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Abstract. In the paper a new method for mechanical systems with non-ideal constraints
is presented. It is proved that a mechanical system subjected to physical non-ideal con-
straints cannot be determined purely by theoretical analysis because the reaction forces
depend on the physical parameters of interactive environment, which are identified only
by measurement. The principle of compatibility is shown to be an effective tool in com-
bination with experience to investigate such a problem. For illustration the dynamics of
a digging machine is investigated.
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1. INTRODUCTION

The motion of mechanical systems under both physical and program constraints
is paid more and more attention in technology and in automatic control industry. In the
physical constraints, both the ideal and non-ideal constraints are attracted a lot of interests
but only ideal constraints are considered. The non-ideal constraints are rarely discussed
due to the fact that it is impossible to define the work (of virtual displacements) of the
reaction forces corresponding to the non-ideal constraints. Therefore, the corresponding
generalized forces cannot be determined. Up to now only the Coulomb friction constraints
are considered as a particular case of non-ideal constraints which were mentioned in papers
[4, 9-13].

However, non-ideal physical constraints are often met in practical applications, for
example in machine tools (milling machine, lathe, planer, honing machine, etc.) or front
loaders, and scoop loaders. Working surfaces created by machine tools or tunnels and
ditches dug by loaders are not often considered as ideal constraints but non-ideal con-
straints. The active forces (cutting or digging forces), which are not tangent to the con-
straint hyperplanes need to meet the problem’s requirements. Thus, the constraints in
those cases must be considered as non-ideal. For general non-ideal constraints such as the
ones in metal fabricating machines, excavating machines, the active forces can only be
measured by experiments and given in engineering notebooks [12].
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This paper presents a new method to analyse mechanical systems with non-ideal
physical constraints and apply to the dynamics analysis of digging machines. Furthermore,
this method can be extended for the cases of friction and program constraints.

2. EQUATIONS OF MOTION OF A MECHANICAL

SYSTEM WITH CONSTRAINTS

Let consider an unconstrained mechanical system of N particles Mk of mass mk. Let
denote the position vector of the particle Mk and applied force acting to the particle Mk

by ~rk(xk, yk, zk) and ~Fk( ~Fkx, ~Fky, ~Fkz), (k = 1, N), respectively. Suppose the constraints
imposed on the considered system are of the form

fα(xk, yk, zk) = 0; α = 1, r. (1)

Let denote the reaction forces acting to the particle Mk by ~Rk(Xk, Yk, Zk). In the
case of ideal constraints, the reaction forces are directed to the normal direction of the
hypersurface (1) at the contact point. In the contrary case, i.e. the case of non-ideal con-
straints, the reaction forces include the tangent components (the tangent and bi-tangent
components), which are called the friction forces. The physical substance of these forces
is very complicate, only one fact is known: they give negative works over virtual dis-
placements. Let now consider the motion of the considered system in generalized coordi-
nates. Suppose that the position of the system is defined by the redundant coordinates
qj(j = 1, m). The constraint Eqs. (1) are of the form now

fα(q1, q2, . . . , qm) = 0; α = 1, r. (2)

Let the kinetic energy of the system be of the form

T =
1

2

m
∑

i,j=1

aij q̇iq̇j .

In the matrix form, the kinetic energy is written as follows

T =
1

2
q̇T Aq̇T . (3)

Where A = [aij ] is an (m × m) nonsingular symmetrical matrix, but

q̇ =
[

q̇1 q̇2 . . . q̇m

]T
.

The symbol T denotes the transpose of matrix. Analogously, the following matrix
notation is introduced

q̈ =
[

q̈1 q̈2 . . . q̈m

]T
,

Q =
[

Q1 Q2 . . . Qm

]T
.

The constraint Eqs. (2) in the matrix form can be written as follows

f q̈ + f0= 0. (4)
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Where f and f0 are the r × m and (r × 1) matrices respectively:

f = [fαi] ; fαi =
∂fα

∂qi

; f0 =





m
∑

i,j=1

∂2fα

∂qi∂qj



 ; α = 1, r; i = 1, m. (5)

From now on a vector is treated as a matrix. By the Principle of Compatibility the
motion equations of the constrained system are written in the form [3-7]

Aq̈ = Q + Q
0

−Q∗+R, (6)

where

Qi = −
∂π

∂qi
+ Q̄i; i = 1, m (7)

π - the potential energy of the system
Q̄i - the generalized forces of non-potential forces, but

Q0 =
[

Q0
1 Q0

2 . . . Q0
m

]

; Q0
i =

1

2
q̇T∂iAq̇; Q∗ =

m
∑

i=1
∂iAq̇∗

i ;

∂iA =





















∂a11

∂qi

∂a12

∂qi
. . .

