; k = 1, 2, . . . , 6 are elements of matrix [Φ (x, ω)] given above by Eq. (A.2).
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