
Vietnam Journal of Mechanics, Vol. 46, No. 4 (2024), pp. 283 – 297

DOI: https://doi.org/10.15625/0866-7136/20353

INFLUENCE OF CHIRALITY ON BUCKLING OF
INEXTENSIBLE RINGS SUBJECT TO DEAD LOADING

Tuan M. Hoang
Institute of Mechanics, VAST, 264 Doi Can, Hanoi, Vietnam

E-mail: tmhoang@imech.vast.vn

Received: 16 March 2024 / Revised: 22 September 2024 / Accepted: 17 October 2024
Published online: 31 October 2024

Abstract. A variational approach is studied to understand buckling of inextensible rings
made from chiral filaments and subject to dead loading. In opposite to previous literatures
in which only in-plane bifurcation is allowed, i.e., the ring deforms only in its plane, in
this work we consider both in-plane and out-of-plane bifurcation, i.e., the ring deforms
both in its plane and out of its plane. For circular rings made from filaments without
chirality, we find that they lose instability via out-of-plane bifurcation at critical values
of loading smaller than those published. For circular rings made from filaments with
chirality, they lose instability via coupling between in-plane and out-of-plane bifurcation
at critical values of loading smaller than those at which bifurcation would happen without
chirality. The destabilizing effect of chirality, however, can be reduced by increasing the
twisting rigidity relative to the bending rigidity.
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1. INTRODUCTION

Buckling of elastic rings is a traditional buckling problem starting with the pioneer-
ing work of Maurice Lévy [1] in buckling of an infinitely long cylindrical shell subject to
pressure. The buckling of such rings has many applications ranging from the nano-scale
up to the macro-scale, including designing nanorings in nanostructured devices [2], de-
signing cylindrical shells in thin-walled structures such as boilers, pressure vessels [3],
and various other settings. For a recent review of this problem, readers are advised to
refer to Chapter 3 of [4] and references therein.
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Buckling of elastic rings subject to three types of loadings including hydrostatic pres-
sure, centrally directed loading, and dead loading is an important issue from the struc-
ture design point of view since complex loadings, such as air blast loadings in explosion,
can be decomposed into these types of loadings for practical reason, before applying to
structural analysis. Buckling of elastic rings subject to hydrostatic pressure, which re-
mains normal to the tangent of the midline of the ring in its deformed configuration, is
well studied [5–10] and has recently gained new interests in many physical and biolog-
ical systems. A prominent example is the vertebrate gut tube anchored by the dorsal
mesenteric membrane which creates a force responsible for chirality and looping of the
gut tube [11]. Another example is the helical protein belts spanned by the lipid bilay-
ers, which might have both flat and saddle shapes [12]. Inspired by experiments of rings
made from fishing line and spanned by soapy water, Giomi & Mahadevan [13] numeri-
cally characterized the shapes of the rings and subsequently Chen & Fried [14] theoret-
ically studied the stability and bifurcation of the circular configurations. Later, Fried et
al. [15–18] showed that elastic rings made from filaments with a spontaneous twist, or a
spontaneous curvature, or noncircular cross sections might buckle out of their plane at
critical values of surface tension of the soapy water. Buckling of elastic rings subject to
central loading, which remains directed toward the initial center of curvature of the rings,
is also well considered [8–10, 19–21] and is experimentally realized in a recent work [22].
However, in-plane bifurcation is only considered in all previous literatures. Motivated
by the work [23] on buckling of viscoelastic rings under central loadings which demon-
strates that twist buckling dominates the instability, Hoang [24] considered both in-plane
and out-of-plane bifurcation of rings subject to central loadings. He showed that elas-
tic rings lose instability via out-of-plane bifurcation at critical values of loading smaller
than those at which instability occurs via in-plane bifurcation and thus demonstrated the
importance of out-of-plane bifurcation in bifurcation analysis of elastic rings. Buckling
of elastic rings subject to dead loading, which remains normal to the tangent of the mid-
line of the ring in its undeformed configuration, in contrast, is less explored [20, 21] and
additionally only in-plane bifurcation are included, even in the recent work [22]. In this
study, we allow for both in-plane and out-of-plane bifurcation and show that elastic rings
subject to dead loadings buckle via out-of-plane bifurcation at critical values of loading
lower than those at which buckling would occur if only in-plane bifurcation is included.

