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Abstract. This paper presents a study on the dynamic response of the micro-beams with
the crab shape and cut-out holes on the whole operating faces of the beam to create the
micro-perforated beam by using FEM simulation software. The obtained results show
that the size and shape form of the cut-out holes affect the mechanical responses of the
beam on which the holes distribute. The equivalent stiffness of perforated micro-beams
decreases significantly with the increasing size of the holes on the beam operating face.
And thence the major frequencies of the MEMS vibratory gyroscope system that consist
of these micro-beams also decrease. The results of the study are basic for being used for
optimizing the structure in subsequent research.
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1. INTRODUCTION

Beams play an essential role in forming the motion of the mechanical vibration sys-
tems. They are considered the springs in mechanical vibration systems thanks to the
elasticity of the material of the beams. Their displacement under excited loads causes the
desired vibration modal in the mechanical system. In micro-electro-mechanical systems
(MEMS), the mechanical designs play essential roles in performing the main function of
the microsensor or microactuator. The micro-beams in MEMS can be formed as the single
model [1], folder model [2,3], Crab-shaped model [3], multi-folder model [1–4], T-shaped
model [4], Z-shaped and V-shaped model [5]. The mechanical response of these beams
was studied with full fill mode with the constant cross-section and using the assump-
tions in the analysis processing to consider the elastic behavior of material to be linear
and ignore the large deformation of structures.
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The perforations cutout along the beams are considered very common in MEMS fab-
rication. They are created in the sacrificial layer etching process. They cause the reduction
in the mass of the beam which in turn decreases the residual stress of the beam and also
contributes to reducing pull-in voltage on these beams [6]. The holes perforated on the
body of the beam and the body of the resonant have been shown as a solution to reduce
the effective mass of the beam as well as the effect of squeeze film damping on them.
These two are the major factors affecting the switching time of MEMS switches [7]. De-
creasing the effective mass and increasing the active area are the basis for increasing the
sensitivity of the MEMS resonators [8]. The perforated holes were shown that they have
very little effect on pull-in voltage even though they reduce both the equivalent stiffness
and the effective Young’s modulus of the meander flexure MEMS switch [9].

The single beam is considered and calculated by using Euler Bernoulli or Timo-
shenko beam theory based on assumptions that the total induced stress throughout the
cross section is the same for both fully filled and the corresponding perforated one and
the stress distribution throughout the filled segment in the perforated nanobeam is as-
sumed to be linear and continuous [10–12]. Some different types of beams were also con-
sidered based on this approach to define their dynamic characteristics in the vibration
problem. However, the dynamic response of the complex shape beam with perforated
holes has not yet been researched due to complexity in modeling. Research optimizing
mechanical structure to reduce self-weight, thereby reducing energy consumption and
ensuring accuracy for MEMS components is an essential requirement. Therefore, it is
necessary to study the dynamic responses of perforated beams to determine the vibra-
tion characteristics of the mechanical system in mems devices.

In this paper, a microbeam with the “Crab” shape in structure and square or circle-
shaped perforated holes will be presented. Therefore, a microelectromechanical vibra-
tory gyroscope model with this crab beam will be considered to determine the mechan-
ical characteristics of the whole system with perforated holes. The content focuses on
dynamic analysis to determine the equivalent stiffness and modal analysis to find out the
resonant frequency in desired motions.

2. PERFORATED MICRO CRAB-SHAPE BEAM MODEL

The configuration of the Crab-shaped beam is presented in Fig. 1. The cutout holes
are distributed uniformly on the operating face parallel to the motion plane. The beam
with full-fill bodies is commonly used in designing MEMS structures. However, perfora-
tions in the body of the beam and its mechanical responses still need to be considered to
obtain the properties of the whole mechanism.
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Fig. 1. The configuration of the micro crab beam with cutout holes

Each crab beam is formed from 2 single beam segments considered as the Timo-
shenko or Euler Bernoulli beams. The length and width of the beams are L and W, re-
spectively. The thickness of beams is h, so the cross-section in a rigid body is W × h. The
square holes (edge w) or circle holes are distributed on the working surface plane of the
beams at a meshed grid l.

