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Abstract. The purpose of this research is to study the propagation of surface waves in
transversely isotropic piezoelastic medium based on nonlocal strain gradient theory. A
characteristics equation for the existence of surface waves is discussed. This equation
could be easily reduced to the ones of the gradient strain theory, nonlocal theory, and
classical theory. It has also been concluded that there exist cut-off frequency for the wave
propagating in size-dependent materials based on the nonlocal strain gradient theory. The
dispersion equation which surface wave speed satisfies is derived from the free traction
condition on the surface of half-space with consideration of electrically open circuit condi-
tions. The effect of the nonlocal parameter, the strain gradient parameter on the existence
of surface waves as well as the Rayleigh wave propagation is illustrated through some
numerical examples.
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1. INTRODUCTION

The piezoelectric medium has found many applications in the area of signal process-
ing, transduction, and frequency control. Both theoretical and experimental studies on
wave propagation in piezoelectric materials have attracted the attention of scientists and
engineers during last two decades. The survey of literature can be found in many related
texts and books. One of the most critical problems in designing Seismic Acoustic Wave
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(SAW) devices is the observation and investigation of the properties of surface waves
such as Rayleigh waves, leaky waves, etc.

Nanoscale structures are of significance in the field of nano-mechanics, so it is crucial
to account for small size influences in their mechanical analysis. The lack of a scale pa-
rameter in the classical continuum theory makes it impossible to describe the size effects.
In addition, there exist certain phenomena (e.g., dispersion of elastic waves, crack propa-
gation, dislocations, and so on) that cannot be explained using local theory of continuum
mechanics. Therefore, some continuum mechanics theories have been developed to cap-
ture such effects, such as the nonlocal Eringen theory [1, 2], the modified couple stress
theory [3], the micropolar theory [4], the strain gradient theory [5] and others. Tung [6,7]
used the nonlocal Eringen theory to investigate wave propagation in nonlocal orthotropic
micropolar elastic solids, in nonlocal transversely isotropic liquid-saturated porous solid.

Researchers find out that the nonlocal Eringen theory is not powerful enough to esti-
mate the behavior of small structures completely. In other words, the stiffness-hardening
behavior of nanostructures is neglected in this theory and only the stiffness softening ef-
fect is included. It is reported that the nonlocal elasticity theory predicts a decrease of the
structural stiffness when the scale parameter increases while the strain gradient theory
prompts the stiffening of the nanostructures with the non-classical parameter. Recently,
Lim et al. [8] have proposed a nonlocal elasticity and strain gradient theory (NSGT) for
the wave propagation analysis of size-dependent structures with the objective of elimi-
nating the disadvantages of the last aforementioned theories, where both stiffening and
softening effects of the material could be well investigated. In NSGT the stress field ac-
counts for not only the nonlocal stress field but also the strain gradients stress field. This
theory contains two non-classical material parameters (the nonlocal parameter and the
strain gradient parameter) and is able to reproduce both the increase and decrease of
structural stiffness [9]. Based on NSGT, Arefi [10] considered the propagation wave in
a functionally graded magneto-electroelastic nano-rod using nonlocal elasticity model
subjected to electric and magnetic potentials. Ma et.al [11] investigated the wave propa-
gation characteristics in magneto-electro-elastic nanoshells using nonlocal strain gradient
theory.

In this paper, we considered the propagation wave in transversely isotropic piezoe-
lastic medium based on the nonlocal strain gradient theory. Two kinds of scale param-
eters, namely, the nonlocal parameter and the strain gradient parameter are introduced
to account for the size effect of mechanical properties of nanostructures. The constitutive
equations and the equations of motion are then established and used to investigate the
plane waves propagating in transversely isotropic piezoelectric media. The new char-
acteristics equations of plane waves are then obtained and the cut-off frequency of each
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wave are derived. The effect of the nonlocal parameter, the strain gradient parameter on
the Rayleigh wave propagation as well as the existence of surface waves is considered.