Chirality or “handedness”, defined as the loss of mirror symmetry, was seen in var-
ious structures of different scales, from DNA to the horns of animals. Chirality of fila-
ments produces many interesting phenomena including but not limited to the coupling
between twist and stretch or between twist and bend of the filaments. While the twist-
stretch coupling is well studied [25–29], the twist-bend coupling has only been explored
in [24, 30] although the latter was introduced before the former [31–33]. Inspired by the
work [34] in which the twist-bend coupling is used to understand kink instability in DNA
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rings, we explore the effect of this coupling on the buckling of elastic rings subject to dead
loadings. From now on, the twist-bend coupling is implicitly understood when we refer
to the chirality of filaments. We find that elastic rings made from filaments with chiral-
ity exhibit coupling between in-plane and out-of-plane bifurcation at critical values of
magnitude of loading lower than those at which buckling would occur with no chirality.

In this work, we use a variational approach to study bifurcation of inextensible chiral
elastic rings subject to dead loading. This approach is relatively straightforward in deriv-
ing the equilibrium and buckling conditions in closed forms and is suitable for buckling
problems under static loading. The variational approach, however, is not applicable for
buckling problems under dynamic loading; instead, the dynamic stability method or the
numerical method should be applied for these problems.

This paper is structured as follows. Section 2 contains fundamental assumptions
concerning kinematics and energetics of the inextensible rings. The general equilibrium
conditions and their linearized equations for instability to occur appear in Section 3 and
Section 4, respectively. Section 5 summaries our most important results.

2. BACKGROUND

We study an elastic ring compressed by a dead loading. The ring is made from an in-
extensible, unshearable, and chiral filament with centerline C. We assume that the curve
C has no self-contact. Moreover, the ring is compressed by a dead loading of constant
magnitude σ, depicted schematically in Fig. 1 and its direction remains parallel to its
original direction and directs toward the initial radial direction of the ring.

2.1. Kinematics

We parameterize C as r = r(s) where s is the arclength parametrization. To facilitate
our analysis, we measure distance relative to the ring radius R. The positional vector of
any material point on C of the undeformed ring is, thus

r = er(θ), 0 ≤ θ ≤ 2π,

where er is the unit vector in the radial direction and θ = R−1s is the azimuthal angle
of polar coordinates on the unit circle. Denoting u, v, w be the (dimensionless) displace-
ments along tangent, radial, and transverse directions respectively, the positional vector
of a material point on C of the deformed ring is

ξ = (1 + v)er + ueθ + we3, e3 = er × eθ , (1)

where eθ is the unit tangent vector to C of the undeformed ring. Periodicity then requires
u, v, w and their relevant derivatives are 2π–periodic functions of θ.
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Fig. 1. A ring of radius R made from a chiral filament with centerline C = {r : r = Rξ(Rθ), 0 ≤
θ ≤ 2π}, endowed with a triad {t, d, t × d} of orthogonal directors, with t being tangent to C
and d residing in the normal cross-section of the filament. The ring is compressed by a loading of
constant magnitude σ and its direction always remains parallel to its original direction. A portion

of the filament is zoomed in to show its chirality, illustrated here as “right-handed” chirality

We denote t a tangent vector to C, the inextensibility condition of C imposes

|t| = |ξ′| = 1, (2)

with a prime being differentiation with respect to θ. Substitution of (1) into (2) yields the
inextensibility in the form

v + u′ +
1
2

(
v + u′

)2
+

1
2

(
v′ − u

)2
+

1
2

w′2 = 0. (3)

The curvature and the torsion of C are, [35]

κ = |ξ′′|, τ =
ξ′ × ξ′′ · ξ′′′

|ξ′′|2
. (4)

Substitution of (1) into (4) yields{
κ2 = (1 + 2u′ + v − v′′)2 + (u′′ − u + 2v′)2 + w′′2,

τ = w′(1 + u′ − u′′′ − 2v′′) + w′′(v′′′ − 2v′ − 3u′′) + w′′′(1 + v′′ − u′) + h.o.t.
(5)

We next introduce a unit director field d lying in the cross-section of the rod and
admitting a representation

d = cos ψ p + sin ψ b. (6)
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The twist density of C is, [35]
ω = d × d′ · t. (7)