To consider the influence level of the cutout holes in the whole structure, the fill
factor is mentioned as the ratio of hole size (w or d) to meshed grid l [8, 11].

α = 1 − w/l or α = 1 − d/l, (1)

Thereby, 0 ≤ α ≤ 1, α = 0 corresponds to the artificial case (cutout whole beam, d = l
or w = l), and α = 1 is the fully filled solid beam (no hole cutout, w = d = 0). The smaller
the value of the fill factor, the larger the hole size. In this paper, the value α = 0 will not
be considered to ensure continuity in the models built in simulation calculations.

The material used regularly for these beams is Silicon in SOI wafers with material
characteristics: density ρ = 2330 kg/m3; Poisson’s ratio ν = 0.28; Young’s modulus E =
169×109 Pa; Bulk modulus 1.2803×1011 Pa; and orientation 1-0-0.

3. MECHANICAL RESPONSE OF PERFORATED MICROSTRUCTURES

3.1. Basic Timoshenko and Euler–Bernoulli perforated beam theory

The basic Timoshenko or Euler–Bernoulli beam theory when taking into account the
perforated holes with the square shape was carried out by using an equivalent geomet-
rical model [10] and considering the coupled effect of microstructure and surface stress
under different loading and boundary conditions (simply supported, clamped-clamped,
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simply-clamped, clamped-guided, or clamped-free, . . . ) [8]. The Timoshenko beam the-
ory takes into account the shear deformation and axial deformation of the beam, as well
as the bending deformation. The cross-section of the beam is allowed to deform as the
beam bends, and the beam is modeled as a series of curved line segments. This allows
for more accurate modeling of the shear deformation and axial deformation of the beam,
which can be important for short, thick beams or beams subjected to high shear loads. As
a result, the shape of a Timoshenko beam under bending deformation is more complex
than that of an Euler–Bernoulli beam, with a varying curvature along the length of the
beam.

To find out the resonant frequencies of the single beams considered Timoshenko
beams [10, 11], their dynamic equations are written as follows [12]:

EI
∂4u
∂x4 + ρA

∂2u
∂t2 −

(
ρI +

EIρA
GA

)
∂4u

∂x2∂t2 +
ρIρA
GA

∂4u
∂x4 = p (x, t) +

ρI
GA

∂2 p (x, t)
∂t2 , (2)

where u = u(x, t) is the displacement of the beam; p(x, t) is the distributed load applied
to the surface of the beam; and EI, ρA, GA, and ρI are the bending stiffness, linear density,
shear stiffness, and rotational moment of the oscillator, respectively.

Considering u(x, t) = U(x) cos ωt and neglecting the moment of inertia related to
the rotation of the beam element, the shear beam equation can be given as:

EI
d4U
dx4 − ρAω2U +

EIρA
GA

ω2 d2U
dx2 = 0. (3)

In the boundary condition case of a clamped-clamped single beam, the natural fre-
quency of the structure is determined by the expression [10]:

fn =
1

2π

√
EIeqZ4

ρAeqL4 , (4)

where EIeq and ρAeq are the bending stiffness and the mass per unit length of the perfo-
rated beam, L is the length of the beam, and Z is a function representing the nth root of
the equation as a function of γ considered as a geometry-dependent variable:

γ =
EIeq

AGeqL2 , (5)

AGeq is the shear stiffness of the perforated beam.

EIeq = EI
(N + 1)α(N2 + 2N + α2)

(1 − α2 + α3)N3 + 3αN2 + (3 + 2α − 3α2 + α3)α2N + α3 ,

AGeq = A
N + 1

N
E
2

α3.
(6)
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For perforated beams, γ can be expressed as a function of the number of holes along
the section N and fill factor α:

γ =
1
6

(
W
L

)2

γF(N, α) ≪ 1, (7)

where γF(N, α) is an appropriate rational function of its arguments:

γF =
N(N2 + 2N + α2)

α2((α3 − α2 + 1)N3 + 3αN2 + α2(α3 − 3α2 + 2α + 3)N + α3)
. (8)

This frequency can be determined by the expression used to compare in [13] as fol-
lows:

fn =
nπ

2L

√√√√(EI
ρI

)(
Bn −

√
B2

n −
κGA
π4EI

ρI
ρA

)
, (9)

where Bn =
1

2π2 +
κGA

2π4EI

(
ρI
ρA

π2 +
L2

n2

)
.