2. BASIC EQUATIONS

We consider homogeneous transversely isotropic piezoelastic solid. It is assumed
that the medium is transversely isotropic in such a way that planes of isotropy are per-
pendicular to x3 axis. We take the origin of the coordinate system (x1, x2, x3) at any point
on the plane surface and x3-axis pointing vertically downward into the half-space. For
two-dimensional problem in which the plane wave is in the plane x1x3, the displacement
field u1, u3, the electric potential φ have form

u1 = u1(x1, x3), u3 = u3(x1, x3), φ = φ(x1, x3). (1)

The constitutive equations for the homogeneous transversely isotropic piezoelastic solid
are given as [12, 13]

σ11 = c11u1,1 + c13u3,3 + e31φ,3,

σ33 = c13u1,1 + c33u3,3 + e33φ,3,

σ13 = c44(u1,3 + u3,1) + e15φ,1,

D1 = e15(u1,3 + u3,1)− ε11φ,1,

D3 = e13u1,1 + e33u3,3 − ε33φ,3,

(2)

where σij, Di are stress and electrical displacement components, respectively.

In the absence of body forces, the equations of motion and Gaussian equations for
the electric are [12, 13]

σ11,1 + σ13,3 = ρü1,

σ13,1 + σ33,3 = ρü3,

D1,1 + D3,3 = 0,
(3)

where ρ is density of mass and a dot over a quantity represents differentiation with re-
spect to time t.

According to [14,15], the differential form of constitutive equation with the nonlocal
strain gradient can be obtained as follows

τij = (1− l2
1∇2)σij = (1− l2

2∇2)
(
cijklεkl − emijEm

)
,

di = (1− l2
1∇2)Di = (1− l2

2∇2)
(
eiklεkl + εimEm

)
,

(4)

where eijk the piezoelectric moduli, Ej = −φ,j and the higher-order nonlocal parameters
l1 and the nonlocal gradient length coefficients l2 are introduced to account for the size-
dependent characteristics of nonlocal gradient materials at nanoscale.
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Substituting (4) into (3) and taking in account (2), we have

(1− l2
2∇2)

(
c11u1,11 + c13u3,13 + c44(u1,33 + u3,13) + (e13 + e15)φ,13

)
= (1− l2

1∇2)ρü1,

(1− l2
2∇2)

(
c44(u1,13 + u3,11) + c13u1,13 + c33u3,33 + e15φ,11 + e33φ,33

)
= (1− l2

1∇2)ρü3,

(1− l2
2∇2)

(
(e13 + e15)u1,13 + e15u3,11 + e33u3,33 − ε11φ,11 − ε33φ,33

)
= 0.

(5)

3. CHARACTERISTIC EQUATION OF PLANE WAVES

For the waves propagating in the plane x3 = 0, we take the form of relevant compo-
nents of displacement and the electric potential φ as [6, 7, 16]

u1 = a1eik(x1+ξx3−ct),
u3 = a3eik(x1+ξx3−ct),
φ = Aeik(x1+ξx3−ct),

(6)

where a1, a3, A are unknown amplitudes of the displacement, k is x1-component of
wavenumber, ξ is unknown ratio of wave vector components along x3 and x1 direction,
c is phase velocity along x1.

Substituting the expressions for displacements from (6) into (5), we obtain the three
homogeneous equations in three unknowns a1, a3, A, namely(

(c11 + c44ξ2)(1 + k2l2
2 + k2l2

2ξ2)− ρc2(1 + k2l2
1 + k2l2

1ξ2)

)
a1

+

(
(c13 + c44)ξ(1 + k2l2

2 + k2l2
2ξ2)

)
a3 + (e13 + e15)ξ(1 + k2l2

2 + k2l2
2ξ2)A = 0,(

(c13 + c44)ξ(1 + k2l2
2 + k2l2

2ξ2)

)
a1 +

(
(c44 + c33ξ2)(1 + k2l2

2 + k2l2
2ξ2)

− ρc2(1 + k2l2
1 + k2l2

1ξ2)

)
a3 + (e15 + e33ξ2)(1 + k2l2

2 + k2l2
2ξ2)A = 0,(

(e13 + e15)ξ(1 + k2l2
2 + k2l2

2ξ2)

)
a1 + (e15 + e33ξ2)(1 + k2l2

2 + k2l2
2ξ2)a3

−
(
(ε11 + ε33ξ2)(1 + k2l2

2 + k2l2
2ξ2)

)
A = 0.

