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Abstract. This paper presents a method for establishing the exact receptance function of a
tapered axially functionally graded (AFG) beam with nonlinear ratios of properties using
the Adomian method. In current papers, the Adomian method was applied for linearly
tapered beams where the geometric series was used conveniently. However, for nonuni-
form AFG beams with nonlinearly varying ratios of properties, the geometric series can-
not be used, thus the other type of power series needs to be established and applied. In
this paper, the derivation of the power series applied for obtaining the exact receptance
function of a nonuniform AFG beam with nonlinearly varying ratios of properties is pre-
sented. Numerical simulation results of the receptance function of a tapered AFG beam
with nonlinearly varying ratios of beam properties carrying concentrated masses are con-
ducted and provided. The influences of the concentrated masses and the varying ratios of
properties of beam on the receptance matrix are also investigated and presented.

Keywords: receptance, frequency response function, concentrated mass, functionally graded
material beam.

1. INTRODUCTION

Frequency response function is used in many problems such as finite element model
updating, vibration and noise control, system identification, structural damage detec-
tion, dynamic optimization, numerous mechanical, aerospace and civil engineering sys-
tems, etc. Mottershead et al. [1, 2] described the theory and practical application of the
receptance method for vibration suppression in structures by multi-input partial pole
placement and studied the measured zeros form frequency response functions and its
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application to model assessment and updating. A new damage detection algorithm is
formulated to utilize an original analytical model and FRF data measured prior and pos-
terior to damage for structural damage detection is presented by Wang et al. [3]. Based
on nonlinear perturbation equations of FRF data, an algorithm has been derived which
can be used to determine a damage vector indicating both location and magnitude of
damage from perturbation equations of FRF data. The frequency response function of
a cantilevered beam, which is simply supported in-span is determined by Gürgöze and
Erol [4]. In this work, the frequency response function is obtained through a formula,
which was established for the receptance matrix of discrete systems subjected to linear
constraint equations. Huang et al. [5] presented a new method for system identifica-
tion and damage detection of controlled building structures equipped with semi-active
friction dampers through model updating based on frequency response functions. The
influence of the higher-order modes on the frequency response functions (FRFs) of non-
proportionally viscously damped systems is eliminated by Li et al. [6]. In this study,
two power-series expansions in terms of eigenpairs and system matrices are derived to
obtain the FRF matrix based on the Neumann expansion theorem. Failla [7] concerned
the frequency response analysis of beams and plane frames with an arbitrary number of
Kelvin–Voigt viscoelastic dampers. The theory of generalised functions within a 1D for-
mulation of equations of motion are used to derive the exact closed-form expressions for
beam dynamic Green’s functions and frequency response functions under arbitrary poly-
nomial load, with arbitrary number of dampers. Nguyen [8] presented the general form
of receptance functions of the isotropic homogeneous and axially functionally graded
beams carrying concentrated masses and then compared the matrices of them. Singh et
al. [9] presented a method for feedback control design using the receptance method is
presented which can utilize the available partial measurements for control gain compu-
tation.

Non-uniform beams and concentrated mass are the two subjects concerned in study-
ing the vibrations of the beam. Lenci et al. [10] used the asymptotic development method
to obtain approximate analytical expressions for the natural frequencies of non-uniform
cables and beams. In this work, some examples are reported to illustrate the effectiveness
and simplicity of the proposed formulas. Eberle and Oberguggenberger [11] presented
the bending stiffness curve of a non-uniform Euler-Bernoulli beam based on measured
data from a static bending test and the calculus of variations. Hadian Jazi et al. [12] in-
troduced an exact closed-form explicit solution for the transverse displacement of a non-
uniform multi-cracked beam with any type of boundary conditions. A good agreement
is evident when the obtained results are compared. An exact approach for free vibration
analysis of a non-uniform beam with an arbitrary number of cracks and concentrated
masses is proposed by Li [13]. By using the fundamental solutions and recurrence for-
mulas, the mode shape function of vibration of a non-uniform beam with an arbitrary
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number of cracks and concentrated masses are determined. Mahmoud [14,15] presented
a general solution for the free transverse vibration of non-uniform, axially functionally
graded cantilevers loaded at the tips with point masses. The free vibration analysis of
non-uniform and stepped axially functionally graded (AFG) beams carrying arbitrary
numbers of point masses is studied by using the Myklestad method. Tan et al. [16] pre-
sented an approach for free vibration analysis of the cracked non-uniform beam with
general boundary conditions, whose mass per unit length and bending moment of iner-
tia varying as polynomial functions.

In current published works, the receptance function of beam can be established using
the Adomian method in which the receptance function is expressed as a geometric series
- a special case of power series. In these publications the terms (EI)′ /EI and (EI)′′ /EI,
where EI is a polynomial function, can be expressed easily as a geometric series. How-
ever, for nonuniform AFG beams with nonlinear ratios of properties these terms might
not be expressed as a geometric series. In order to overcome this problem, we need to
express these terms by another type of power series, not the geometric series.

The aim of this paper is to present a method for establishing the receptance func-
tion of a nonuniform AFG beam with nonlinear ratios of properties using the Adomian
method where EI is an arbitrary polynomial function. In this paper, the derivation of
the receptance function of a nonuniform AFG beam with nonlinearly ratios of properties
is given in detail. The receptance function of a nonuniform AFG beam with nonlinearly
ratios of properties and the influence of concentrated masses on that of the beam is inves-
tigated by numerical simulations. Numerical results show that the receptance matrices
are changed when masses are attached on beam. When masses are attached at peak po-
sitions of the receptance matrices, these peaks will decrease significantly. The peaks and
nodes of the receptance of the AFG beam move to the mass positions. These results can
be useful for controlling the vibration amplitude of along the beam by using concentrated
masses. Some new simulations of beam with nonlinearly ratios of properties of beam in
this paper can be used for validating future works using other techniques.