∂a1m

∂qi

∂a12

∂qi

∂a22

∂qi
. . .

∂a2m

∂qi
...

...
. . .

...
∂a1m

∂qi

∂a2m

∂qi
. . .

∂amm

∂qi





















; q̇∗

i =











q̇1q̇i

q̇2q̇i

...
q̇mq̇i











.

(8)

R - the generalized reaction forces corresponding to the i - generalized coordinate.
By the Principle of Compatibility [3-7] the reaction R has to satisfy the equation

FR + F0 = 0. (9)

Where
F = fA−1; F0 = F(Q + Q0 −Q∗) + f0. (10)

By such a way we obtain r algebraic equations containing m unknowns Ri(r < m).
In order to determine the reactions Ri(r < m) it is necessary to fill up k = (m − r)
equations containing only m unknowns, Ri(r < m) which together with r Eqs. (9) yield a
complete set of equations of unknowns Ri(i = 1, m), where A−1 is the inverse matrix of
the inertia matrix A.

3. THE IDEALITY AND NON-IDEALITY OF CONSTRAINTS

3.1. The ideality of constraints

As known, the motion of the system with the constraints (4) is described by the
Eqs. (6), where the reactions Ri(r < m) are determined by the Eqs. (9). However, the
obtain system of equations is not complete yet. The problem will be solved in the case of
the class of constraints, so-called ideal constraints, which can be defined by the axiom of
ideality by Przeborski-Appell-Chetaev [4, 5].
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By this axiom we have [3-5]

DR = 0. (11)

Where the (k × m) matrix D consists of the elements, which are the coefficients
in term of the expressions of generalized accelerations represented through independent
generalized accelerations. In the other words, calculating the generalized accelerations
q̈j(j = 1, m) from the Eqs. (2) we obtain

q̈j =

k=m−r
∑

σ=1

dσj q̈σ + . . . ; (j = 1, m),

where the non-written terms are the terms which do not include the generalized accelera-
tions. The (k × m) matrix D

D = [dσi] ; (i = 1, m; σ = 1, k = m − r), (12)

can be determined by either analytical or by numerical algorithm [2].
We obtain a closed set of m algebraic equations containing m unknowns . By solving

these equations we get the reaction forces Ri(i = 1, n), which are the functions of the
generalized coordinates and velocities as

R = R(q, q̇). (13)

By integrating the Eqs. (6), where the reactions R determined from (9) and (11),
we determine the motion of the considered system. Note that in this process the reaction
force R = R(q, q̇) is calculated independently of integration of the differential Eqs. (6).

In general, the motion of the system with ideal constraints is defined by means of
2m Eqs. (6), (9) and (11) and by means of m algebraic equations (9) with (11) and it
is possible to compute separately the reactions Ri(qi, q̇i) with respect to the equations of
motion (6). However, it is possible to define the motion of the system only by r Eqs. (2)
and (m− r) differential equations

DAq̈ = D(Q + Q
0−Q∗). (14)

In the other, the motion of the system with ideality constraints is determined by a
set m differential algebraic Eqs. (2) and (14). By such a way the size of the problem is
decreased by half.

However, in the case of non-ideal constraints, the condition (11) is not satisfied.
Thus, when the constraints are non-ideal, we have

DR 6= 0. (15)

3.2. The motion of the system with non-ideal constraints

Let consider the system with constraints, which are not to satisfy the condition (11).
Such a constraint is called the non-ideal one and the system restricted by such constraints
is called the system with non-ideal constraints.

By the principle of compatibility [3-7] the equations of such a system are written in
the form (6), in which the reactions of the constraints satisfy the Eqs. (9). In this case, the
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condition (11) is not occurred. Instead of that we have the condition (15). In the particular
case of physical constraints, the reactions of constraints spend work, we have

DR < 0. (16)

This character will help to the investigation of motion of the systems with the non-
ideal constraints. By such a way, we obtain (m+r) Eqs. (4) and (6) including 2m unknowns
(qi, Ri); i = 1, m (2m > m+r). In other words, the motion of the considered system is not
defined yet, which depends on the substance of the constraints restricted to the considered
system.

In the case of the physical constraints the condition (16) is arisen by acting one
another between the system and constraints. It is important that these actions depend
on the physic-mechanical characteristics of the environment. In other words, the reactions
Ri(i = 1, n) are defined by experiments only. In connection with a non-ideal system, let
write the Eqs. (4) and (6) in the form respectively

Aq̈ = −
∂π

∂q
+ Q̄ + Q

0

−Q∗+R, (17)

FQ̄ + F(−
∂π

∂q
+ Q0−Q∗ + R) + f0 = 0, (18)

where the reaction R can be determined by measuring machinery, based on the results of
measured forces of environment acting on the system.

