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Abstract. The frequency response function (FRF) is a fruitful attribute that includes al-
most all dynamical characteristics of a structure such as natural frequencies and modes,
damping coefficients, or resonance and antiresonance conceptions. However, the complex
feature of FRF has not been thoroughly employed for structural damage detection. In the
present study, a novel indicator extracted from FRFs of beam structures is developed for
crack identification. The damage indicator originated from the well-known mode assur-
ance criterion (MAC) and therefore it is termed spectral assurance criterion (SAC). First, a
coherence coefficient calculated from FRFs of intact and damaged beams and called herein
spectral damage index (SDI) is analyzed for examining sensitivity of FRFs to crack. Then,
SAC calculated for different FRFs of the same damaged structure is employed for crack
detection by the so-called contour method. Results obtained in numerical examples of the
crack detection problem show that SAC is really a novel and efficient criterion for crack
identification in beams from measured FRFs.

Keywords: crack identification, frequency response function frequency domain assurance
criterion, contour method.

1. INTRODUCTION

The frequency response functions have been early employed for structural dam-
age detection problems [1-9], however, most of the studies were based on the damage-
induced changes in the FRF’s shape or its constituents from points to points of a dis-
cretized structure. The FRFs as functions in the frequency domain were utilized to solve
the damage detection problem by the authors of Ref [10]. Indeed, FRFs in the frequency


https://doi.org/10.15625/0866-7136/19040
https://orcid.org/0000-0001-5195-2704
mailto: ntkhiem@imech.vast.vn

274 Nguyen Tien Khiem, Tran Thanh Hai, Le Khanh Toan, Nguyen Thi Lan, Ho Quang Quyet

domain have been used earlier for model correlation and updating [11] through the well-
known assurance criterion concept [12-14] that was developed for structural damage
detection in [15-18].

In the present study, a novel indicator extracted from frequency domain FRFs of
beam structures is developed for crack identification. The damage indicator originated
from the well-known mode assurance criterion (MAC) and therefore it is called spectral
assurance criterion (SAC). First, a coherence coefficient calculated from FRFs of intact and
damaged beams and called herein spectral damage index (SDI) is analyzed for examining
sensitivity of FRFs to crack. Then, SAC calculated for different FRFs of the same dam-
aged structure is employed for crack detection by the so-called contour method. Results
obtained in numerical examples of the crack detection problem show that SAC is really a
novel and efficient criterion for crack identification in beams from measured FRFs.

2. FREQUENCY RESPONSE FUNCTION MULTIPLE CRACKED BEAMS

Now, let’s consider a Euler-Bernoulli (EB) beam of material and geometry constants:
E,G,v,p are the elastic and shear modulus, Poisson coefficient and mass density; ¢/, A =
bxh,I=Dbh’/12 - the length, cross-section area and moment of inertia. Moreover, it is
assumed that the beam is cracked at positions 0 < e < e; < ... < e,—1 < e, < {and
all the cracks are transverse and open with depths respectively (a3, ...,a,) as shown in

Fig. 1 [19].
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Fig. 1. Model of multiple cracked beam

2.1. Vibration shape of multiple cracked beam

As well known, vibration shape of an EB-beam is defined as solution of equation

Lo _pipx) =0, A= pAw/EL )
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that is solved together with boundary conditions. Moreover, in the recently published
review [3] general solution for vibration shape of multiple cracked EB beam has been

obtained in the form
4)0 (x,w) =C1Dq (/\x) + Co Dy (Ax) + C303 ()\x) + Cy D53 (/\x) ,
where C;,Cy, C3, C4 are constants, A = (pAaJZ/EI)l/4 and @y (Ax),k =1,2,3,4 are

@ (Ax) = Lo (Ax) + iyﬂK (x—ej), ®2(Ax) =L (Ax) + iysz (x—ej),

= =
(OF) (/\x) = L3 ()UC) + Zy]3K (x — e]) , @Oy (/\x) = Loy ()UC) + Zy]4K (x — e]) ,
=1 =1

0 forx <0 . .
K(x) = { 5 (x) forx >0 S(x) = (1/2A) (sinh Ax +sin Ax),

Hit = LOl )‘e] + E ,”kls - ek) ’
Hj2 = 7 Loz M] + Z szS - Bk) ,
Hjz = i Los M] + 2 HkaS' - ek) ,