(7)
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The necessary condition for the existence of a non-trivial solution a1, a3, A for above
system equations is vanishing of the determinant of the corresponding coefficients ma-
trix, which yields a twelfth equation for ξ

t12ξ12 + t10ξ10 + t8ξ8 + t6ξ6 + t4ξ4 + t2ξ2 + t0 = 0, (8)

where t12, t10, t8, t6, t4, t2, t0 are given by Appendix. According to the form of the above
characteristics equation, we can predict that six different modes can be generated in non-
local strain gradient piezoelastic solid. A known consequence is the existence of new
wave modes which could not be observed in the classical piezoelastic solids.

It is well known that in an anisotropic medium there are generally three body-waves
propagating with velocities which vary with the direction of phase propagation. Their
polarizations are orthogonal and fixed for the particular direction of phase propagation.
The waves are called quasi-waves (qP, qSV, qSH waves) because polarizations may not be
along the dynamic axes. In this paper, for two-dimensional problem in which the plane
wave is in the plane , these waves are qP, qSV [17]. It has also been concluded that there
exist cut-off frequency and escape frequency for wave propagating in size-dependent
materials based on the higher-order nonlocal strain gradient model. In some waveguides,
the wavenumber will be purely imaginary to start with and becomes real or complex
after certain frequency. In such cases, the wave will be evanescent to start with and
will start propagating only after certain frequency. This frequency at which the change
from evanescent mode to propagating mode happens is called the cut-off frequency, ωc

[18, 19]. The values of these frequencies can easily be obtained by substituting ξ = 0 in
(8). Therefore, the cut-off frequency of qP wave and qSV wave are

ωc
1 = k

√
c11(1 + k2l2

2)

ρ(1 + k2l2
1)

, ωc
2 = k

√
(e2

15 + ε11c44)(1 + k2l2
2)

ρε11(1 + k2l2
1)

. (9)

When the wavenumbers become infinite at a particular frequency, which is referred
here as the escape frequency, ωe. The expressions for the escape frequencies can be ob-
tained by forcing the coefficient of ξ12 equal to zero in (8) [18,19]. From the expression of
ξ12, it is clear that the escape frequency does not exist in this case.

4. DISPERSION EQUATION OF SURFACE WAVE IN NONLOCAL
TRANSVERSELY ISOTROPIC PIEZOELASTIC MEDIUM

As the first step in our research, in this paper, we are only interested in three so-
lutions with positive imaginary parts out of six possible solutions of the characteristics
equation (8) by the choice of material constants and the parameters l1, l2. The existence of
exactly three wave solutions out of six ones in the general case requires fulfil boundary
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conditions which will be studied in subsequent works. Let ξ1, ξ2, ξ3 be the three roots of
Eq. (8) with positive imaginary part, the filed displacment has form

u1 =
3

∑
j=1

a1jeik(x1+ξ jx3−ct),

u3 =
3

∑
j=1

a3jeik(x1+ξ jx3−ct),

φ =
3

∑
j=1

Ajeik(x1+ξ jx3−ct),

(10)

and a1j = αj Aj, a3j = β j Aj, (j = 1, 2, 3) where

αj =
δ1j

δj
, β j =

δ3j

δj
,

δj =

(
(c11 + c44ξ2

j )(1 + k2l2
2 + k2l2

2ξ2
j )− ρc2(1 + k2l2

1 + k2l2
1ξ2

j )

)(
(c44

+ c33ξ2
j )(1 + k2l2

2 + k2l2
2ξ2

j )− ρc2(1 + k2l2
1 + k2l2

1ξ2
j )

)
−
(
(c13 + c44)ξ j(1 + k2l2

2 + k2l2
2ξ2

j )

)2

,

δ1j = −
(
(c44 + c33ξ2

j )(1 + k2l2
2 + k2l2

2ξ2
j )− ρc2(1 + k2l2

1 + k2l2
1ξ2

j )