From (6) and the Frenet-Serret relations,

t′ = κp, p′ = −κt + τb, b′ = −τp,

(7) yields

ω = τ + ψ′ = w′(1 + u′ − u′′′ − 2v′′) + w′′(v′′′ − 2v′ − 3u′′) + w′′′(1 + v′′ − u′) + ψ′. (8)

2.2. Energetics

For an inextensible, unshearable, and chiral rod, Healey [27] proved that the qua-
dratic stored energy density function is

U =
1
2

(
|κ|2 + α ω2 + 2η ω(κ · d)

)
, (9)

where nondimensional parameters are [24]

α =
c
a
> 0, η =

e
a

, η2 ≤ α,

with a, c, e being, respectively, bending rigidity, twisting rigidity, and a bend-twist cou-
pling coefficient due to the chirality of the ring and the vector curvature κ is given as

κ = t′ = κp. (10)

The total internal potential energy of the ring is, from (9) using (6) and (10),

V =
∫ 2π

0
U =

∫ 2π

0

1
2

(
κ2 + α ω2 + 2η ωκ cos ψ

)
dθ.

The (dimensionless) work done of the dead loading of constant magnitude σ is simply

W = −ν
∫ 2π

0
v dθ,

where (dimensionless) loading parameter is defined as

ν =
R3σ

a
≥ 0.

The net potential energy of the chiral ring under compressive loadings is thus

E = V − W =
∫ 2π

0

1
2

(
κ2 + αω2 + 2ηωκ cos ψ

)
dθ + ν

∫ 2π

0
v dθ. (11)

In the subsequent analysis, we find it convenient to treat the curvature κ and the twist
density ω as independent variables constrained by (5)1 and (8). So to incorporate these
constraints as well as the constraint of inextensibility (3), we work with the augmented
version of the dimensionless net potential energy (11),

Φ = E + L, (12)
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where

L =
∫ 2π

0
λ
[
v + u′ +

1
2

(
v + u′

)2
+

1
2

(
v′ − u

)2
+

1
2

w′2
]

dθ

+
∫ 2π

0

1
2

ρ
[
κ2 − (1 + 2u′ + v − v′′)2 − (u′′ − u + 2v′)2 − w′′2

]
dθ

+
∫ 2π

0
ϑ
[
ω−w′(1+u′−u′′′−2v′′)−w′′(v′′′−2v′−3u′′)−w′′′(1+v′′−u′)−ψ′

]
dθ,

(13)

with λ, ρ, ϑ being Lagrange multipliers corresponding to the constraints.

3. EQUILIBRIUM CONDITIONS

Let U = {κ, u, v, w, ω, ψ, λ, ρ, ϑ} and δU = {δκ, δu, δv, δw, δω, δψ, δλ, δρ, δϑ} be state
variables and their admissible variation. Taking the first variation of terms in (12), we
obtain

δV =
∫ 2π

0

[
(κ + η ω cos ψ)δκ + (α ω + η κ cos ψ)δω − η ωκ sin ψδψ

]
dθ, (14)

and

δW = −ν
∫ 2π

0

(
δv + wδw

)
dθ. (15)

We similarly obtain the contributions of Lagrange multipliers in (13) to (12) which is used
in conjunction with (14) and (15) to yield

δΦ =
∫ 2π

0

[(
(1+ρ)κ+ηω cos ψ

)
δκ+(αω+ϑ+ηκ cos ψ)δω+(ϑ′−ηκω sin ψ)δψ

]
dθ

+
∫ 2π

0

(
I δu+ J δv+K δw

)
dθ+

∫ 2π

0

[
v+u′+

1
2

(
v+u′

)2
+

1
2

(
v′−u

)2
+

1
2

w′2
]
δλ dθ

+
∫ 2π

0

1
2

[
κ2−(1+2u′+v−v′′)2−(u′′−u+2v′)2−w′′2

]
δρ dθ

+
∫ 2π

0

[
ω−w′(1+u′−u′′′−2v′′)−w′′(v′′′−2v′−3u′′)−w′′′(1+v′′−u′)−ψ′

]
δϑ dθ,

(16)

where

I = λ(u − v′) + ρ(u′′ − u + 2v′) +
(
ρ(u − u′′ − 2v′) + 3ϑw′′)′′ − (

ϑw′)′′′
−

(
λ(1 + v + u′)− 2ρ(1 + v − v′′ + 2u′)− ϑ(w′ − w′′′)

