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Abstract. Understanding plane and surface waves in elastic materials is crucial in vari-
ous fields, including geophysics, seismology, and materials science, as they provide valu-
able information about the properties of the materials they travel through and can help
in earthquake detection and analysis. In the present paper, the governing equations of
Moore–Gibson–Thompson (MGT) thermoelasticity are modified in context of Klein–
Gordon (KG) nonlocality. For linear, homogeneous and isotropic case, the governing equa-
tions in two-dimensions are solved to obtain the dispersion relations for possible plane
waves. It is found that there exists one transverse and two coupled longitudinal waves in
a two-dimensional model of MGT weakly nonlocal thermoelastic medium and the speeds
of these plane waves are found to be dependent on KG nonlocal parameters. The cou-
pled longitudinal waves are also found to be dependent on conductivity rate parameter.
For linear, homogeneous and isotropic case, the governing equations in two-dimensions
are also solved to obtain a Rayleigh wave secular equation at thermally insulated surface.
For a numerical example of aluminium material, the speeds of transverse wave, coupled
longitudinal waves and the Rayleigh wave are computed and graphically illustrated to
visualize the effects of KG nonlocality parameters, conductivity rate parameter and the
angular frequency on the wave speeds.

Keywords: plane waves, Rayleigh wave, Moore–Gibson–Thompson thermoelasticity, secu-
lar equation, wave speed, nonlocality parameters, conductivity rate parameter.

1. INTRODUCTION

The hyperbolic-parabolic field equations of coupled thermoelasticity are developed
by Biot [1]. Lord and Shulman [2] and Green and Lindsay [3] generalized this theory with
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the use of hyperbolic field equations. Ignaczak and Ostoja-Starzewski [4] and Hetnarski
and Ignaczak [5] presented detailed review of these generalized theories with applica-
tions. Recently, Quintanilla [6] developed a theory of generalized thermoelasticity, where
the heat conduction is described by the Moore–Gibson–Thompson equation.

Lord Rayleigh [7] investigated the existence of surface waves known as Rayleigh
waves propagating on the free surface of an isotropic solid half-space. These waves
are mainly applied for characterization of material and to investigate the structural and
mechanical properties of the objects. The propagation of Rayleigh waves in thermoe-
lastic media finds numerous uses in different engineering fields and future technolo-
gies and was explored by many investigators including Flavin [8], Chadwick and Win-
dle [9], Ivanov [10], Abouelregal [11], Chirita [12], Bucur et al. [13], Singh [14], Singh and
Verma [15] and Passarella et al. [16].

The nonlocal theory of continuum mechanics considers long-range interactions within
the material which create discrepancies between the results of the classical continuum
limit and the atomic theory of lattices. According to Eringen [17], the classical field the-
ories are unable to describe various problems including stress fields at the dislocation
core and at the tips of cracks, fracture of solids, sharp corners and discontinuities in
bodies, singularities present at the point of application of concentrated loads and short
wavelength nature of elastic waves. The theories of nonlocal elasticity were developed
by Edelen and Laws [18], Edelen et al. [19] and Eringen and Edelen [20]. Some promi-
nent researchers including Chirita [21], Iesan [22], Eringen [23], Altan [24], Nowinski [25]
and Cracium [26] applied nonlocal elasticity to solve various dynamical problems. Erin-
gen [27] also applied the linear theory of nonlocal elasticity to show the dispersive na-
ture of elastic waves due to nonlocal parameters. Recently, Singh et al. [28] discussed
the effects of nonlocal parameter on the propagation of harmonic waves in elastic solid
with voids.