2. THEORETICAL BACKGROUND

The modal of an axially tapered functionally graded beam is shown in Fig. 1. Assume
that the elasticity modulus E (x), inertia moment I (x) and the mass density ρ (x) of the
beam are defined by

E (x) = E0 (1 − α1xn1) ,

b (x) = b0 (1 − α2xn2) ,

h (x) = h0 (1 − α3xn3) ,

ρ (x) = ρ0 (1 − α4xn4) ,

(1)
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where, E0, b0, h0 and ρ0 are Young’s modulus, the width, the depth and mass density
of beam at x = 0, respectively; 0 < αi < 1; n1, n2 are the varying ratios of material
properties.
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Fig. 1. The modal of an axially tapered functionally graded beam

The governing equation of bending vibration of an axially tapered functionally graded
beam carrying concentrated masses can be presented as follows[

E (x) I (x) y′′
]′′

+

[
µ (x) +

n

∑
k=1

mkδ (x − xmk)

]
ÿ = δ

(
x − x f

)
f (t) , (2)

where mk is the kth concentrated mass located at xmk, y(x, t) is the bending deflection of
the beam at location x and time t, f (t) is the force acting at position x f , δ

(
x − x f

)
is the

Dirac delta function.

Using the notation ξ =
x
L

which is non-dimensional coordinate, Eq. (2) can be rewrit-
ten in the form[

E (ξ) I (ξ) y′′
]′′

+ L4µ (ξ) ÿ = L4δ
(
ξ − ξ f

)
f (t)− L4

n

∑
k=1

mkδ (ξ − ξmk)ÿ. (3)

The receptance at ξ due to the force at ξ f at the forcing frequency ω has the form

α
(
ξ, ξ f , ω

)
= ΦT (ξ)

(
K − ω2M

)−1
Φ

(
ξ f
)

, (4)

where

M=



∫ 1

0
µϕ2

1dξ +
n

∑
k=1

mkϕ2
1 (ξmk)

n

∑
k=1

mkϕ1 (ξmk) ϕ2 (ξmk) ...
n

∑
k=1

mkϕ1 (ξmk) ϕN (ξmk)

n

∑
k=1

mkϕ2 (ξmk) ϕ1 (ξmk)
∫ 1

0
µϕ2

2dξ +
n

∑
k=1

mkϕ2
2 (ξmk) ...

n

∑
k=1

mkϕ2 (ξmk) ϕN (ξmk)

... ...
n

∑
k=1

mkϕN (ξmk) ϕ1 (ξmk)
n

∑
k=1

mkϕN (ξmk) ϕ2 (ξmk) ...
∫ 1

0
µϕ2

Ndξ +
n

∑
k=1

mkϕ2
N (ξmk)


,
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K =
1
L4



∫ 1

0
EIϕ′′2

1dξ 0 ... 0

0
∫ 1

0
EIϕ′′2

2dξ ... 0

... ...

0 0 ...
∫ 1

0
EIϕ′′2

Ndξ


, (5)

Φ (ξ) = [ϕ1 (ξ) , ..., ϕN (ξ)]T , q̈ (t) = [q̈1 (t) , ..., q̈N (t)]T , q (t) = [q1 (t) , ..., qN (t)]T ,

and the term ΦT (ξ) q̄ and f̄ are the amplitudes of the response at ξ and the force at ξ f ,
respectively.

In order to derive formula (4), the mode shape ϕ of the beam without attached
masses needs to be determined. Any mode shape ϕ is determined by solving the eigen-
value problem of Eq. (3)[

E (ξ) I (ξ) ϕ′′
i (ξ)

]′′ − L4ω2µ (ξ) ϕi (ξ) = 0. (6)

Using the rules of differentiation, yields

ϕ′′′′
i = −2 (EI)′

EI
ϕ′′′

i − (EI)′′

EI
ϕ′′

i +
L4ω2µ

EI
ϕi,

or

ϕ′′′′
i = −2 (EI)′

EI
ϕ′′′

i − (EI)′′

EI
ϕ′′

i +
λ2 (1 − α3ξn2)

1 − α1ξn1
ϕi, (7)

where λ2 =
ω2µ0L4

E0 I0
.

Applying the Adomian decomposition method, any mode shape ϕ is decomposed
into the infinite sum of convergent series

ϕi (ξ) =
∞

∑
k=0

Ckξk. (8)

By using the linear operators ℓ =
d4

dξ4 and ℓ−1 =
∫ ξ

0

∫ ξ

0

∫ ξ

0

∫ ξ

0
(...)dξdξdξdξ, we

have

ϕi (ξ) = C0 + C1ξ + C2ξ2 + C3ξ3 + l−1 (ϕ′′′′
i
)

,

or,

ϕi =
3

∑
k=0

Ckξk + l−1

[
−2 (EI)′

EI
ϕ′′′

i − (EI)′′

EI
ϕ′′

i +
λ2 (1 − α3ξn2)

1 − α1ξn1
ϕi

]
. (9)
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Since EI is the polynomial function so the terms
(EI)′

EI
and

(EI)′′

EI
are the rational

fraction. From the partial fraction decomposition theory, a fraction of two polynomials
P (x)
Q (x)

can be expressed in general form as follows

P (ξ)

Q (ξ)
= ∑

k

Ak

(ξ − a)k + ∑
k

Bkx + Ck

(ξ2 + bξ + c)k . (10)

If the partial fractions of terms
(EI)′

EI
and

(EI)′′

EI
consist of only ∑

k

Ak

(ξ − a)k then these

partial fractions can be expressed by geometric series

Ak

(ξ − a)k =
∞

∑
i=0

Ãk ξ̃ i, where ξ̃ =
ξ

a
. (11)

However, if those partial fractions include ∑
k

Bkx + Ck

(ξ2 + bξ + c)k then they cannot be ex-

pressed simply as a geometric series. Let us consider an axially tapered AFG beam with
nonlinearly varying width as follows

E (ξ) = E0 (1 − α1ξn1) ,

b = b0
(
1 − α2ξ3) ,

h = h0,

ρ = ρ0 (1 − α4ξn4) .