For this purpose let us denote the components of the force acting from the constraints
to the considered system at the contact point Mk(xk, yk, zk) by (Xk, Yk, Zk). Let introduce
the following notations

R
(xyz)
k =

[

Xk Yk Zk

]T
; ∂irk =

[

∂xk

∂qi

∂yk

∂qi

∂zk

∂qi

]

(19)

The reaction R in the Eq. (17) is written as follows

R =
[

R1 R2 . . . Rm

]T
; Ri =

N
∑

k=1

∂irkR
(xyz)
k ; i = 1, m (20)

From the measuring result (Xk, Yk, Zk), the reaction R can be calculated by means
of the formulas (20). Next, by the formula (18) it is possible to compute the drive force
Q̄ for the system realizing the non-ideal constraints (2). After calculating the driven force
Q̄, the motion of the system with non-ideal constraints (2) is defined by integrating the
differential Eq. (17).

The algorithm for solving the system of equation of motion is following [2]:
– Determining the element Xk,Yk, Zk by measurement
– Calculating Ri, i = 1, . . . , m by (20)
– Determining Q̄

– Determining drive forces
– Integration of equations of motion (17)
– Repeating for next time step.
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In the case the constraint is the surface or the curve, the reaction forces can be
expressed by components in the axes of a moving trihedral composed of a tangent, a
normal, and a bi-normal to the trajectory. Its origin moves along the trajectory. The
components of the reaction in the coordinate system (Mxyz) can be expressed in term of
its component in the (Mtnb) coordinate axes by means of the transmission matrix V [8],
where Mt is oriented by the tangent direction, Mn - by the normal direction, but Mb - by
the bi-normal direction. By such a way, we have

R(Mxyz) = VR(Mtnb). (21)

The Eq. (18) is written as follows

FQ̄ + F(−
∂π

∂q
+ Q0−Q∗ + VR(Mtnb)) + f0 = 0. (22)

By this equation we can compute the driven force Q̄ corresponding to R(Mtn). It is
noticed that from (21) we have

R(Mtnb) = V−1R(Oxyz), (23)

where V−1 is the inverse matrix of the transmission matrix V.

4. EXAMPLE

Determine the drive moments M1, M2 of the servomotor acting on the links of the
digging machine as Fig. 1. The length of the link OA and AB is equal l1 and l2 respectively
and joined by the revolute joints. For simplicity let take l1 = l; l2 = βl The mass of the
links are neglected, the ditching scoop of the mass m is treated as a particle with the body
coordinate (a, 0) and the global coordinate (Bxy). The scoop is jointed to the end point
B of the link AB.

0

A

B

1
j

2
j

a

a

X

Y

x

y

1M
2

M

Fig. 1. Close-loop two link model of the digging machine

Suppose that the work trajectory of the scoop is of the form

f ≡ x − y − a = 0. (24)
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Let choose the generalized coordinates by ϕ1, ϕ2, where ϕ1 is the angle of the link
OA with respect to the fixed horizontal axis Oy, but the ϕ2 - the angles between links BA
and OA. The transmission matrices are of the form

t1 =





c1 −s1 0
s1 c1 0
0 0 1



 ; t11 =





−s1 −c1 0
c1 −s1 0
0 0 0



 ;

t2 =





c2 −s2 l

s2 c2 0
0 0 1



 ; t21 =





−s2 −c2 0
c2 −s2 0
0 0 0



 ; r =





−βl

0
1



 ;

t12 =





−c1 s1 0
−s1 −c1 0
0 0 0



 ; t22 =





−c2 s2 0
−s2 −c2 0
0 0 0



 .

Where si ≡ sin ϕi; ci ≡ cos ϕi; ti1 is the matrix, its elements of which are the first
derivatives of the elements of the matrix ti with respect to the variable ϕi, but ti2 - the
second derivatives of the elements of the matrix [8]. The elements of the (2× 2) matrix of
inertia of the manipulator A are as follows [8]

a11 = mrT t2
T t11

T t11t2r = ml2(1 + 2β cos ϕ2 + β2);

a22 = mrT tT21t
T
1 t1t21r = mβl2;

a12 = a21 = mrT tT21t
T
1 t11t2r = mβl2(β + cosϕ2).