)
(e13 + e15)ξ j(1

+ k2l2
2 + k2l2

2ξ2
j ) + (e15 + e33ξ2

j )(1 + k2l2
2 + k2l2

2ξ2
j )

(
(c13 + c44)ξ j(1 + k2l2

2 + k2l2
2ξ2

j )

)
,

δ3j = −
(
(c11 + c44ξ2

j )(1 + k2l2
2 + k2l2

2ξ2
j )− ρc2(1 + k2l2

1 + k2l2
1ξ2

j )

)
(e15 + e33ξ2

j )(1

+ k2l2
2 + k2l2

2ξ2
j ) +

(
(c13 + c44)ξ j(1 + k2l2

2 + k2l2
2ξ2

j )

)
(e13 + e15)ξ j(1 + k2l2

2 + k2l2
2ξ2

j ).

(11)

In the present problem, boundary conditions appropriate for particle motion in the
x1x3 plane are considered at the plane surface x3 = 0. Since the boundary surface of
the half-space is mechanically stress free, therefore all the components of stresses must
vanish.

τ13 = 0, τ33 = 0. (12)

Another condition is required to represent that the surface of half-space is main-
tained at charge free condition (open circuit-surface), namely

d3 = 0. (13)
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By making use of (11) in the boundary condition (12) and (13), we have three equa-
tions of A1, A2, A3, namely

(
c44(ξ1α1 + β1) + e15

)
(1 + k2l2

1 + k2l2
1ξ2

1)A1 +
(
c44(ξ2α2 + β2) + e15

)
(1 + k2l2

1

+k2l2
1ξ2

2)A2 +
(
c44(ξ3α3 + β3) + e15

)
(1 + k2l2

1 + k2l2
1ξ2

3)A3 = 0,
(c13α1 + c33β1ξ1 + e33ξ1)(1 + k2l2

1 + k2l2
1ξ2

1)A1 + (c13α2 + c33β2ξ2

+e33ξ2)(1 + k2l2
1 + k2l2

1ξ2
2)A2 + (c13α3 + c33β3ξ3 + e33ξ3)(1 + k2l2

1 + k2l2
1ξ2

3)A3 = 0,
(e15α1 + e33ξ1β1 − ε33ξ1)(1 + k2l2

1 + k2l2
1ξ2

1)A1 + (e15α2 + e33ξ2β2

−ε33ξ2)(1 + k2l2
1 + k2l2

1ξ2
2)A2 + (e15α3 + e33ξ3β3 − ε33ξ3)(1 + k2l2

1 + k2l2
1ξ2

3)A3 = 0.
(14)

Determinant of coefficients leads to the dispersion equation, namely

∆. det

 ξ∗1 ξ∗2 ξ∗3
ξ∗∗1 ξ∗∗2 ξ∗∗3
ξ∗∗∗1 ξ∗∗∗2 ξ∗∗∗3

 = 0, (15)

where

∆ = (1 + k2l2
1 + k2l2

1ξ2
1)(1 + k2l2

1 + k2l2
1ξ2

2)(1 + k2l2
1 + k2l2

1ξ2
3),

ξ∗j = c44(ξ jαj + β j) + e15, ξ∗∗j = c13αj + c33ξ jβ j + e33ξ j,

ξ∗∗∗j = e15αj + e33ξ jβ j − ε33ξ j, (j = 1, 2, 3).

(16)

This is the dispersion equations for the propagation of Rayleigh-type waves in the
transversely isotropic piezoelastic medium based on NSGT.

To facilitate proceed numerical calculations, dimensionless material parameters de-
fined by

f01 = k2l2
1 , f02 = k2l2

2 , f1 =
c11

c44
, f2 =

c13

c44
, f3 =

c33

c44
,

e1 =
e13

e33
, e2 =

e15

e33
, e =

e33√
c44ε33

, f =
ε11

ε33
, X =

ρc2

c44
.