(12)

In this case, the moment of inertia is expressed as the third polynomial function
I = I0

(
1 − α2ξ3), then

(EI)′

EI
= −

[
n1α1ξn1−1 + 3α2ξ2 − (n1 + 3) α1α2ξn1+2

] 1
(1 − α1ξn1) (1 − α2ξ3)

,

(EI)′′

EI
= −

[
n1 (n1 − 1) α1ξn1−2 + 6α2ξ − (n1 + 3) (n1 + 2) α1α2ξn1+1

] 1
(1 − α1ξn1) (1 − α2ξ3)

,

(13)

in which,

1
(1 − α1ξn1) (1 − α2ξ3)

=
1
3

1[
1 − (β1ξ)n1

] [ 1
1 − β2ξ

+
β2ξ + 2

1 + β2ξ + β2
2ξ2

]
, (14)

where β1 = n1
√

α1, β2 = 3
√

α2 with the assumption that βiξ < 1, i = 1, 2, 3, 4.
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The following terms in (14) can be expressed by geometric series

1
1 − (β1ξ)n1

=
∞

∑
k=0

α1ξkn1 ,

1
1 − β2ξ

=
∞

∑
k=0

α2ξk.
(15)

However, the second term in the bracket cannot be expressed in term of geometric
series. Thus, we will express this term as a power series using another method as follows.

Since βiξ < 1, i = 1, 2, using the power series one can obtain

1
1 + β2ξ + β2

2ξ2
=

∞

∑
u=0

Auξu with


A0 = 1
A1 = −β2
Au = −β2Au−1 − β2

2Au−2, u ≥ 2
(16)

The coefficients of this can be expressed as

A0 = 1, A1 = −β2, A2 = 0, A3 = β3
2, A4 = −β4

2, A5 = 0, A6 = β6
2, ...

Therefore,

1
1 + β2ξ + β2

2ξ2
=

∞

∑
u=0

Cuξu = ξ0 − β1
2ξ1 + β3

2ξ3 − β4
2ξ4 + β6

2ξ6 − β7
2ξ7 + ...

=
∞

∑
n=0

(−1)n bn, 0 ≤ bn < 1.
(17)

This is a converged alternating series since it satisfies the convergence conditions of
an alternating series {

bn+1 < bn, ∀n
lim bn

n→∞
= 0 (18)

Applying Cauchy product, one has

1
(1 − α1ξn1) (1 − α2ξ3)

=
∞

∑
u=0

(
βn1

1 ξn1
)u 1

3

[
∞

∑
v=0

(β2ξ)v + (β2ξ + 2)
∞

∑
v=0

Avξv

]

=
1
3

[
∞

∑
i=0

B1iξ
i + (β2ξ + 2)

∞

∑
i=0

B1iξ
i

]
,

(19)

where

B1i =
m1

∑
j=0

β
n1 j
1 β

i−n1 j
2 , B2i =

m1

∑
j=0

β
n1 j
1 Ai−n1 j, m1 =

[
i

n1

]
, (20)
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in which m1 =

[
i

n1

]
is the largest integer that is less than or equal to

i
n1

, p is the remain-

der of
i

n1
, and

ϕi
′′′

(1 − α1ξn1) (1 − α2ξ3)
=

1
3

[
∞

∑
v=0

(β2ξ)v + (β2ξ + 2)
∞

∑
v=0

Avξv

]
.

∞

∑
l=0

(l + 1) (l + 2) (l + 3)Cl+3ξ l

=
1
3

[
∞

∑
i=0

ξ i
i

∑
j=0

B1i (i − j + 1) (i − j + 2) (i − j + 3)Ci−j+3

+ (β2ξ + 2)
∞

∑
i=0

ξ i
i

∑
j=0

B2i (i − j + 1) (i − j + 2) (i − j + 3)Ci−j+3

]
,

ϕi
′′

(1 − α1ξn1) (1 − α2ξ3)
=

1
3

[
∞

∑
v=0

(β2ξ)v + (β2ξ + 2)
∞

∑
v=0

Avξv

]
.

∞

∑
l=0

(l + 1) (l + 2)Cl+2ξ l

=
1
3

[
∞

∑
i=0

ξ i
i

∑
j=0

B1i (i − j + 1) (i − j + 2)Ci−j+2

+ (β2ξ + 2)
∞

∑
i=0

ξ i
i

∑
j=0

B2i (i − j + 1) (i − j + 2)Ci−j+2

]
,

ϕi[
1 − (β1ξ)n1

] =
∞

∑
u=0

(β1ξ)n1u.
∞

∑
v=0

Cvξv =
∞

∑
i=0

ξ i
m1

∑
j=0

β
nj
1 Ci−nj.

(21)

Substituting Eqs. (21) and (13) into Eq. (7), yields

ϕi
′′′′ =

2
3

[
∞

∑
i=0

ξ i+n1−1
i

∑
j=0

(B1i + 2B2i) n1α1 (i − j + 1) (i − j + 2) (i − j + 3)Ci−j+3

+
∞

∑
i=0

ξ i+n1
i

∑
j=0

B2in1α1β2 (i − j + 1) (i − j + 2) (i − j + 3)Ci−j+3

+
∞

∑
i=0

ξ i+2
i

∑
j=0

(B1i + 2B2i) 3α2 (i − j + 1) (i − j + 2) (i − j + 3)Ci−j+3

+
∞

∑
i=0

ξ i+3
i

∑
j=0

B2i3α2β2 (i − j + 1) (i − j + 2) (i − j + 3)Ci−j+3

−
∞

∑
i=0

ξ i+n1+2
i

∑
j=0

(B1i + 2B2i) (n1 + 3) α1α2 (i − j + 1) (i − j + 2) (i − j + 3)Ci−j+3

−
∞

∑
i=0

ξ i+n1+3
i

∑
j=0

B2i (n1 + 3) α1α2β2 (i − j + 1) (i − j + 2) (i − j + 3)Ci−j+3

]

(22)
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+
1
3

[
∞

∑
i=0

ξ i+n1−2
i

∑
j=0

(B1i + 2B2i) α1n1 (n1 − 1) (i − j + 1) (i − j + 2)Ci−j+2

+
∞

∑
i=0

ξ i+n1−1
i

∑
j=0

B2iα1β2n1 (n1 − 1) (i − j + 1) (i − j + 2)Ci−j+2

+
∞

∑
i=0

ξ i+1
i

∑
j=0

(B1i + 2B2i) 6α2 (i − j + 1) (i − j + 2)Ci−j+2

+
∞

∑
i=0

ξ i+2
i

∑
j=0

B2i6α2β2 (i − j + 1) (i − j + 2)Ci−j+2

−
∞

∑
i=0

ξ i+n1+1
i

∑
j=0

(B1i + 2B2i) α1α2 (n1 + 2) (n1 + 3) (i − j + 1) (i − j + 2)Ci−j+2

−
∞

∑
i=0

ξ i+n1+2
i

∑
j=0

B2iα1α2β2 (n1 + 2) (n1 + 3) (i − j + 1) (i − j + 2)Ci−j+2

]
,

−
∞

∑
i=0

ξ i+n2

[
i

n1

]
∑
j=0

λ2α3β
n1 j
1 Ci−n1 j +

∞

∑
i=0

ξ i

[
i

n1

]
∑
j=0

λ2β
n1 j
1 Ci−n1 j.