In the case of the Euler–Bernoulli beam with the assumption that plane sections per-
pendicular to the axis of the beam before deformation remain plane, and rotate such that
they remain perpendicular to the (deformed) axis after deformation, the natural frequen-
cies can be defined by the following expression [14]:

ω2
n =

(nπ

L

)4
(

Kb

I0

)
1 +

(
I1

I0

)(nπ

L

)2
, (10)

where Kb is the equivalent bending stiffness of the beam; I1 = ρIeq and I0 = ρIeq refer to
the equivalent rotary inertia and the equivalent mass per unit length.

To compare the frequency of the perforated single beam with taking into account
the hole in the body of the beam, we consider the referred clamped-clamped beam with
1401.1 µm length, 46.9 µm width, and 60 µm thick [10]. In [10], this structure was mod-
eled as 2D structures (mesh with the element PLANE182) under a plane stress hypothesis
corresponded to the case of beams of negligible thickness. In addition, in this study, the
body beam is perforated with 4 lines of square holes. The total is 4 × 116 holes. The
beam material chosen is the same with [10] by [1-1-0] single crystal silicon with Young’s
modulus E = 169 GPa, Poison’s ratio ν = 0.064, and shear modulus G = 79.6 GPa. The
3D structure of this beam and determining its natural frequency is carried out by using
ANSYS software with 3D mesh element Hexa20 (6 faces, 20 nodes). The meshing tech-
nique used is evenly dividing the surface. The results with fill factor α = 0.282 are listed in
Table 1. It can be seen with a good agreement between the simulated calculation in this
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present study and the experimental measurement in [10] with 0.426% error in Table 1.
The 3D capture for the displacement and the frequency for the first vibration mode are
shown in Fig. 2.

Table 1. The natural frequency of the perforated beam (kHz)

α
[10]

Present study Error %
Measured Model FEM

0.282 183.1 182.3 182.2 182.32 0.426
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Fig. 2. The first frequency of the single perforated beam in ANSYS
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The change of the first frequency value of the single beam versus the fill factor with
α = 0.05÷1 is shown in Fig. 3.
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Fig. 3. The first frequency of the referred single beam with fill factor

Based on the finite element analysis method and simulation using ANSYS software,
the first two frequencies of single beams with different boundary conditions will be also
presented. The outer dimension of the beam L×W×h is 1200×120×60 in micrometer,
accordingly, the aspect ratio L/h is 10. In this study, the number of rows and columns
of holes is 2 and 40 for a square grid size of 30 µm. The edge of square holes and the
diameter of circle holes vary in the range of grid size and guarantee the fact value of fill
ratio as the expression (1) (α = 0.067 ÷ 0.93).

Fig. 4. The two first frequencies of the single fixed-guided perforated beam
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The first two frequencies of the above single beam with cutout holes shaped with
square and circle holes in two cases of boundary condition: one fixed end - one guided
end (clamped-simply supported or fixed-guided beam) and 2 fixed end (clamped-clamped
or fixed-fixed beam) are shown in Fig. 4 and Fig. 5, respectively. The results show that
the values of the first two frequencies of a single beam increase according to the value
of fill factor α, whereby the natural frequency decreases when increasing the size hole.
It can be seen that the value of frequency is different according to different hole shapes.
Especially, when 0.05 < α < 0.4, the variability of the frequencies increases significantly.
The larger the hole size, the more obvious the difference. This variation occurs more in-
tensely in the case of the square holes. When α varies in the interval [0.4-1), the values
of the natural frequencies are similar in both forms of holes, and at the same time, the
frequency variation seems to be linear. The different boundary conditions produce dif-
ferent natural frequencies. The first two frequencies in the case of fixed-fixed beam are
larger than in fixed-guided beam. The increase is 6.3 and 2.7 times for the first and the
second frequency respectively. These results also show that the FEM analysis is in good
agreement with the simulation analysis in the square holes.