I k=1 |

- i1 ) :
Hija = j L04 (/\e]) + Z Plk45 - €k)

L k=1 ]

(2)

©)

4)

The functions Lo; (Ax), Loz (Ax), Loz (Ax), Los (Ax) are four independent solutions
of free vibration problem for uncracked beam and (1 x 4) - matrix of so-called damage

indexes
ul={ppj=1...,mk=1,234},
given in Eq. (5) is calculated from crack parameters (ej,v;,j = 1,...,n) by
{n}=1[G] " [B],
where G= [g;j,1,j =1,2,3,...,n] is n X n - matrix with elements
gij = {lifi = j;0fori < j; —v;S" (e; —¢j) fori > j},
and matrix [B] = [by, by, b3, bs] of 4 vectors of dimension n:
" " T " " T
{bi}={mLo (Aer) ..., yulos (Aew)} , {b2}={mLez (Aer) ..., yuLez (Aew)}

” T ” ” T
{bs3}= {'YlLoa (Aer), .., vuLos ()‘en)} ’ {b4}:{’YlL04 (Aer), ..., vuLog (Aen)} ’

vj =61 (L—v?) (h/L) fy (aj/h),

)
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fo(z) =22 <0.6272 — 1.04533z + 4.59482% — 9.97362° + 20.2948z* — 33.03512°
+47.1063z° — 40.75562” + 19.62°) .

Substituting vibration modes (2) into boundary conditions for simply supported beam
¢ (0,w0)=0, ¢"(0,w)=0, ¢ w)=0, ¢" ({,w)=0, )

leads to the equations allowing one to find natural frequencies and mode shapes of mul-
tiple cracked EB-beams. Namely, it is easily to verify that vibration shape (2) satisfying
boundary conditions (9) at the left end of beam can be represented as

$o (x,w) = AL; (Ax) + BLy (Ax), (10)
with
n n
Ly (Ax) =sinhAx + ) punK (x —ej), Ly(Ax) =sinAx+ ) ppK(x—¢j).  (11)
j=1 =1
Then, remaining boundary conditions in (11) yield the equations

AL1 (M) 4+ BLy (Af) =0, ALj (ML) +BLy (Al) =0, (12)
that result in the so-called frequency equation for multiple cracked beams in the form
Ly (ML) Ly (M) — Ly (A€) Ly (AL) = 0. (13)
In case of beam with single crack, Eq. (13) gets the form:
fss (A) +118ss (A e1) =0, (14)

where
fss (A) =2Asinh Alsin A/,

Qss (A, e) = sinh A (£ — e1) sinh Aeg sin Al — sinh Alsin A (£ — eq) sin Ae;.
2.2. Frequency response function

We consider now forced vibration in multiple cracked beams under concentrated at
x. load described by the equations [20]

a4
El—
oxt

0 ow (x,t %w (x,t i
<1+ﬂzat>w(x,t)+pAm ;t )4 pa aﬁz )~ P O(x—xp). (15)

Seeking solution of Eq. (15) in the form
w (x,1) = ¢ (x) e,

one gets following equation for vibration shape ¢(x)

4
a ;I;E}x) — A (x) = D6 (x —xp), (16)
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where

Ph=——1———.
EI(1+iwuy) ~ 0 EI(1+iwus)
First, let’s consider complex frequency parameter

A4 _ pA (wz — zwyl) A P()

o pA (W —iwp) _ pAw? (i) _ pAQ?

EI(1+ iwps) EI EI ' 17

with
&* = w* (a+iB),

o= 1+pmp)/ (1+@?w3), B=(m+wpu)/w(l+wy3).

It was well-known that general solution of Eq. (15) is

qb(x):(po(x)+l50/0xh(x—s)5(s—xp)ds:4>0(x)+150h(x—x,,), (19)

(18)

where functions
h(x) = {0: forx < xp; (sinhﬁx — sin}\x) /2A3: for x > Xp}, (20)

and ¢o (x) given in Eq. (10). Since both the functions ¢ (x) and & (x) satisfy the first
two conditions in (9), the solution (19) also satisfies the boundary conditions. Therefore,
putting (19) into remaining conditions (9) at the beam’s right end yields

ALy (M) + BLy (Al) = —Poh (£ — x0), AL; (Al) + BLy (M) = —Boh (£ — xp),
that give the constants A, B to be calculated as