Plugging Eq. (22) into Eq. (9) and implementing the integration operator in Eq. (9),
we have:

ϕi =
3

∑
k=0

Ckξk +
2
3

n1α1

∞

∑
k=0

ξk+n1+3

i
∑

i=0
(B1i + 2B2i) (k − i + 1) (k − i + 2) (k − i + 3)Ck−i+3

(k + n1) (k + n1 + 1) (k + n1 + 2) (k + n1 + 3)

+
2
3

n1α1β2

∞

∑
k=0

ξk+n1+4

i
∑

i=0
B2i (k − i + 1) (k − i + 2) (k − i + 3)Ck−i+3

(k + n1 + 1) (k + n1 + 2) (k + n1 + 3) (k + n1 + 4)

+ 2α2

∞

∑
k=0

ξk+6

i
∑

i=0
(B1i + 2B2i) (k − i + 1) (k − i + 2) (k − i + 3)Ck−i+3

(k + 3) (k + 4) (k + 5) (k + 6)

+ 2α2β2

∞

∑
k=0

ξk+7

i
∑

i=0
B2i (k − i + 1) (k − i + 2) (k − i + 3)Ck−i+3

(k + 4) (k + 5) (k + 6) (k + 7)

− 2
3
(n1 + 3) α1α2

∞

∑
k=0

ξk+n1+6

i
∑

i=0
(B1i + 2B2i) (k − i + 1) (k − i + 2) (k − i + 3)Ck−i+3

(k + n1 + 3) (k + n1 + 4) (k + n1 + 5) (k + n1 + 6)

− 2
3
(n1 + 3) α1α2β2

∞

∑
k=0

ξk+n1+7

i
∑

i=0
B2i (k − i + 1) (k − i + 2) (k − i + 3)Ck−i+3

(k + n1 + 4) (k + n1 + 5) (k + n1 + 6) (k + n1 + 7)

(23)
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+
1
3

α1n1 (n1 − 1)
∞

∑
k=0

ξk+n1+2

k
∑

i=0
(B1i + 2B2i) (k − i + 1) (k − i + 2)Ck−i+2

(k + n1 − 1) (k + n1) (k + n1 + 1) (k + n1 + 2)

+
1
3

α1β2n1 (n1 − 1)
∞

∑
k=0

ξk+n1+3

k
∑

i=0
B2i (k − i + 1) (k − i + 2)Ck−i+2

(k + n1) (k + n1 + 1) (k + n1 + 2) (k + n1 + 3)

+ 2α2

∞

∑
k=0

ξk+5

k
∑

i=0
(B1i + 2B2i) (k − i + 1) (k − i + 2)Ck−i+2

(k + 2) (k + 3) (k + 4) (k + 5)

+ 2α2β2

∞

∑
k=0

ξk+6

i
∑

j=0
B2i (k − i + 1) (k − i + 2)Ck−i+2

(k + 3) (k + 4) (k + 5) (k + 6)

− 1
3

α1α2 (n1 + 2) (n1 + 3)
∞

∑
k=0

ξk+n1+5

i
∑

j=0
(B1i + 2B2i) (k − i + 1) (k − i + 2)Ck−i+2

(k + n1 + 2) (k + n1 + 3) (k + n1 + 4) (k + n1 + 5)

− 1
3

α1α2β2 (n1 + 2) (n1 + 3)
∞

∑
k=0

ξk+n1+6

i
∑

j=0
B2i (k − i + 1) (k − i + 2)Ck−i+2

(k + n1 + 3) (k + n1 + 4) (k + n1 + 5) (k + n1 + 6)

− λ2α3

∞

∑
k=0

ξk+n2+4

[
k

n1

]
∑

i=0
βn1i

1 Ck−n1i

(k + n2 + 1) (k + n2 + 2) (k + n2 + 3) (k + n2 + 4)

+ λ2
∞

∑
k=0

ξk+4

[
k

n1

]
∑

i=0
βn1i

1 Ck−n1i

(k + 1) (k + 2) (k + 3) (k + 4)
.

The coefficients Ck where k < 4 can be determined from the boundary conditions.
Let us consider a simply supported beam, the boundary conditions can be expressed as:

ϕ(0) = 0, ϕ′′(0) = 0, (24)

ϕ(1) = 0, ϕ′′(1) = 0. (25)

From Eqs. (24) and (25) we have

C0 = 0, C1 ̸= 0, C2 = 0, C3 ̸= 0. (26)

For k≥4 the coefficients Ck can be calculated from the recurrent relations depending
on the value of n1 as follows
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Ck =
2
3

n1α1

k−n1−3
∑

i=0
(B1i + 2B2i) (k − n1 − i − 2) (k − n1 − i − 1) (k − n1 − i)Ck−n1−i

(k − 3) (k − 2) (k − 1) k

+
2
3

n1α1β2

k−n1−4
∑

i=0
B2i (k − n1 − i − 3) (k − n1 − i − 2) (k − n1 − i − 1)Ck−n1−i−1

(k − 3) (k − 2) (k − 1) k

+ 2α2

k−6
∑

i=0
(B1i + 2B2i) (k − i − 5) (k − i − 4) (k − i − 3)Ck−i−3

(k − 3) (k − 2) (k − 1) k

+ 2α2β2

k−7
∑

i=0
B2i (k − i − 6) (k − i − 5) (k − i − 4)Ck−i−4

(k − 3) (k − 2) (k − 1) k

− 2
3
(n1 + 3) α1α2

k−n1−6
∑

i=0
(B1i + 2B2i) (k − n1 − i − 5) (k − n1 − i − 4) (k − n1 − i − 3)Ck−n1−i−3

(k − 3) (k − 2) (k − 1) k

− 2
3
(n1 + 3) α1α2β2

k−n1−7
∑

i=0
B2i (k − n1 − i − 6) (k − n1 − i − 5) (k − n1 − i − 4)Ck−n1−i−4

(k − 3) (k − 2) (k − 1) k

+
1
3

α1n1 (n1 − 1)