Eringen [29] and Balta and Suhubi [30] extended the nonlocal elasticity for thermoe-
lastic materials. These days, the wave propagation in nonlocal thermoelasticity is a hot
topic amongst various researchers. For instance, Singh [31], Pramanik and Biswas [32],
Biswas [33], Lata and Singh [34], Abd-Alla et al. [35], Kumar et al. [36] and Biswas
[37] studied Rayleigh surface waves in varous thermoelastic models with nonlocality in
space. Jangid et al. [38] have used Moore–Gibson–Thompson thermoelasticity to study
the plane harmonic waves. However, in the present paper, the Moore–Gibson–Thompson
thermoelasticity with Klein–Gordon nonlocality in space and time is used to study the
characteristics of Rayleigh surface waves.

Recently, the solution to the differential model in context to Eringen’s theory of non-
local elasticity has been challenged by some researchers like Romano [39] and Kaplunov
et al. [40, 41] by giving some counter examples. Anh and Vinh [42] introduced a novel
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model of weakly nonlocal elasticity in space and studied harmonic plane waves and
Stoneley waves at an interface between two weakly nonlocal half-spaces. Anh et al.
[43] also studied the Rayleigh wave with impedance boundary conditions in context of
weakly nonlocal elasticity.

Lazar and Agiasofitou [44] developed a weakly nonlocal elasticity theory of Klein–
Gordon type for isotropic case by extending the nonlocal elasticity of Helmholtz type by
including a characteristic time scale parameter in addition to a characteristic length scale
parameter. In development of this theory, they used weak nonlocal elasticity instead
of strong nonlocal elasticity. The nonlocality in time is of great importance due to the
optic modes and frequency bad-gaps in the dispersion relations in addition to acoustic
modes. Motivated by the Moore–Gibson–Thompson thermoelastic model developed by
Quintanilla [6] and nonlocal elasticity of Klein–Gordon type given by Lazar and Agia-
sofitou [44], the governing equations of Moore–Gibson–Thompson thermoelasticity with
nonlocality in space and time are developed in the present paper to explore both the
plane and surface waves. The present paper is aimed to deliver some new theoretical and
numerical information about the propagation of plane and surface waves in a MGT ther-
moelastic medium in context of KG nonlocality. The present paper is structured as fol-
lows: Section 2 deals with the two-dimensional formulation of the governing equations
for an isotropic, homogeneous and linear MGT thermoelastic medium with KG nonlo-
cality. In Section 3, the propagation of plane waves is considered and velocity equations
of plane waves are obtained. In Section 4, the propagation of possible Rayleigh waves is
examined and a secular equation of the Rayleigh wave is obtained. A numerical example
of Aluminium material is taken in Section 5 to illustrate graphically the dependence of
speeds of plane and surface waves on the KG nonlocal parameters, conductivity rate pa-
rameter and angular frequency. The concluding remarks based on theoretical derivations
and numerical results are listed in Section 6.

2. GOVERNING EQUATIONS

Following Quintanilla [6] and Lazar and Agiasofitou [44], the governing equations
of linear, homogeneous and isotropic Moore–Gibson–Thompson thermoelasticity with
Klein–Gordon nonlocality and without body forces and heat sources, are

(a) Constitutive equations

eij =
1
2
(ui,j + uj,i), (1)

(1− e0∇2 + τ2∂2
t )tij = σij = 2µeij + (λekk − βT)δij. (2)
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(b) Equations of motion

µui,jj + (λ + µ)uj,ij − βT,i = ρ(1− e0∇2 + τ2∂2
t )∂

2
t ui. (3)

(c) Heat Equations

(K∗ + K∂t)∇2T = (∂2
t + τq∂3

t )(ρcvT + βT0ui,i), (4)