A= (By/A)A, B=(Py/A)B,

with
A= 1" (=x) Lo (A) + k(€= x0) Ly (A1) |,
R "o R (21)
B= L1 (A)h(=x,) =L A I (£ =x)],
A =Ly (A0) Ly (Al) — Ly (ML) Ly (AD), (22)

Finally, solution (19) gets the form
¢ (x,xp,w) = (Bo/A) [h(x —xp) A+ ALy (Ax) + BL, (}LX)] , (23)
and therefore, the so-called frequency response function of the beam measured at x; is
AL, (;\xq) + BL, (/A\xq)

Ly (Al) Ly (Al) — L7 (A€) Ly (AL)
(24)

FRF (xp,xq,w) = ¢ (xp,xg,w) /Py =h (xg — xp) +

Denote the module of the frequency response functionby Hp, (w) = |FRF (xp, x4, w) |
that is examined below as a frequency domain signal in dependence upon measuring re-
sponse location x; and excitation position x,. In case if both measuring response and
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excitation locations are duplicated x, = x; = x;,, the location is called driving point and
the function Hy, (w) is reduced to

— . (25)

3. SPECTRAL ASSURANCE CRITERION FOR CRACKED BEAM

In this section the so-called frequency domain assurance criterion is developed for
detecting cracks in beam structures by measurement of frequency response functions.
First, let’s consider a correlation coefficient defined for two vectors S = {S ij=1...,N }
and Q = {Q]',j = 1,...,N} as

1/2

N 2 N N
D(S,Q) = (ZSka> /(ZS%xZQi)
k=1 k=1 k=1

Obviously, the coefficient ranges from 0 to 1 depending on the correlation between
the vectors and represents the degree of their consistency. Particularly, the vectors are
acknowledged as entirely consistent if the coefficient equals 1. Originally, the coefficient
was utilized for checking similarity of two mode shapes for a structure as the so-called
Modal Assurance Criterion (MAC) [13] and then it had got to be employed for mode
shape-based damage detection as Mode Shape Damage Index (MSDI) [18] in case the
vectors are mode shapes of damaged and undamaged structures. Then, Messina and
Williams developed MAC for structural damage detection by measurements of natural
frequencies and introduced the so-called Multiple Location Assurance Criterion (MDAC)
[15,16]. It is worth noting here the case when the correlation coefficient is examined for
frequency response functions, and it is called Frequency Domain Assurance Criterion
(FDAC). FDAC was used first for model correlation and updating [11,12] and then for
damage detection [17].

If the compared signals are frequency response functions of cracked and intact beams,
the coherence coefficient describes the change of the functions due to crack. Therefore, the
coefficient calculated for a frequency response function at cracked Hy,, (w) = Hp, (w, €, a)
and intact ng (w) = Hp, (w) respectively conditions, as

1/2

N 2 N N
SDI (¢,a, p, q) — <I<Z:1 HY, (w;) HS, (w]»)) / (2 Hyg (w;) x ) Hyg (w;)) , (26)

k=1 k=1

is termed by spectral damage index (SDI) of the given frequency response function. This
coefficient characterizes the sensitivity of frequency response function to a crack, and it
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will be employed below for examining the crack-induced change in a frequency response
function.

However, the above-introduced SDI is still difficult to employ for crack detection
from a measured frequency response of a structure because of the following reasons.
First, it is seldom to have frequency responses of both intact and damaged structures
simultaneously measured. Second, every measured frequency response gives only one
value of SDI that is insufficient for detecting even a single crack represented by two pa-
rameters, its location and depth. Therefore, one should have at least two frequency re-
sponse functions of the structure under consideration that might be measured at different
locations for various loads. Thus, let’s introduce the coefficient

SAC (6,0, pya, 1) — (ZH ) H <w]>) /(in(wj)xﬁH;z/(wj)) ,

k=1 k=1

(27)
that is called Spectral Assurance Criterion (SAC) calculated from two different frequency
response functions measured for a structure in the same damage condition. The SAC
determined by quotient (27) is ranged between 0 and and 1 and it equals to 1 for the
same or fully consistent frequency response functions. The deviation of SAC from unique
represents the effect of cracks and locations where the frequency response functions have
been measured. Therefore, SAC could be efficiently used as a novel indicator for crack
identification by frequency response functions if the response measurement and applied
load locations are properly chosen.