)′,
J = λ(1+v+u′)−ρ(1+2u′+v−v′′)+

(
ρ(1 + 2u′ + v − v′′) + ϑ(2w′ − w′′′)

)′′
+

(
ϑw′′)′′′ + (

λ(u − v′)− 2ρ(u − u′′ − 2v′)− 2ϑw′′)′ + ν,

K =
(
ϑ(1 + v′′ − u′)

)′′′
+

(
ϑ(1 + u′ − u′′′ − 2v′′)− λw′)′

+
(
ϑ(3u′′ + 2v′ − v′′′)− ρw′′)′′.
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Setting to zero the first variation (16) then yields to the equilibrium conditions
(1 + ρ)κ + ηω cos ψ = 0,

αω + ϑ + ηκ cos ψ = 0,

(αω + ηκ cos ψ)′ + ηκω sin ψ = 0,

I = J = K = 0,

(17)

and the constraints (3), (5)1, (8).

4. LINEARIZED BIFURCATION ANALYSIS

Let us now study the buckling of an inextensible chiral elastic ring under dead load-
ing. We are particularly interested in situations in which the filament has a (nondimen-
sional) curvature κ = 1 and the cross section does not rotate about the centerline C. As
shown later, we will see that the flat circular ring can buckle out of the plane of the ring
even with zero twist density. For such situations, we have

κ = 1, u = v = w = 0, ω = 0, ψ = 0. (18)

With the help of (18), we see that the constraints (3), (5)1, and (8) are satisfied trivially
while the equilibrium conditions (17) are satisfied if Lagrange multipliers satisfy

λ = −(1 + ν), ρ = −1, ϑ = −η. (19)

We denote the state characterized by (18)–(19) the fundamental or trivial state U0. To
study bifurcation, we need to seek the buckling solution U1 = {κ1, u1, v1, w1, ω1, ψ1, λ1,
ρ1, ϑ1} satisfying the variational equation [36]

Φ′′U1δU = 0.

Integration by parts while using the periodicity of U, U1, δU and their higher derivatives,
we arrive at

Φ′′U1δU =
∫ 2π

0

[
(ρ1 + ηω1)δκ + (αω1 + ϑ1 + ηκ1)δω + ϑ′

1δψ + I1 δu + J1 δv + K1 δw

+(v1+u′
1)δλ+(κ1−2u′

1−v1+v′′1 )δρ+(ω1−w′
1−w′′′

1 −ψ′
1)δϑ

]
dθ = 0,

where 
I1 = −ν(u1 − v′1)− 3(u′′

1 + u′′′′
1 )− η(w′′

1 + w′′′′
1 )− λ′

1 + 2ρ′1,

J1 = v′′′′1 + (ν − 2)v1 + (ν − 1)v′′1 + λ1 − ρ1 + ρ′′1 ,

K1 = −η(u′′
1 + u′′′′

1 ) + (1 + ν)w′′
1 + w′′′′

1 .
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The above equation requires

ϑ′
1 = 0,

v1 = −u′
1,

κ1 = u′
1 + u′′′

1 ,

ω1 = w′
1 + w′′′

1 + ψ′
1,

ρ1 = −η(w′
1 + w′′′

1 + ψ′
1),

λ1 = ρ1 − ρ′′1 − v′′′′1 − (ν − 2)v1 − (ν − 1)v′′1 ,

(20)

and
α(w′

1 + w′′′
1 + ψ′

1) + η(u′
1 + u′′′

1 ) = 0,

− η(u′′
1 + u′′′′

1 ) + (1 + ν)w′′
1 + w′′′′

1 = 0,

− νu1+(ν(m − 2)−1)u′′
1 − (ν + 2)u′′′′

1 − u(6)
1 − η(2w′′

1 + 3w′′′′
1 + w(6)

1 + ψ′′
1 + ψ′′′′

1 ) = 0.
(21)