(25)

The inverse matrix of the inertia matrix will be

A−1 =









1

ml2 sin2 ϕ2
−

(β + cosϕ2)

mβl2 sin2 ϕ2

−
(β + cosϕ2)

mβl2 sin2 ϕ2

(1 + 2βcosϕ2 + β2)

mβl2 sin2 ϕ2









. (26)

The potential energy is of the form

π = −mgl[ sin ϕ1 − β sin(ϕ1 + ϕ2)]

−
∂π

∂ϕ1
= mgl[cosϕ1 − β cos(ϕ1 + ϕ2)];

−
∂π

∂ϕ2
= −mglβ cos(ϕ1 + ϕ2).

Therefore the potential generalized forces are calculated as follows

Q(π) =

[

−
∂π

∂ϕ1
−

∂π

∂ϕ2

]T

=
[

mgl[cosϕ1 − β cos ϕ1 + ϕ2)] −mgβl cos(ϕ1 + ϕ2)
]T

.

(27)
Suppose that the force from environment acting to the scoop of the manipulator in

the axes of global coordinate is denoted by R(x, y) = [−X −Y]T , which are determined
by the measure. The power of the force R will be

W = vT
BR = rT tT

11t
T
2 Rϕ̇1 + rT tT

1 tT
21Rϕ̇2.
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Therefore the generalized forces R1, R2 corresponding to the generalized coordinates
ϕ1, ϕ2 are of the form [8]

R1 = rT tT
11t

T
2 R = l [sinϕ1−β sin (ϕ1 + ϕ2)]+X + l [cosϕ1 − β cos (ϕ1 + ϕ2)]Y ;

R2 = rT tT
1 tT

21R = lβ [sin (ϕ1 + ϕ2)X − cos (ϕ1 + ϕ2)Y ] .
(28)

Where the quantities X, Y are obtained from the measure, but Q0 and Q∗ will be
determined as follows

By the matrix of inertia, we calculate

∂ϕ1
A = 0; ∂ϕ2

A =

[

−2mβl2 sinϕ2 −mβl2 sin ϕ2

−mβl2 sinϕ2 0

]

;

Q0
1 =

1

2
q̇T

1 ∂ϕ1
Aq̇1 = 0;

Q0
2 =

1

2
q̇T

2 ∂ϕ2
Aq̇ = −mβl2 sinϕ2ϕ̇

2
1 − mβl2 sin ϕ2ϕ̇1ϕ̇2;

Q0 =

[

Q0
1

Q0
2

]

=

[

0
−mβl2 sinϕ2(ϕ̇1 + ϕ̇2)ϕ̇1

]

. (29)

By means of ∂ϕ1
A = 0, in accordance to (8), we have

Q∗

1 =

[

0
0

]

,

and

Q∗

2 =

[

−2mβl2 sinϕ2 −mβl2 sinϕ2

−mβl2 sin ϕ2 0

][

ϕ̇1ϕ̇2

ϕ̇2
2

]

=

[

−mβl2 sinϕ2 (2ϕ̇1 + ϕ̇2) ϕ̇2

−mβl2 sinϕ2ϕ̇1ϕ̇2

]

.

Hence, then

Q∗= Q∗

1+Q∗

2 =

[

−mβl2 sin ϕ2(2ϕ̇1 + ϕ̇2)ϕ̇2

−mβl2 sinϕ2ϕ̇1ϕ̇2

]

. (30)

The acceleration of the scoop is calculated by the formula [8]

0aB = t11t2rϕ̈1 + t1t21rϕ̈2 + t12t2rϕ̇
2
1 + t1t22rϕ̇

2
2 + 2t11t21rϕ̇1ϕ̇2

[

0ẍB

0ÿB

]

=









−l [sin ϕ1 + βl sin (ϕ1 + ϕ2)] ϕ̈1 − βl sin (ϕ1 + ϕ2) ϕ̈2

−l [cos ϕ1 + β cos (ϕ1 + ϕ2)] ϕ̇
2

1
+ βl sin (ϕ1 + ϕ2) ϕ̇2

2
− 2βl cos (ϕ1 + ϕ2) ϕ̇1ϕ̇2

l [cosϕ1 + β cos (ϕ1 + ϕ2)] ϕ̈1 + βl cos (ϕ1 + ϕ2) ϕ̈2

−l [sin ϕ1 + β sin (ϕ1 + ϕ2)] ϕ̇
2

1
− βl cos (ϕ1 + ϕ2) ϕ̇2

2
− 2βl sin (ϕ1 + ϕ2) ϕ̇1ϕ̇2









where left superscript “0” denotes the acceleration in the global frame.
Let write the constraint equation in the form

ẍ − ÿ = 0.
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We have

f =
[

f1 f2

]