Fig. 5. The two first frequencies of the single fixed-fixed perforated beam

3.2. Mechanical response of a micro-perforated beam with crab structure

In most practical structures, the equivalent stiffness directly contributes to the res-
onant frequency of the resonators, including microresonators. The equivalent stiffness
of the beam is an essential factor in designing a mechanical vibrational structure. The
higher the stiffness, the less deflection that will occur, and the higher the operating fre-
quency of the system. Determining this equivalent stiffness is held in simulation based
on the assumption about the linear behavior of the beam material. The regular formula
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expresses the relationship between deformation δ and stiffness k of the beam as:

k =
F
δ

. (11)

The crab-shaped beam is created from two perpendicular single bars creating the L-
shape (or “Crab” shape in Fig. 1). The lengths of the two bars are 200 and 300 µm; their
wide and thickness are 16 and 30 µm both of them. To determine the equivalent stiffness
of the beam, a unit force (1 µN) is loaded at the end of the beam in the vibration direction.
The displacement obtained from the ending beam depends on the properties of the beam
material, geometrical parameters, and boundary conditions of the beam. The size and
the number of holes also vary the equivalent stiffness. The holes in this beam are chosen
in square and circle shape. In each branch of this crab beam, the holes are distributed in
one line along the length of each beam segment.

Fig. 6. The equivalent stiffness of the crab-shaped perforated beam

Fig. 7. Two first resonant frequencies of the crab-shaped perforated beam
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Fig. 6 and Fig. 7 describe the influence of the size hole on the mechanical response
of the crab-shaped beam with one line of square and circle holes in-plane of the beam.
Where the equivalent stiffness in the x-direction (Kx) varies over a large range (15 ÷
460 N/m according to α = 0.065 ÷ 0.875, respectively), while the equivalent stiffness in
the y-direction (Ky) varies larger (22 ÷ 1300 N/m as α above) with one fixed ending and
another one guided ending of the crab beam (Fig. 6).

Fig. 8. The first mode shape of the beam with square holes (left) and circle holes (right)

The two first resonant frequencies consisting of the x-direction vibrational mode for
the first mode and y-direction one for the second mode of this beam are shown in Fig. 7
and the configurations of the first mode in 2 types of holes are pictured in Fig. 8. The
difference between two modes is narrow with small fill factor (α < 0.2), especially in
square hole. This deviation increases and remains by increasing α toward nearly 1 (0.4 <

α < 0.9). Fig. 7 also shows the fitting of analytical calculation and simulation for the first
frequency in less than 10% error for the square hole. In the case of square holes, the value
of both mechanical parameters is smaller than when circle holes. The results show that
the mechanical response of the crab-shaped beam varies narrowly in the case of the fill
factor toward nearly 1, corresponding to the size d < 8 µm. These results show that the
mechanical response of the beams perforated with circle holes varies more smoothly than
those with square holes.

3.3. A MEMS vibratory gyroscope model with perforated crab beams

The presented MVG in this section consists of one proof mass suspended on the sub-
strate thanks to four crab-shaped beams. These beams allow the proof mass to freely
vibrate in two perpendicular directions to create two major modes called primary and
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secondary modes (or driving and sensing modes) of the MVG. Each elastic beam is con-
sidered an equivalent spring, so the presented MVG becomes a 2-degree-of-freedom me-
chanical system with four equivalent springs connected parallelly. The 3D model and
their two major modes in the case of full-fill material were introduced in [3]. In this
study, the proof mass of the MVG is remained solid while four crab beams are perforated
by square and circle holes sequence.
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determined with maximum amplitude at 80.667 kHz and 81.6 kHz for the square hole and the circle 

hole respectively (error 0.4% and 0.6% comparing with the results in Table 2). 