(17)

In addition for the propagation of waves with phase velocity v in the direction mak-
ing an angle θ0 with the vertical axis, the plane harmonic wave of the form is rewritten
by 

u1 = a1eik0(p1x1+p3x3−vt),
u3 = a3eik0(p1x1+p3x3−vt),
φ = Aeik0(p1x1+p3x3−vt),

(18)
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where k0 is wavenumber, p1 = sin θ0, p3 = cos θ0 are components of slowness. It is note

that k0 =
k
p1

and v = p1c . Substituting (18) into (5) leads to(
(c11 p2

1 + c44 p2
3)(1 + k2

0l2
2)− ρv2(1 + k2

0l2
1)

)
a1 + (c13 + c44)p1 p3(1

+ k2
0l2

2)a3 + (e13 + e15)p1 p3(1 + k2
0l2

2)A = 0,

(c13 + c44)p1 p3(1 + k2
0l2

2)a1 +
(
(c44 p2

1 + c33 p2
3)(1 + k2

0l2
2)− ρv2(1 + k2

0l2
1)
)
a3

+ (e15 + e33ξ2)(1 + k2
0l2

2)A = 0,

(e13 + e15)p1 p3(1 + k2
0l2

2)a1 + (e15 p2
1 + e33 p2

3)(1 + k2
0l2

2)a3

− (ε11 p2
1 + ε33 p2

3)(1 + k2
0l2

2)A = 0.

(19)

The determinant of their coefficients vanishes leads to a quadratic equation in v2.
The roots of this equation give two values of v. Each value of v corresponds to a wave
if v2 is real and positive. The waves with velocities v1, v2 correspond to longitudinal qP
and transverse qSV waves.

5. NUMERICAL SIMULATION AND DISCUSSION

In order to illustrate theoretical results obtained in the preceding sections, the mate-
rial chosen for the numerical calculations is CdSe (6 mm class) of hexagonal symmetry,
which is transversely isotropic material. The physical data for a single crystal of CdSe
material is given below [20, 21]

c11 = 7.41× 1010 Nm−2, c13 = 3.93× 1010 Nm−2, c33 = 8.36× 1010 Nm−2,

c44 = 1.32× 1010 Nm−2, ρ = 5504 kgm−3, e15 = −0.138 Cm−2, e31 = −0.16 Cm−2,

e33 = 0.347 Cm−2, ε11 = 8.26× 10−11 C2N−1m−2, ε33 = 9.03× 10−11 C2N−1m−2.

Fig. 1 depicts the variation of dimensionless velocities of qP, qSV wave with incident
angle for which two length scale parameters l1 and l2. It is observed that the phase ve-
locities of waves for (l1 > l2) case (solid lines) are smaller than the ones for (l1 < l2) case
(dash lines) respectively.

Fig. 2 illustrates the dependence of dimensionless velocities waves on dimensionless
parameters f01 and f02. From these figures we can see that these velocities decrease grad-
ually as the dimensionless parameter f01 increases (see Fig. 2(a)) and meanwhile the ones
increase as the dimensionless parameter f02 increases (see Fig. 2(b)).
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Fig. 2. Influences of dimensionless parameters f01 and f02 on dimensionless
phase velocities waves

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

1

1.5

2

2.5

3

3.5

4

4.5

5

f
01

X

Dispersion
1
(f

01
,X)

(a) f02 < 1

The effect of f01 and f02 parameters on the non-dimensional speed of the Rayleigh
wave X are shown graphically in Fig. 3(a) and Fig. 3(b), respectively. In Fig. 3(a), the
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Fig. 3. Variation of non-dimensional speed X of Rayleigh wave against
dimensionless parameters f01 and f02

speed of Rayleigh wave is decreasing when the parameter f01 is increasing. The Rayleigh
wave exists only in the domain 0 ≤ f01 ≤ 0.34 with f02 < 1. On the contrary, the Rayleigh
wave exists in the domain 5.0 ≤ f02 ≤ 5.67 with f01 > 1 (see Fig. 3(b)).
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Fig. 4. The existence of surface waves depend on f01 for three cases