where σij are the Cauchy stress tensor components for classical elasticity, tij are stress ten-
sor components for nonlocal elasticity of Klein–Gordon type, eij are the strain tensor com-
ponents, ui are the displacement components, δij is the Kronecker delta, λ, µ are Lame′s
constants, ρ is the density of the medium, T is change in temperature with reference tem-
perature T0, e0 is the characteristic internal length scale parameter due to nonlocality in
space, τ is the characteristic time scale parameter due to nonlocality in time. K is the
thermal conductivity, K∗ is conductivity rate parameter. cv is the specific heat at constant
strain, τq is a non-negative parameter called as the relaxation time, β = (3λ + 2µ)α0 and
α0 is the thermal expansion coefficient. ∂t = ∂/∂t denotes the partial derivative with
respect to time t. ∇2 denotes the Laplace operator. The subscripts given after a comma
symbolizes space partial differentiation. The heat equation reduces for Biot model when
K∗ = 0, τq = 0, for Lord and Shulman model when K∗ = 0, for Green–Nagdhi model of
type III when τq = 0 and for Moore–Gibson–Thompson model when K∗ 6= 0, τq 6= 0.

A thermally conducting linear, isotropic and homogeneous elastic material is con-
sidered at reference temperature T0 in the unstrained state. A Cartesian system of axes
is considered with the origin at plane surface z = 0 of the half-space z ≥ 0. The positive
z-axis is taken normal into the half-space. The surface z = 0 is assumed as stress free and
without any heat transfer across the surface. The propagation direction of elastic waves is
selected along the x-axis with equal displacement of particles on a line parallel to y-axis.
Then, all the field quantities will not dependent on y-coordinates. Using the Helmholtz’s
decomposition given below

u1 = φ,1 − ψ,3, u3 = φ,3 + ψ,1, (5)

the governing equations (3) and (4) are specialized in x-z plane as under

(λ + 2µ)∇2
1φ− βT = ρ(1− e0∇2

1 + τ2∂2
t )∂

2
t φ, (6)

(K∗ + K∂t)∇2
1T = (∂2

t + τq∂3
t )[ρcvT + βT0∇2

1φ], (7)

µ∇2
1ψ = ρ(1− e0∇2

1 + τ2∂2
t )∂

2
t ψ, (8)

where ∇2
1 = ∂2/∂x2 + ∂2/∂z2.
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3. PLANE WAVES

The following type of plane wave solutions of Eqs. (6) to (8) are sought

{ψ, φ, T} = {A, B, C}eιk(x sin θ+z cos θ)−ιωt, (9)

where θ is the propagation angle, k is the complex wave-number and ω is the circular
frequency.

Using (9) into Eqs. (6) to (8), the following velocity equations are obtained

V4 + GV2 + H = 0, (10)

V2 − e2

τ1
= 0, (11)

where

V2 =
ω2

k2 , G =
K̄
iω
− e1

τ1
− iωβ̄ε, H = − K̄

iω
e1

τ1
, ε =

βT0

ρcv
,

c2
1 =

λ + 2µ

ρ
, c2

2 =
µ

ρ
, e1 = c2

1 − e2
0ω2, e2 = c2

2 − e2
0ω2,

τ1 = 1− τ2ω2, K̄ =
K∗ − iωK

ρcvτ∗
, τ∗ = τq +

i
ω

.

(12)

The two roots of velocity equation (10) show the existence of two coupled longitudinal
waves with distinct speeds v1 = Re(V1) and v2 = Re(V2) in a linear, isotropic and ho-
mogeneous MGT thermoelastic medium. In absence of thermal parameters, the coupled
longitudinal wave with speed v2 will not exist. The root of Eq. (11) correspond to one

transverse wave with speed v3 =
e2

τ1
.