(d) Sensing mode with circle hole

Fig. 9. Two major modes of the presented MVG

In the case of full-fill material, the values of two major frequencies are 81.525 kHz
and 132.46 kHz for driving mode and sensing mode, respectively [3]. In this analysis, the
driving and sensing frequency of the MVG in the case of the elastic beam perforated with
the square hole and the circle hole are parameters that need to be determined. The size



12 Vu Van The

of the hole is chosen as d = 6 µm, then fill factor α = 0.625 respectively. The FEM analysis
gives the obtained two major frequencies to be 80.279 kHz, 128.39 kHz (Figs. 9(a), (b))
and 81.108 kHz, 130.57 kHz (Figs. 9(c), (d)), correspondingly.

In fact, the frequencies of two desired modes (drive and sense modes) should be
matched to amplify the output signal on sense mode. The frequency deviation between
the two major modes needs to be considered with a suitable value to ensure the band-
width of the MVG. In this study, the optimization for the parameter geometric is not
considered. So the bandwidth in all cases is so large and does not yet suit the desired
value deviation frequency.

Table 2. The two major frequencies of the presented MVG

Presented MVG Full fill [3] Square hole Error Circle hole Error

Driving frequency (kHz) 81.525 80.279 1% 81.108 1%
Sensing frequency (kHz) 132.46 128.39 3% 130.57 1%

Bandwidth (kHz) 50.935 48.111 6% 49.462 3%

The results in Table 2 show that the value of the two major frequencies decreases with
the presence of holes. The square holes cause a faster decrease than the circle holes. Be-
sides, the frequency deviation also decreases thanks to the holes, and thence bandwidth
can be optimized by not only changing the geometrical parameters of beams (length,
width, and thickness) but also the size of the hole cut out of the beams. The error of the
frequency compared with the full-fill model is less than 3%.
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Fig. 10. The Amplitude-Frequency response of MVG with perforated crab beam 

4. CONCLUSION 

The paper introduced the dynamic response of the microbeam with the crab shape and cut-out 

hole in the body of the beam. The obtained results show that the hole size significantly reduces the 

equivalent stiffness of the perforated beams, then reduces the resonant frequency of the whole Crab 

shape beam and the whole MVG system model including four micro crab perforated beams. The 

driving frequency of the crab MVG model is determined in the square and circle holes as 80.667 and 

81.6 kHz with errors of 0.4% and 0.6% respectively. The deviation of frequency in the driving mode is 

less than 3% compared with the full-fill model. This research shows that the presence of the perforated 

holes causes a decrease in the equivalent stiffness of beams and thence decreases the operating 

frequencies of the system. Besides, the effect of cut-out holes on the damping force needs to be 

analyzed to improve the dynamic response of the whole crab MVG model in subsequent studies.  
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The driving frequency of the proposed MVG is reconfirmed by the harmonic re-
sponse analysis in the ANSYS project. This analysis allows to determine the resonant
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frequency of the system in case of the exciting force loaded in the structure for vibration
in the desired direction. These frequencies are determined with maximum amplitude at
80.667 kHz and 81.6 kHz for the square hole and the circle hole respectively (error 0.4%
and 0.6% comparing with the results in Table 2).

4. CONCLUSION

The paper introduced the dynamic response of the microbeam with the crab shape
and cut-out hole in the body of the beam. The obtained results show that the hole size
significantly reduces the equivalent stiffness of the perforated beams, then reduces the
resonant frequency of the whole Crab shape beam and the whole MVG system model
including four micro crab perforated beams. The driving frequency of the crab MVG
model is determined in the square and circle holes as 80.667 kHz and 81.6 kHz with
errors of 0.4% and 0.6% respectively. The deviation of frequency in the driving mode is
less than 3% compared with the full-fill model. This research shows that the presence
of the perforated holes causes a decrease in the equivalent stiffness of beams and thence
decreases the operating frequencies of the system. Besides, the effect of cut-out holes on
the damping force needs to be analyzed to improve the dynamic response of the whole
crab MVG model in subsequent studies.
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