k−n1−2
∑

i=0
(B1i + 2B2i) (k − n1 − i − 1) (k − n1 − i)Ck−n1−i

(k − 3) (k − 2) (k − 1) k

+
1
3

α1β2n1 (n1 − 1)

k−n1−3
∑

i=0
B2i (k − n1 − i − 2) (k − n1 − i − 1)Ck−n1−i−1

(k − 3) (k − 2) (k − 1) k

+ 2α2

k−5
∑

i=0
(B1i + 2B2i) (k − i − 4) (k − i − 3)Ck−i−3

(k − 3) (k − 2) (k − 1) k

+ 2α2β2

k−6
∑

i=0
B2i (k − i − 5) (k − i − 4)Ck−i−4

(k − 3) (k − 2) (k − 1) k

− 1
3

α1α2 (n1 + 2) (n1 + 3)

k−n1−5
∑

i=0
(B1i + 2B2i) (k − n1 − i − 4) (k − n1 − i − 3)Ck−n1−i−3

(k − 3) (k − 2) (k − 1) k

− 1
3

α1α2β2 (n1 + 2) (n1 + 3)

k−n1−6
∑

i=0
(B1i + 2B2i) (k − n1 − i − 5) (k − n1 − i − 4)Ck−n1−i−4

(k − 3) (k − 2) (k − 1) k

−λ2α3

[
k−n2−4

n1

]
∑

i=0
βn1i

1 Ck−n2−n1i−4

(k − 3) (k − 2) (k − 1) k
+ λ2

[
k−4
n1

]
∑

i=0
βn1i

1 Ck−n1i−4

(k − 3) (k − 2) (k − 1) k
. (27)
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Therefore, ϕi in Eq. (23) can be expressed as a linear function of C1 and C3. Since
coefficients Ck are determined from the recurrent equation (27), the coefficients Ck are the
functions of C1, C3 and λ, thus ϕi is also a function of C1, C3 and λ.

By substituting Eq. (27) into Eq. (24)–(25), we have

∞

∑
k=0

Ck = 0 ⇔ f11(λ)C1 + f12(λ)C3 = 0, (28)

∞

∑
k=0

(k + 1)Ck+1 = 0 ⇔ f21(λ)C1 + f22(λ)C3 = 0. (29)

In order to have non-trivial C1 and C3 of Eqs. (28) and (29), the following condition
must be satisfied

f11(λ) f22(λ)− f12(λ) f21(λ) = 0. (30)

Solving Eq. (30), the dimensionless frequency λi will be determined. Substituting
the solution λi into Eqs. (28), C3 can be calculated as the function of a given C1

C3 = − f11(λ)

f12(λ)
C1. (31)

The nth mode shape ϕn corresponding to λn is calculated from Eq. (23). Once the
mode shape ϕi is determined, the following relations is derived

ϕ2
i (ξ) =

∞

∑
k=0

Ckξk
∞

∑
k=0

Ckξk =
∞

∑
k=0

ξk
k

∑
i=0

Ck−iCi, (32)

ϕ′′2
i (ξ) =

∞

∑
k=0

Ckξk (k + 1) (k + 2)
∞

∑
k=0

Ckξk (k + 1) (k + 2)

=
∞

∑
k=0

ξk
k

∑
i=0

Ck−i+2Ci+2 (i + 1) (i + 2) (k − i + 1) (k − i + 2)

(33)

∫ 1

0
µϕ2

i dξ =
∫ 1

0
µ0 (1 − α2ξn)

∞

∑
k=0

ξk
k

∑
i=0

Ck−iCidξ

=
∞

∑
k=1

µ0 [(k + 1) (1 − α2) + n + 1]
(k + 1) (k + n + 1)

k

∑
i=0

Ck−iCi,

(34)
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∫ 1

0
IEϕ′′2

i dξ =

=
∫ 1

0
IE0 (1 − α1ξn)

∞

∑
k=0

ξk
k

∑
i=0

Ck−i+2Ci+2 (i + 1) (i + 2) (k − i + 1) (k − i + 2) dξ

=
∞

∑
k=1

IE0 [(k + 1) (1 − α1) + n + 1]
(k + 1) (k + n + 1)

k

∑
i=0

Ck−i+2Ci+2 (i + 1) (i + 2) (k − i + 1) (k − i + 2).

(35)

Substituting Eqs. (32)–(35) into Eq. (5) the matrices M and K and the receptance
formula (4) will be determined.

3. NUMERICAL SIMULATION

3.1. Reliability of the theory

To justify the formula of receptance function for the AFG beam, a cantilever beam
consisting of two constituent materials of aluminum and zirconia presented in [14] is ap-
plied. The material properties are EAl = 70 GPa, ρAl = 2702 kg/m3 for aluminum, and Ez

= 200 GPa, and ρz = 5700 kg/m3 for zirconia. Frequency parameters were obtained using

Ωi =
ωiL2

h2

√
12ρs

Es
. To examine the convergence of the solution, a cantilever beam with

the material properties varying linearly when ratio n = 1 is considered. The coefficients
Ck can be approximated by the N-term truncated series, Eq. (17) can be expressed as

ϕ (ξ) =
N

∑
k=0

Ckξk. (36)

Calculations show that when the 100-term truncated series in Eq. (36) is applied the
following condition is met ∣∣∣ΩN

1 − ΩN−1
1

∣∣∣ < ε = 6.055E−10. (37)

Table 1. Frequency parameter of the cantilever AFG beam

Case Frequency parameter Ref. [14] Present paper Error (%)

Alumina-Zirconia Ω1 5.888 5.888 0
Ω2 26.060 26.060 0
Ω3 64.939 64.941 0.003080
Ω4 122.532 122.531 0.000816
Ω5 199.075 199.176 0.050710
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Therefore, the series summation limit N in Eq. (37) will be truncated to N = 100 in
all the calculations in this work. Five lowest frequency parameters of the cantilever AFG
beam obtained by two methods are listed in Table 1.