Note that the governing equations (20) and (21) are linearizations of the general equilib-
rium equations (17) and constraints (3), (5)1, (8) about the trivial solution. For bifurcation
to occur, (20) and (21) should have nontrivial solutions of the following forms

u1 = a1 sin nθ,

w1 = b1 sin nθ,

ψ1 = c1 sin nθ,
(22)

where n is the mode number and a1, b1, c1 are constants. Since n = 0 and n = 1 represent
respectively translational and rotational rigid bodies, we restrict to n ≥ 2. Plugging (22)
into (21), we arrive

c1 = (n2 − 1)(ηα−1a1 + b1),(n
2 − 1)

(
1 − η2

α

)
− (n2 − 1)ν

n2 −η

−n2η n2 − n2ν

n2 − 1

 [
a1
b1

]
=

[
0
0

]
. (23)

Nontrivial solution exists if the determinant of coefficient matrix of the above equation is
zero

f (ν) ≡
[
(n2 − 1)

(
1 − η2

α

)
− (n2 − 1)ν

n2

][
n2 − n2ν

n2 − 1

]
− n2η2 = 0. (24)

The corresponding buckling solutions are

ξ1(θ) = a1(−n cosnθer + sinnθeθ) + b1 sinnθe3, 0 ≤ θ ≤ 2π. (25)

We next discuss the buckling condition in two cases.
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4.1. Bifurcation of inextensible achiral elastic rings

For this case, we set the chiral coefficient e = 0 or equivalently η = 0 and (24)
reduces to

ν = n2 or ν = n2 − 1, n ≥ 2. (26)

The homogeneous system for a1, b1 in this case is uncoupling and hence, there is no cou-
ple between the in plane and out of plane bifurcations.

When ν = n2, the homogeneous system has solution a1 ̸= 0, b1 = 0 and the circular
ring bifurcates via in-plane perturbation to a flat but noncircular shape, given as

ξ1(θ) = a1(−n cosnθer + sinnθeθ), 0 ≤ θ ≤ 2π.

For the lowest buckling mode n = 2, the buckling shape is in the form of an ovalization,
as illustrated in Fig. 2(a).

When ν = n2 − 1, the homogeneous system has solution a1 = 0, b1 ̸= 0 and the
circular ring bifurcates via out-of-plane perturbation to a nonflat shape whose projection
onto the initial ring plane is circular, given as

ξ1(θ) = b1 sinnθe3, 0 ≤ θ ≤ 2π.

For the lowest buckling mode n = 2, the buckling shape is a saddle one, as illustrated in
Fig. 2(b).

(a) In-plane bifurcation (b) Out-of-plane bifurcation

Fig. 2. Graphical depictions of the buckling modes which achiral elastic rings bifurcate purely in
its plane (a) or purely out of its plane (b), respectively, to an oval shape or a saddle shape for

n = 2. The projection of the saddle shape onto the initial ring plane is circular

It is obvious from (26) that the critical loading is smallest when n = 2. For n = 2,
the circular ring bifurcates to a saddle shape via out-of-plane bifurcation at the smallest
critical value of dead loading νc = 3. This value is lower than the smallest critical value



292 Tuan M. Hoang

of dead loading νc = 4 reported in previous literatures [10, 20, 21, 37] which restrict to in-
plane bifurcation only. This new result demonstrates the role of out-of-plane bifurcation
in bifurcation analysis of elastic rings in general and of those subject to dead loading in
particular.

4.2. Bifurcation of inextensible chiral elastic rings

We first specialize to cases where σ = 0 or equivalently ν = 0 and (24) reduces to

η2 =
(n2 − 1)α
n2 − 1 + α

, n ≥ 2. (27)

This implies that even when there are no loadings, the chiral ring still buckles if the
chiral degree is large enough. Therefore, we assume the chiral rings are stable before the
application of the loading so that

η2 ≤ α(n2 − 1)
α + (n2 − 1)

, n ≥ 2.

From (24) we see that,

f
(
ν = n2 − 1

)
= −n2η2 ≤ 0,

so two solutions ν1,2 of (24) satisfy

ν1 ≤ n2 − 1 ≤ ν2, n ≥ 2.

Since the smallest critical loading at which elastic ring buckles is more important, we
consider the lower critical loading ν = ν1 among the two solutions of (24).

When ν = ν1, the homogeneous system (23) is coupling for a1, b1 and has solution
a1 ̸= 0, b1 ̸= 0 and hence the chiral ring bifurcates via a coupling between in-plane and
out-of-plane perturbations to a nonflat shape whose projection onto the initial ring plane
is noncircular, given as (25).