The existence of solutions of the characteristic equation (8) in domain 0 ≤ f01 ≤ 3,
under restrictions generated by Im(ξ) > 0 is illustrated by Fig. 4 for three cases f02 >

1, f02 < 1, f02 = 0, respectively. Fig. 4(a) shows all imaginary parts ξi, (i = 1, 2, 3, 4) are
positive. Hence, there are no surface waves in this case. In contrast to Fig. 4(a), in Fig. 4(b)
we can always choose two surface waves satisfying the problem with 0.1 ≤ f01 ≤ 3. For
f02 = 0 (Nonlocal theory) there are three surface waves in domain 1.51 ≤ f01 ≤ 3.
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(b) 0 ≤ f01 < 1

Fig. 5. The existence of surface waves depend on f02 for two cases

The existence of surface waves depends on 0 ≤ f02 ≤ 3 for two cases are depicted in
Fig. 5. There are always three solutions with the positive imaginary in domain 0 ≤ f02 ≤
1.75 with f0 > 1 (see Fig. 5(a)). There are no surface waves in domain 1.75 < f02 ≤ 3 with
f0 > 1 (see Fig. 5(a)) or 0 ≤ f02 ≤ 3 with 0 ≤ f0 < 1 (see Fig. 5(b)).
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(b) l1 = 10l2

Fig. 6. Wavenumber k variation with frequency ω for two cases

The variation of the cut-off frequencies with wavenumber k variation with frequency
ω are shown in Fig. 6. In Fig. 6(a), the wavenumber k1 is dominant over k2 for l2 = 10l1.
The opposite is shown in Fig. 6(b) for l1 = 10l2.
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6. CONCLUSIONS

In the present work, we have studied the propagation of surface waves in trans-
versely isotropic piezoelastic medium based on the nonlocal strain gradient theory. The
existence of the number of surface waves depends on the dimensionless nonlocal param-
eter f01, dimensionless gradient length parameter f02 of the medium through the number
of solutions satisfying the damping condition of the characteristic equation. It is clearly
dispersive due to the appearance of the parameters f01 and f02. Moreover, the expres-
sion of the cut-off is derived. Phase speeds of waves are computed numerically and
their variation against the incident angle θ, two dimensionless length scale parameters
are presented graphically. These parameters have significant effect on the velocities of
propagation of Rayleigh-type waves.
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APPENDIX

The coefficients of characteristic equation for NSGT

t12 = − f 3
02(e

2 + f3),

t10 = f 2
02(−3 f3 + f02( f2(2 + f2)− (3 + f + f1) f3) + f01(1 + f3)X

− e2(3 + f02(3 + f1 − 2(e1 + (e1 + e2) f2) + (e1 + e2)
2 f3)− f01X)),

t8 = f02(−3 f3 − f 2
02( f1 − (3 + f ) f2(2 + f2) + 3(1 + f ) f3 + (3 + f ) f1 f3)

+ 3 f02( f2(2 + f2)− (2 + f + f1) f3) + 2 f01(1 + f3)X + f02(1 + f3 + f01(4 + f + f1

+ (3 + f ) f3))X− f 2
01X2 + e2(−3 + 2 f01X + f02(6e1 + 6e1 f02 − e2

1 f02 − 3 f02 f1

− 2e2 f02 f1 − 3(2 + f02 + f1) + 6e1 f2 + 6e2 f2 + 6e1 f02 f2 + 6e2 f02 f2 + 2e1e2 f02 f2

+ 2e2
2 f02 f2 − 3(e1 + e2)

2(1 + f02) f3 + (1 + (3 + 2e2 + (e1 + e2)
2) f01)X))),

t6 = − f3 + f02(3 f2(2 + f2)− 3(1 + f + f1) f3 − 3 f02( f1 − (2 + f ) f2(2 + f2) + f3 + 2 f f3

+ (2 + f ) f1 f3)− f 2
02(−3(1 + f ) f2(2 + f2) + f3 + 3 f f3 + f1(3 + f + 3(1 + f ) f3)))

+ f01X + ( f01 f3 + 2 f02(1 + f3 + f01(3 + f + f1 + (2 + f ) f3)) + f 2
02(3 + f1 + 2 f3