The excellent agreement of the frequency parameters between the present work and
Ref. [14] presented in Table 1 verifies the reliability of the proposed method.

3.2. Influence of the varying properties of material on the receptance

Fig. 2 presents the 3D graphs of receptance of the simply supported beam in two
cases: n2 = 1 and n2 = 3 when the forcing frequencies equal to the first, the second and the
third natural frequencies of beam, respectively. Figs. 2(a), 2(c), 2(e) show the receptance
of beam when n2 = 1. Figs. 2(b), 2(d), 2(f) show the receptance of beam when the varying
ratios of material properties n2 = 3. As can be seen from Figs. 2(a) and 2(b), when the
forcing frequency is equal to the first natural frequency, the receptance matrices in both
cases are maximum at the middle of the beam. When the forcing frequency is equal to
the second natural frequency, the receptance matrices are maximum at the positions of
L/4 and 3L/4 from the left end of the beam as can be observed from Figs. 2(c) and 2(d).
While, the receptance matrices are minimum at the middle of beam. However, the peaks
in two cases n2 = 1 and n2 = 3 are different: the difference of two peaks in the case n2 = 1
are larger than the case of n2 = 3. This can be explained that the cross section at the two
peaks in the case n2 = 1 are far more different than the case n2 = 3 resulting in the larger
difference between the two peaks of the case n2 = 1 in comparison with the case n = 3.
Figs. 2(e) and 2(f) show the receptance matrices in two cases when the forcing frequency
is equal to the third natural frequency. As presented, the receptances are maximum at the
positions of about L/6, 3L/6 and 5L/6, while they are minimum at the positions of 2L/6
and 4L/6. Similar to the case when the forcing frequency is equal to the second natural
frequency, the peaks of the receptance in the case of the linearly varying parameters is
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Fig. 2. Receptance matrices of AFG beam when the width varies 

In order to give a clearer comparison of the differences between two peaks in the two cases n2 
= 1 and n2 = 3, the receptance curves, when the force is fixed at the position of L/3, are extracted and 
presented in 2D graph as shown in Fig. 3. The force position of L/3 is chosen to ensure that the excitation 
is not applied at the nodes of receptance. The Graph 3a shows the receptance curve when the forcing 
frequency is equal to the first natural frequency. The peak of receptance in the case n2=3 moves slightly 
to the left end of beam in comparision with the case n2=1. As can be seen in Figs. 3b and 3c, when the 
forcing frequency is equal to the second and third natural frequencies, the difference of two peaks in the 
case n2=1 is higher than the case n2=3 as mentioned.  
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(f) n2 = 3, ω = ω3

Fig. 2. Receptance matrices of AFG beam when the width varies

smaller than that of nonlinearly varying parameters. It is concluded that, the positions of
maxima and minima of the receptances obtained at any natural frequency coincide with
the positions of maxima and minima of the corresponding mode shape.

In order to give a clearer comparison of the differences between two peaks in the
two cases n2 = 1 and n2 = 3, the receptance curves, when the force is fixed at the position
of L/3, are extracted and presented in 2D graph as shown in Fig. 3. The force position
of L/3 is chosen to ensure that the excitation is not applied at the nodes of receptance.
Fig. 3(a) shows the receptance curve when the forcing frequency is equal to the first nat-
ural frequency. The peak of receptance in the case n2 = 3 moves slightly to the left end of
beam in comparison with the case n2 = 1. As can be seen in Figs. 3(b) and 3(c), when the
forcing frequency is equal to the second and third natural frequencies, the difference of
two peaks in the case n2 = 1 is higher than the case n2 = 3 as mentioned.
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presented in 2D graph as shown in Fig. 3. The force position of L/3 is chosen to ensure that the excitation 
is not applied at the nodes of receptance. The Graph 3a shows the receptance curve when the forcing 
frequency is equal to the first natural frequency. The peak of receptance in the case n2=3 moves slightly 
to the left end of beam in comparision with the case n2=1. As can be seen in Figs. 3b and 3c, when the 
forcing frequency is equal to the second and third natural frequencies, the difference of two peaks in the 
case n2=1 is higher than the case n2=3 as mentioned.  

     
(b) ω = ω2
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a) ω=ω1      b) ω=ω2 

  
c) ω=ω3 

Fig. 3. Receptance curves of beams without attached mass 

Solid line: n2=1; Dotted line: n2=3 

3.3. Influence of the concentrated masses and the varying properties of material on the receptance 

In this paper, two equal concentrated masses of 0.6 kg are attached on the simply supported 
AFG beam in the case n2 = 3 in seven scenarios as listed in Table 2. The receptance matrices are 
calculated at 100 points spaced equally on the beam while the force moves along these points.  

Table 2. Seven scenarios of attached masses 

Scenario ω Position of m1 Position of m2 

1 

2 

3 

4 

5 

6 

7 

ω=ω1 

ω=ω2 

ω=ω3 

ω=ω3 

ω=ω3 

ω=ω3 

ω=ω3 

3L/4 

3L/4 

L/6 

3L/6 

5L/6 

L/6 

L/6 

- 

- 

- 

- 

- 

3L/6 

5L/6 

 The receptance matrices of the AFG beams are changed when there are concentrated masses. 
Figs. 4a and 4b present the 3D and 2D graphs of the receptance of AFG beam carrying a mass at position 
3L/4 when the forcing frequency is equal to the first natural frequency of the beam-mass system. The 
influence of the mass on the receptance matrices is small so that it is difficult to be observed from 3D 
graph in Fig. 4a. However, the influence of the mass on the receptance can be inspected visually as 
presented in Fig. 4b when the receptance curves are extracted with the force applied at 0.5L. When there 
is an attached mass at 3L/4 the peak of receptance moves to the right side of the beam where the mass 
is attached. 