For n ≥ 2, plots showing the effect of twisting-to-bending ratio α and chirality degree
η on the critical loading νc = ν1 are plotted in Fig. 3. We see from this figure that the
smallest critical loading νc = ν1 is attained when n = 2. This finding agrees with previous
literatures on stability of circular rings subject to external pressure [1, 5–10, 19–21, 24, 38].

For the lowest buckling mode n = 2, the smallest critical loading is, from (24),

νc = −2η2

α
+

1
2

(
7 −

√
16η4

α2 +
(

16 − 8
α

)
η2 + 1

)
, (28)

and the buckling shape is a saddle one, as illustrated in Fig. 4 and given as

ξ1(θ) = b1

[(
3 − νc

3η

)
(−2 cos2θ er + sin2θ eθ) + sin2θ e3

]
, 0 ≤ θ ≤ 2π.
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Fig. 3. Plots depicting the dependence of the critical values νc = ν1 on the twist-to-bend ratio α
and chirality η for mode numbers n = 2, 3, 4, and 5

Fig. 4. Graphical depictions of the buckling modes which a chiral elastic ring bifurcates both in
its plane (in-plane bifurcation) and out of its plane (out-of-plane bifurcation) to a saddle shape for

n = 2. The projection of the saddle shape onto the initial ring plane is not circular

From (28), we see that the smallest critical value of dead loading is an even function
of chirality η implying that the critical loading νc of ν for “left-handed” (η < 0) chirality is
the same as that for “right-handed” (η > 0) chirality. Plots showing the effect of twisting-
to-bending ratio α and chirality degree η on the critical loading νc = ν1 when n = 2 are
plotted in Fig. 5. From this figure, we re-obtain the two special cases already discussed.
The first case is η = 0 and the smallest critical loading of ν = 3, independent with α, in
accordance with (26) for n = 2. The second case is ν = 0 and the curves intersect the
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horizontal axis at the critical chirality degree of η, given as (27) for n = 2. When η ̸= 0,
the critical value of dead loading νc < 3 suggests that circular rings made from filaments
with chirality lose instability via coupling between in-plane and out-of-plane bifurcation
at critical values of loading smaller than that at which bifurcation would happen with-
out chirality via purely out-of-plane bifurcation. Additionally, the monotonic decrease
of the curve νc = νc(η) as the degree of chirality |η| increases shows the destabilizing
effect of chirality. Moreover, a curve corresponding to a smaller value of α is under that
corresponding to higher value of α implying the stabilizing influence of the twisting-to-
bending ratio. Thus, increasing the twisting rigidity over the bending rigidity will reduce
the potentially destabilizing effect of chirality.

η

νc

0 0.5 1

3

2

1

0

α = 2/3
α = 1
α = 3/2
α = 2

Fig. 5. Plots depicting the dependence of the lowest critical values νc of ν, given as (28),
on the chirality coefficient η with various twist-to-bend ratio α

5. SUMMARY

A variational approach has been used to study bifurcation of inextensible chiral elas-
tic rings subject to dead loading. Rings made from circular cross-section filaments with
constant material properties are studied. In opposite to previous literatures which restrict
to planar bifurcation, we allow for both in-plane and out-of-plane bifurcation. Moreover,
we assume the filament is chiral which couples bending and twisting deformations. For
filaments without chirality, circular rings subject to dead loading bifurcate to three di-
mensional shapes at the critical loading νc = 3 less than that at which buckling would
occur if only in plane bifurcation were allowed. For filaments with chirality, on the other
hand, circular rings subject to dead loading bifurcate to three dimensional shapes at the
critical loading νc of ν smaller than that at which buckling would occur without chirality.
This results in a destabilizing effect of chirality on buckling of circular rings but its effect
could be reduced by raising the twisting-to-bending ratio.
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Based on the variational approach, our work is suitable to analyze bifurcation prob-
lems under static loading. When dynamic effects are included, i.e., dynamic loadings or
vibration characteristics of elastic rings are considered, the variational approach is not
applicable and our future work would be to use alternative methods such as dynamic
stability analysis or numerical methods to provide more comprehensive analysis.
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