;

f1 = l {[ sinϕ1 − cosϕ1] + β[sin(ϕ1 + ϕ2)−cos(ϕ1 + ϕ2)]} ;

f2 = βl[cos(ϕ1 + ϕ2) + sin(ϕ1 + ϕ2)]

f0 = {l(sinϕ1 − cos ϕ1) + β[ sin(ϕ1 + ϕ2) − cos(ϕ1 + ϕ2)]} ϕ̇2
1

+ βl[ sin(ϕ1 + ϕ2) − cos(ϕ1 + ϕ2)]ϕ̇
2
2

+ 2βl[ sin(ϕ1 + ϕ2)− cos(ϕ1 + ϕ2)]ϕ̇1ϕ̇2.

(31)

Let denote the matrix of the drive moments M1, M2 acting on the links of the
manipulator by M

M =
[

M1 M2

]T
. (32)

In order to determine the driven moments M1, M2 we write the Eq. (18)

fA−1M + fA−1(Q(π) + Q0+R−Q∗)+f0= 0. (33)

We obtain one equation of two unknownsM1, M2. The quantities Q(π), Q0, Q∗ are
computed by (27), (29), (30), but R is provided from the measurement result by means
of X, Y , which are the reaction of the constraint (the environment) to the scoop of the
manipulator. In result, we have one equation included two unknowns. Therefore we can
choose arbitrarily one of two quantities M1, M2, for example, M1 ≡ 0 (corresponding to
the link OA to be kept in fixed) or use the condition for optimizing some property of the
scoop.

Next, the motion of the manipulator is defined by means of integrating the differ-
ential Eq. (17), where the matrix of inertia is computed by (26), the remaining quantities
are in accordance with (27), (29), (30), (32).

It is necessary to notice that the problem will be solved with the help of the numerical
method. In the process of numerical integral the constraints will take the part of the
criterion of verification.

In some cases, it is necessary to know the normal and tangent reaction forces. For
this aim, let introduce the natural moving coordinate axes Btn as shown as Fig. 2. The
reaction force R consists of a tangent and a normal component. By such a way, the reaction
force R can be expressed in two forms

R(Oxy) =
[

X Y
]T

; R(Btn) =
[

Ffric N
]T

.

Where (X, Y ) are the components of the reaction force in horizontal and vertical
directions, but (N, Ffric) - the components in normal and tangent directions.

In the other words, it is possible to establish the relation between these quantities
by means of a transmission matrix. As known [8] the transmission matrix is of the form

T =





cos θ − sin θ 0
sin θ cos θ 0

0 0 1



 .

Where θ is the position angle between two coordinate axes
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0
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N

fricF

Y

X

t

q

a

B

n

x

a

a

Fig. 2. Components of reaction in the natural moving frame

It is easy to obtain

R(xy) ≡

[

X

Y

]

=

[

cos θ − sin θ

sin θ cos θ

][

−Ffric

N

]

→ R(xy) = VR(t,n);

V =

[

cos θ − sin θ

sin θ cos θ

]

=

[

sinα − cos α

cos α sin α

]

.

(34)

The Eq. (33) is written as follows

fA−1M + fA−1(Q(π) + Q0+VR(Btnb)−Q∗)+f0= 0. (35)

This equation allows to calculate the reaction forces in normal and tangent direc-
tions. Based on these components it is possible to find out the relation between the friction
force and the normal force.

Note :
The components of the reaction force in the (Btn) and rectangular (Oxy) coordinates

R(Btn) = V−1R(Oxy); V−1 =

[

sinα cosα

− cosα sinα

]

. (36)

Where V−1 denotes the inverse matrix of the matrix V.

5. CONCLUSION

This paper presents a new general method to analyze mechanical systems with
non-ideal constraints. The program constraints are applied to the mechanical system by
using the Principle of Compatibility. The paper pointed out that if a mechanical system is
subject to non-ideal physical constraints, its motion depends on the interaction between
the constraints and the system through mechanics-physics parameters. In other words,
if a mechanical system is subject to non-ideal physical constraints, its motion cannot
be determined only by theoretical analysis but also experimental measurements of the
interaction between the system and the environment. It is necessary to emphasize that
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with the help of the method of transmission matrix and measured reaction forces the
generalized forces corresponding to non-ideal constraints are defined. Accordingly, the
paper contributed a method to analyze the motion of mechanical systems in the interactive
relation between the system and the environment. Although only the physical constraints
were analyzed in the paper, this method can be extended to problems with other types of
constraints such as program constraints. Of course, the presented method can be applied
for the case of the non-ideal constraints of Coulomb friction type [5,9-14] and the program
constraints [4-6].
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