 When the mass is attached at the position of 3L/4 and the forcing frequency is equal to the 
second natural frequency, the peak at the mass position is pressed down significantly. The node of the 
receptance curve moves toward the right of beam where the mass is attached as can be observed from 
Figs. 5a and 5b. Figs. 6 illustrate the 2D and 3D graphs of the receptance of AFG beam when the mass 
is attached at L/6, L/2 and 5L/6 and the forcing frequency is equal to the third natural frequency of the 

(c) ω = ω3

Fig. 3. Receptance curves of beams without attached mass (Solid line: n2 = 1; Dotted line: n2 = 3)

3.3. Influence of the concentrated masses and the varying properties of material on the
receptance

In this paper, two equal concentrated masses of 0.6 kg are attached on the simply
supported AFG beam in the case n2 = 3 in seven scenarios as listed in Table 2. The recep-
tance matrices are calculated at 100 points spaced equally on the beam while the force
moves along these points.

The receptance matrices of the AFG beams are changed when there are concentrated
masses. Figs. 4(a) and 4(b) present the 3D and 2D graphs of the receptance of AFG beam
carrying a mass at position 3L/4 when the forcing frequency is equal to the first natural
frequency of the beam-mass system. The influence of the mass on the receptance matrices
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Table 2. Seven scenarios of attached masses

Scenario ω Position of m1 Position of m2

1 ω = ω1 3L/4 -
2 ω = ω2 3L/4 -
3 ω = ω3 L/6 -
4 ω = ω3 3L/6 -
5 ω = ω3 5L/6 -
6 ω = ω3 L/6 3L/6
7 ω = ω3 L/6 5L/6

is small so that it is difficult to be observed from 3D graph in Fig. 4(a). However, the
influence of the mass on the receptance can be inspected visually as presented in Fig. 4(b)
when the receptance curves are extracted with the force applied at 0.5L. When there is an
attached mass at 3L/4 the peak of receptance moves to the right side of the beam where
the mass is attached.
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beam-mass system. As can be seen from these graphs, the peaks at the mass position are dropped 
remarkably and peaks of the receptance move to the side where the mass is attached.  

When two masses are located at the two peaks of receptance and the forcing frequency is equal 
to the third natural frequency of the beam-mass system, the peaks corresponding to these positions 
decrease as demonstrated in Fig. 7. Figs. 7a and 7b present the receptance of beam when two masses are 
located at the positions of L/6 and 3L/6. As can be observed from these graphs, the peaks corresponding 
to these positions decrease significantly and peaks and nodes of the receptance curve moves to the left 
side where the two masses are attached. When two masses are located at the positions of L/6 and 5L/6, 
four peaks corresponding to these positions decrease significantly as shown in the Figs. 7c and 7d. It is 
noted that the first node of receptance moves clearly to the first mass position which is close to that node 
and the second node moves to the second mass position.  

 

  
      a) Receptance matric          b) Receptance curve 

Fig. 4. Receptance of AFG beam when ω=ω1, mass position: 3L/4 

Dotted line: without mass; Dashed line: attached mass 

    
       a. Receptance matric       b. Receptance curve 

Fig. 5. Receptance of AFG beam when ω=ω2, mass position: 3L/4 

Dotted line: without mass; Dashed line: attached mass 

(a) Receptance matric
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noted that the first node of receptance moves clearly to the first mass position which is close to that node 
and the second node moves to the second mass position.  

 

  
      a) Receptance matric          b) Receptance curve 

Fig. 4. Receptance of AFG beam when ω=ω1, mass position: 3L/4 

Dotted line: without mass; Dashed line: attached mass 

    
       a. Receptance matric       b. Receptance curve 

Fig. 5. Receptance of AFG beam when ω=ω2, mass position: 3L/4 

Dotted line: without mass; Dashed line: attached mass 

(b) Receptance curve

Fig. 4. Receptance of AFG beam when ω = ω1, mass position: 3L/4
(Dotted line: without mass; Dashed line: attached mass)

When the mass is attached at the position of 3L/4 and the forcing frequency is equal
to the second natural frequency, the peak at the mass position is pressed down signif-
icantly. The node of the receptance curve moves toward the right of beam where the
mass is attached as can be observed from Figs. 5(a) and 5(b). Figs. 6 illustrate the 2D and
3D graphs of the receptance of AFG beam when the mass is attached at L/6, L/2 and
5L/6 and the forcing frequency is equal to the third natural frequency of the beam-mass
system. As can be seen from these graphs, the peaks at the mass position are dropped
remarkably and peaks of the receptance move to the side where the mass is attached.
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four peaks corresponding to these positions decrease significantly as shown in the Figs. 7c and 7d. It is 
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      a) Receptance matric          b) Receptance curve 

Fig. 4. Receptance of AFG beam when ω=ω1, mass position: 3L/4 

Dotted line: without mass; Dashed line: attached mass 

    
       a. Receptance matric       b. Receptance curve 

Fig. 5. Receptance of AFG beam when ω=ω2, mass position: 3L/4 

Dotted line: without mass; Dashed line: attached mass 

(a) Receptance matric
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four peaks corresponding to these positions decrease significantly as shown in the Figs. 7c and 7d. It is 
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      a) Receptance matric          b) Receptance curve 

Fig. 4. Receptance of AFG beam when ω=ω1, mass position: 3L/4 

Dotted line: without mass; Dashed line: attached mass 

    
       a. Receptance matric       b. Receptance curve 

Fig. 5. Receptance of AFG beam when ω=ω2, mass position: 3L/4 

Dotted line: without mass; Dashed line: attached mass 

(b) Receptance curve

Fig. 5. Receptance of AFG beam when ω = ω2, mass position: 3L/4
(Dotted line: without mass; Dashed line: attached mass)
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a. Receptance matric, mass position L/6     b. Receptance curve, mass position L/6 

   
c. Receptance matric, mass position L/2     d. Receptance curve, mass position L/2 

   
e. Receptance matric, mass position 5L/6     f. Receptance, mass position 5L/6 

Fig. 6. Receptance of AFG beam when ω=ω3 

Dotted line: without mass; Dashed line: attached mass 

(a) Receptance matric, mass position L/6
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a. Receptance matric, mass position L/6     b. Receptance curve, mass position L/6 

   
c. Receptance matric, mass position L/2     d. Receptance curve, mass position L/2 

   
e. Receptance matric, mass position 5L/6     f. Receptance, mass position 5L/6 

Fig. 6. Receptance of AFG beam when ω=ω3 

Dotted line: without mass; Dashed line: attached mass 

(b) Receptance curve, mass position L/6
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a. Receptance matric, mass position L/6     b. Receptance curve, mass position L/6 