4. RAYLEIGH SURFACE WAVE

The Rayleigh wave propagation is considered in the x-direction and decaying in the
z-direction with complex wave number k and angular frequency ω. The appropriate
displacement and temperature potential functions for propagation of Rayleigh waves
along the surface z = 0, are selected as

φ(x, z, t) = f (z)ei(kx−ωt),

T(x, z, t) = g(z)ei(kx−ωt), (13)

ψ(x, z, t) = h(z)ei(kx−ωt),
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Making use of (13) in Eqs. (6) to (8), the appropriate solutions in half-space z > 0 for
surface wave are obtained as

φ(x, z, t) =
2

∑
n=1

An exp[−λn + i(kx−ωt)],

T(x, z, t) =
2

∑
n=1

ζn An exp[−λn + i(kx−ωt)],

ψ(x, z, t) = B0 exp[−λ3 + i(kx−ωt)],

(14)

where the unknowns An and B0 are the amplitudes of displacement potentials and tem-
perature and the coupling coefficients ζn are derived after substituting φ and T in Eqs. (6)
and (7) as

ζn/k2 = e1 − τ1
ω2

k2 − e1
λ2

n
k2 , (n = 1, 2), (15)

or

ζn/k2 =
iω3ε(λn

2 − k2)

K̄λn
2 − k2(K̄ + iω

ω2

k2 )

, (n = 1, 2), (16)

where λ1 and λ2 are the solutions of the characteristic equation

λ4 − Rλ2 + S = 0, (17)

where

R/k2 =
(

1− τ1

e1

ω2

k2

)
+
(

1 +
iω
K̄

ω2

k2

)
+ iω

εβ̄

e1K̄
ω2

k2 ,

S/k4 =
(

1− τ1

e1

ω2

k2

)(
1 +

iω
K̄

ω2

k2

)
+ iω

εβ̄

e1K̄
ω2

k2 ,
(18)

and λ3 is the solution of the characteristic equation

λ2 − k2
(

1− τ1

e2

ω2

k2

)
= 0. (19)

From Eqs. (17) and (19), it follows that

λ2
1 + λ2

2 = R, λ2
1λ2

2 = S, λ2
3 = k2

(
1− τ1

e2

ω2

k2

)
. (20)

The required boundary conditions at thermally insulated stress-free surface z = 0 are
vanishing of the tangential nonlocal stress component, normal nonlocal stress component
and the normal heat flux component at z = 0, i.e.,

t13 = 0, t33 = 0,
(

K∗ + K
∂

∂t

)
∂T
∂z

= 0, (21)
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where
(1− e0∇2

1 + τ2∂2
t )t13 = σ13 = µ(ψ,11 − ψ,33 + 2φ,13),

(1− e0∇2
1 + τ2∂2

t )t33 = σ33 = λ(φ,11 + φ,33) + 2µ(φ,33 + ψ,13)− γT.
(22)

The appropriate potential functions given by (14) satisfy the conditions (21) and a ho-
mogeneous system of three equations in A1, A2 and B0 are obtained after using relations
given by (22). The non-trivial solution of the homogeneous system require the vanishing
of the determinant of the coefficients matrix, i.e.,

a11(a22a33 − a23a32)− a12(a21a33 − a23a31) + a13(a21a32 − a22a31) = 0, (23)

where

a1j = −λ + (λ + 2µ)
λ2

j

k2 − β
ζ j

k2 , j = 1, 2, a13 = −2iµ
λ3

k
,

a2j = 2i
λj

k
, j = 1, 2, a23 = 1 +

λ2
3

k2 , a3j = (K∗ − iωK)
λj

k
ζ j

k2 , a33 = 0.

(24)

Eq. (23) is dispersion equation of Rayleigh waves along the stress-free thermally insu-
lated surface of an isotropic and homogeneous MGT thermoelastic solid half-space with
KG nonlocality. In absence of thermal effects, Eq. (23) reduces to[

2− τ1

e1

ω2

k2 (
λ

µ
+ 2)

][
2− τ1

e2

ω2

k2

]
− 4

√
1− τ1

e1

ω2

k2

√
1− τ1

e2

ω2

k2 = 0. (25)

In absence of thermal and nonlocal effects, Eq. (23) reduces to(
2− c2

c2
2

)2
− 4

√
1− c2

c2
1

√
1− c2

c2
2
= 0, (26)

where c2 = ω2/k2. Eq. (26) is the secular equation of the Rayleigh wave along the free
surface of an isotropic elastic solid half-space as obtained by Lord Rayleigh [7].