+ 3 f01(2 + f1 + f3) + f (1 + f3 + f01(4 + f1 + 3 f3))))X− f01( f01 + 2 f02

+ (3 + f ) f01 f02)X2 + e2(−1 + f01X + f02(−3(1 + f02 + f 1) + 6e1(1 + f02)(1 + f02

+ f2 + f02 f2 + e2 f02 f2 − e2(1 + f02) f3)− f 2
02(1 + (3 + e2(6 + e2)) f1 + 3e2(−2(1

+ e2) f2 + e2 f3))− 6 f02((1 + e2) f1 + e2(−(2 + e2) f2 + e2 f3)) + 2(1 + 2 f01)X

+ (2 + 3 f01 + e2(2 + e2 + 6 f01 + 4e2 f01)) f02X + 2e1e2( f02 + f01(2 + 3 f02))X

+ e2(6 f2 − 3e2 f3 + 2(2 + e2) f01X) + e2
1(−3(1 + f02)( f02 + f3 + f02 f3)

+ ( f02 + f01(2 + 3 f02))X))),

t4 = f2(2 + f2)− ( f + f1) f3 + f 3
02((1 + 3 f ) f2(2 + f2)− f f3 − f1(3 + f3 + 3 f (1 + f3)))

+ (1 + f3 + f01(2 + f + f1 + f3 + f f3))X− f01(2 + (2 + f ) f01)X2 + f 2
02(−3(−(1

+ 2 f ) f2(2 + f2) + f f3 + f1(2 + f + f3 + 2 f f3)) + (3 + 2 f1 + f3 + f01(4 + 3 f1 + f3)

+ f (3 + f1 + 2 f3 + 3 f01(2 + f1 + f3)))X) + f02(−3(−(1 + f ) f2(2 + f2) + f f3

+ f1(1 + f3 + f f3)) + 2(2 + f1 + f3 + f01(3 + 2 f1 + f3) + f (1 + f3 + f01(3 + f1

+ 2 f3)))X− (1 + 2(2 + f ) f01 + 3(1 + f ) f 2
01)X2) + e2((1 + f02)(−(1 + f02(2 + f02

+ 3e2(2 + (2 + e2) f02))) f1 + e2(1 + f02)(2(1 + f02 + 3e2 f02) f2 − e2(1 + f02) f3))

+ (1 + f01 + 2e2 f01 + e2
2 f01 + 2(1 + e2)(1 + e2 + f01 + 3e2 f01) f02 + (1 + f01

+ e2(4 + 3e2 + 6(1 + e2) f01)) f 2
02)X + e2

1(1 + f02)(−(1 + f02)( f3 + f02(3 + f3))

+ ( f01 + 2 f02 + 3 f01 f02)X) + 2e1(1 + f02)((1 + f02)(1 + f02 + f2 + f02 f2

+ 3e2 f02 f2 − e2(1 + f02) f3) + e2( f01 + 2 f02 + 3 f01 f02)X)),
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t2 = − (1 + f02)
2(− f (1 + f02) f2(2 + f2) + f1(1 + f02 + 3 f f02 + f (1 + f02) f3))

+ (1 + f02)((1 + f01)(1 + f02)(1 + f1) + f (1 + f3 + f02(3 + 2 f1 + f3)

+ f01(2 + f1 + f3 + f02(4 + 3 f1 + f3))))X− (1 + f01)(1 + f01 + 2 f f01

+ (1 + f + f01 + 3 f f01) f02)X2 − e2(1 + f02)(e2(1 + f02)((2 + 2 f02 + 3e2 f02) f1

− 2e2(1 + f02) f2)− e2(2(1 + f01)(1 + f02) + e2(1 + 2 f01 + 3 f02 + 4 f01 f02))X

− 2e1e2(1 + f02)( f2 + f02 f2 + X + f01X) + e2
1(1 + f02)(1 + f02 − (1 + f01)X)),

t0 = − (1 + f02)((1 + f02) f1 − (1 + f01)X)((e2e2
2 + f )(1 + f02)− f (1 + f01)X).
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