   
c. Receptance matric, mass position L/2     d. Receptance curve, mass position L/2 

   
e. Receptance matric, mass position 5L/6     f. Receptance, mass position 5L/6 

Fig. 6. Receptance of AFG beam when ω=ω3 

Dotted line: without mass; Dashed line: attached mass 

(c) Receptance matric, mass position L/2
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a. Receptance matric, mass position L/6     b. Receptance curve, mass position L/6 

   
c. Receptance matric, mass position L/2     d. Receptance curve, mass position L/2 

   
e. Receptance matric, mass position 5L/6     f. Receptance, mass position 5L/6 

Fig. 6. Receptance of AFG beam when ω=ω3 

Dotted line: without mass; Dashed line: attached mass 

(d) Receptance curve, mass position L/2
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a. Receptance matric, mass position L/6     b. Receptance curve, mass position L/6 

   
c. Receptance matric, mass position L/2     d. Receptance curve, mass position L/2 

   
e. Receptance matric, mass position 5L/6     f. Receptance, mass position 5L/6 

Fig. 6. Receptance of AFG beam when ω=ω3 

Dotted line: without mass; Dashed line: attached mass 

(e) Receptance matric, mass position 5L/6
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a. Receptance matric, mass position L/6     b. Receptance curve, mass position L/6 

   
c. Receptance matric, mass position L/2     d. Receptance curve, mass position L/2 

   
e. Receptance matric, mass position 5L/6     f. Receptance, mass position 5L/6 

Fig. 6. Receptance of AFG beam when ω=ω3 

Dotted line: without mass; Dashed line: attached mass 

(f) Receptance curve, mass position 5L/6

Fig. 6. Receptance of AFG beam when ω = ω3
(Dotted line: without mass; Dashed line: attached mass)

When two masses are located at the two peaks of receptance and the forcing fre-
quency is equal to the third natural frequency of the beam-mass system, the peaks corre-
sponding to these positions decrease as demonstrated in Fig. 7. Figs. 7(a) and 7(b) present
the receptance of beam when two masses are located at the positions of L/6 and 3L/6. As
can be observed from these graphs, the peaks corresponding to these positions decrease
significantly and peaks and nodes of the receptance curve moves to the left side where
the two masses are attached. When two masses are located at the positions of L/6 and
5L/6, four peaks corresponding to these positions decrease significantly as shown in the
Figs. 7(c) and 7(d). It is noted that the first node of receptance moves clearly to the first
mass position which is close to that node and the second node moves to the second mass
position.
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a. Receptance matric, masses at L/6 and L/2 b. Receptance, masses at L/6 and L/2   

   
c. Receptance matric, masses at L/6 and 5L/6     d. Receptance, masses at L/6 and 5L/6 

Fig. 7. Receptance of AFG beam when ω=ω3, two masses are attached 

Dotted line: without mass; Dashed line: attached masses 

4. CONCLUSION 
In this paper, the exact formula of receptance function of a tapered AFG beam with varying 

parameters given in the form of an arbitrary order polynomial is presented. When the term  

and cannot be expressed as a geometric series as presented in published works, they will be 
expressed as a converged alternative power series. The numerical simulations of receptance of the 
simply supported nonlinear AFG beam as an example are provided.  

Numerical results show that when the exciting frequency is equal to the natural frequencies, the 
maximum and minimum positions of the receptances are the same with the maxima and minima 
positions of the corresponding mode shapes. The influence of the concentrated masses on the receptance 
of the AFG beam is also investigated. When there are concentrated massese, the shape of receptance of 
the tapered AFG beam is changed. The peaks of receptance at the positions of attached masses decrease. 
The peaks and nodes of the receptance of the AFG beam tend to move toward the mass positions. The 
simulation results in this work can be used to validate future work using other methods and they can be 
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(a) Receptance matric, masses at L/6 and L/2
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Fig. 7. Receptance of AFG beam when ω=ω3, two masses are attached 

Dotted line: without mass; Dashed line: attached masses 
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parameters given in the form of an arbitrary order polynomial is presented. When the term  
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The peaks and nodes of the receptance of the AFG beam tend to move toward the mass positions. The 
simulation results in this work can be used to validate future work using other methods and they can be 
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(b) Receptance, masses at L/6 and L/2
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Dotted line: without mass; Dashed line: attached masses 
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4. CONCLUSION 
In this paper, the exact formula of receptance function of a tapered AFG beam with varying 

parameters given in the form of an arbitrary order polynomial is presented. When the term  

and cannot be expressed as a geometric series as presented in published works, they will be 
expressed as a converged alternative power series. The numerical simulations of receptance of the 
simply supported nonlinear AFG beam as an example are provided.  

Numerical results show that when the exciting frequency is equal to the natural frequencies, the 
maximum and minimum positions of the receptances are the same with the maxima and minima 
positions of the corresponding mode shapes. The influence of the concentrated masses on the receptance 
of the AFG beam is also investigated. When there are concentrated massese, the shape of receptance of 
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(d) Receptance, masses at L/6 and 5L/6

Fig. 7. Receptance of AFG beam when ω = ω3, two masses are attached
(Dotted line: without mass; Dashed line: attached masses)

4. CONCLUSION

In this paper, the exact formula of receptance function of a tapered AFG beam with
varying parameters given in the form of an arbitrary order polynomial is presented.
When the term (EI)′ /EI and (EI)′′ /EI cannot be expressed as a geometric series as
presented in published works, they will be expressed as a converged alternative power
series. The numerical simulations of receptance of the simply supported nonlinear AFG
beam as an example are provided.

Numerical results show that when the exciting frequency is equal to the natural fre-
quencies, the maximum and minimum positions of the receptances are the same with the
maxima and minima positions of the corresponding mode shapes. The influence of the
concentrated masses on the receptance of the AFG beam is also investigated. When there
are concentrated massese, the shape of receptance of the tapered AFG beam is changed.
The peaks of receptance at the positions of attached masses decrease. The peaks and
nodes of the receptance of the AFG beam tend to move toward the mass positions. The
simulation results in this work can be used to validate future work using other methods
and they can be useful for controlling the vibration amplitude at some specific points
along the beam by applying concentrated masses.
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