5. NUMERICAL ILLUSTRATIONS

For numerical illustrations of the wave speeds of homogeneous plane waves and
the Rayleigh surface wave, the following relevant parameters of aluminium material at
T0 = 300K are taken
ρ = 2.7× 103 Kg.m−3, λ = 7.59× 1010 N.m−2, µ = 1.89× 1010 N.m−2,
K = 0.5× 102 W.m−1.deg−1, K∗ = 0.4× 102 W.m−1.deg−1, cE = 0.2× 102 J.Kg−1.deg−1,
τq = 0.000005 s., β = 0.002.
For above numerical values of material parameters, the velocity equations (10) an (11) for
plane waves and the secular equation (23) for Rayleigh surface wave is solved numeri-
cally to illustrate the effects of KG nonlocal parameters, conductivity rate and angular
frequency on the wave speeds of plane waves and Rayleigh wave.
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(a) (b)

Fig. 1. The effect of nonlocal space parameter e0 on the wave speed v1 and v2 of longitudinal wave
and thermal wave, respectively when ω = 5, 10 and 15

Figs. 1 and 2 illustrate the effect of nonlocal space parameter e0 on the wave speeds
v1, v2 and v3 of longitudinal, thermal and transverse wave, respectively when angular
frequency ω = 5, 10 and 15. The speeds of longitudinal and transverse wave decreases
with increasing value of e0. The rate of decrease in value of speeds becomes faster as the
value of ω increases. The speed of thermal wave is not affected significantly due to the
presence of nonlocality in space.

Fig. 2. The effect of nonlocal space parameter e0 on the wave speed v3
of transverse wave, when ω = 5, 10 and 15
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(a) (b)

Fig. 3. The effect of nonlocal time parameter τ on the wave speed v1 and v2 of longitudinal wave
and thermal wave, respectively when ω = 5, 10 and 15

Fig. 4. The effect of nonlocal time parameter τ on the wave speed v3
of transverse wave, when ω = 5, 10 and 15

Figs. 3 and 4 illustrate the effect of nonlocal time parameter τ on the wave speeds
v1, v2 and v3 of longitudinal, thermal and transverse wave, respectively when ω = 5, 10
and 15. The speeds of longitudinal and transverse wave increases with increasing value
of τ. The rate of increase in value of speeds becomes faster as the value of ω increases.
The speed of thermal wave is not affected significantly due to the presence of nonlocality
in time.
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(a) (b)

Fig. 5. The effect of angular frequency ω on the wave speed v1 and v2 of longitudinal wave and
thermal wave, respectively when e0 = 0.001, 0.002 and 0.003

Fig. 6. The effect of angular frequency ω on the wave speed v3 of transverse wave,
when ω = 5, 10 and 15

Figs. 5 and 6 illustrate the effect of angular frequency ω on the wave speeds v1, v2 and
v3 of longitudinal, thermal and transverse wave, respectively when e0 = 0.001, 0.002 and
0.003. The speeds of longitudinal and transverse wave decreases with increasing value
of ω. The rate of decrease in value of speeds becomes faster as the value of e0 increases.
The speed of thermal wave increases as the value of angular frequency increases. This
rate of increase remains same for different values of e0.
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(a) (b)

Fig. 7. The effect of conductivity rate parameter K∗ on the wave speed v1 and v2 of longitudinal
wave and thermal wave, respectively when ω = 5, 10 and 15

Fig. 7 illustrates the effect of conductivity rate parameter K∗ on the wave speeds
v1 and v2 of longitudinal and thermal wave, respectively when ω = 5, 10 and 15. The
speeds of these waves increase as the value of K∗ increase. The rate of increase in speeds
of these wave is slower for high frequency value.

Fig. 8. The effect of nonlocal space parameter
e0 on the wave speed of Rayleigh wave, when

ω = 5, 10 and 15

Fig. 9. The effect of nonlocal time parameter
τ on the wave speed of Rayleigh wave, when

ω = 5, 10 and 15

Figs. 8 and 9 illustrate the effect of nonlocal parameters e0 and τ on the wave speed
of Rayleigh wave when ω = 5, 10 and 15. The speeds of Rayleigh wave decreases with
increasing value of e0, This rate of decrease in value of speeds becomes faster as the value
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of ω increases. The speeds of Rayleigh wave increases with increasing value of τ. The
rate of increase in value of speed becomes faster as the value of ω increases.

Fig. 10. The effect of angular frequency ω on the wave speed of Rayleigh wave,
when e0 = 0.001, 0.002 and 0.003

Fig. 10 illustrates the effect of angular frequency ω on the wave speed of Rayleigh
wave when e0 = 0.001, 0.002 and 0.003. The speed of Rayleigh wave decreases with
increasing value of ω, The rate of decrease in value of speeds becomes faster as the value
of e0 increases.

The speed of Rayleigh wave is also computed against K∗ and it decrease very slowly
(constant up to 4 decimals) as the value of K∗ increases.

6. CONCLUSIONS

Moore–Gibson–Thompson thermoelasticity with Klein–Gordon nonlocality is ap-
plied to study the homogeneous plane waves and the Rayleigh surface wave in a gen-
eralized thermoelastic medium. It is found that there exists two coupled longitudinal
waves and one transverse wave in a plane of MGT thermoelastic medium. A disper-
sion equation of Rayleigh wave is derived along a stress-free thermally insulated surface
of a half-space of a MGT thermoelastic material. The numerical computations and il-
lustrations of wave speeds of plane and Rayleigh wave based on a particular material
show the significant effects of KG nonlocality parameters, conductivity rate parameter
and the angular frequency on the wave speeds. The present theoretical predictions on
plane and surface waves in context of Moore–Gibson–Thompson thermoelasticity with
Klein–Gordon nonlocality may be applied in possible experimental studies on the heat
conduction in nano-scale materials.
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[22] D. Ieşan. Reciprocal theorems and variational theorems in nonlocal elastodynamics. Inter-
national Journal of Engineering Science, 15, (1977), pp. 693–699. https://doi.org/10.1016/0020-
7225(77)90019-2.

[23] A. C. Eringen. On differential equations of nonlocal elasticity and solutions of screw
dislocation and surface waves. Journal of Applied Physics, 54, (1983), pp. 4703–4710.
https://doi.org/10.1063/1.332803.

[24] B. S. Altan. Uniqueness in linear theory of nonlocal elasticity. Bulletin of the Technical Univer-
sity of Istanbul, 37, (1984), pp. 373–385.

[25] J. L. Nowinski. On a three-dimensional Kelvin problem for an elastic nonlocal medium. Acta
Mechanica, 84, (1990), pp. 77–87. https://doi.org/10.1007/bf01176089.

[26] B. Cracium. On nonlocal thermoelasticity. Analele Stiintifice ale Universitatii Ovidius Constanta,
5, (1996), pp. 29–36.

[27] A. C. Eringen. Linear theory of nonlocal elasticity and dispersion of plane waves. Interna-
tional Journal of Engineering Science, 10, (1972), pp. 425–435. https://doi.org/10.1016/0020-
7225(72)90050-x.

[28] D. Singh, G. Kaur, and S. K. Tomar. Waves in nonlocal elastic solid with voids. Journal of
Elasticity, 128, (2017), pp. 85–114. https://doi.org/10.1007/s10659-016-9618-x.

[29] A. C. Eringen. Theory of nonlocal thermoelasticity. International Journal of Engineering Science,
12, (1974), pp. 1063–1077. https://doi.org/10.1016/0020-7225(74)90033-0.
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