Let’s consider the problem of detecting a single crack represented by its location and
depth (e, a), using the above-introduced SAC. Suppose that the indicator calculated from
an established model of the cracked structure as a function of the crack parameters is rep-

resented by function Ay = fi (e,a) = SAC (e, a, P, Qs p;, q;) ,k=1,2,...,mand its val-
ues calculated from measured frequency response functions are denoted by (AJ, ..., A},).
Hence, the crack location and depth would be positive roots of the equations

=fi(ea),...,\,, = fm(ea). (28)

If the functions f (e,a) ,k = 1,2,... are available only graphically and given in the
form of the surfaces zy = f (e,a),k = 1,2,...m, actual crack location and depth would
be intersections of the contours zy = AJ,...,z,;, = Aj, in the plane (e,a). This is the
desired solution to the crack detection problem resolved by using the so-called contour
method. In the case of measurement noise presence, the solution to the crack detection
problem can be found as a solution to the problem

£ = 2 — fe(e,a)]* = min. (29)

(ea)
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4. NUMERICAL VALIDATION AND ANALYSIS
Numerical illustrations are accomplished in this section for, first, analysis of crack-
induced changes in the spectral damage index that represent a new insight to sensitivity
of FRFs to crack and, second, demonstration of the spectral assurance criterion applied
for crack identification from measured frequency response functions. For shortness, we

consider herein only functions (25) that are diagonal elements of matrix function Hy; (w)
in three typical points x, = x; = x;,, where x,, = 0.25,0.5,0.75, respectively.

a/h=5%
a/h=10%

a/h=15%
—_—

a/h=20%

Spectral damage index, SDI

a/h=25%
S0

SDI, x=0.5,x0=0.5 a/h=30%
0.2 1 1 ! L 1 L I 1 1 |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized crack Iocatilon, e/l

Fig. 2. Spectral damage index of FRF in dependence on crack location and
depth in case of driving positions x;; = 0.5

4.1. Sensitivity of FRF to crack observed through spectral damage index (SDI)

SDI as functions of crack position in different relative crack depth are shown in Fig. 2
for x,, = 0.5 and Fig. 3 for x,, = 0.25,0.75. Obviously, graphs displayed in the Figures,
representing the crack-induced changes in SDI have the same form as that for the first
natural frequency but with significantly increased magnitude. Namely, deviation of SDI
from unique increasing with crack depth and it reaches maximum for crack at beam mid-
dle. Symmetric cracks have the same effect on the SDI, but FRFs defined at symmetrical
driving points (0.25 and 0.75) have different sensitivities to crack, especially, for the crack
of relative depth higher than 10%. The above remarks confirm the significant advantage
of using FRFs for crack detection compared to the natural frequencies that are much less
sensitive to cracks and do not allow to detection of symmetrical cracks in beams with
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symmetric boundary conditions. This will be substantiated below in the subsequent sub-
section.

REaaaaay

a/h=5%

o
©
T

a/h=10%
—

e o
~ ©
T T

Spectral damage index, SDI
&
T

0.5
0.4+ a/h=30%
0.3 ‘ .
SDI, x=0.25,x0=0.25 (solid) ah=30% SDI, x=0.75,x0=0.75 (dot)
0.2 I I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized crack location, e/L

Fig. 3. Spectral damage index of FRF diagonal elements in dependence on crack location and
depth in case of driving positions x;, = 0.25; 0.75

4.2. Crack detection by contours plots of SAC

In this subsection we consider three cases of crack location: (a) e/L = 0.25, (b) e/L =
0.25, (c) e/L = 0.75 with relative crack depth: a/h = 5 -10 — 20 — 30%. So, we have 12
scenarios given in Table 1. Furthermore, propose that three FRFs have been measured for
the 12 crack scenarios as

HY (w) = |FRF (0.25,025,w)|, H¥ (w) = |[FRF (0.5,0.5,w)],

HY (w) = |[FRF (0.75,0.75,w)|, k=1,2,...,12,
and corresponding values of SAC are computed as follow

s¥ = SAC[H; (w), Hy (w)], SV = SAC[H; (w), Hs (w)],
sl = SAC [H, (w), H (w)] .
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Table 1. Scenarios of cracked beam denoted by SCJK

a/h e/L =025 e/L=05 e/L=0.75
5% SC11 SC12 SC13
10% SC21 SC22 SC23
20% SC31 SC32 SC33
30% SC41 SC42 SC43

(k)

Now, for every crack scenario three contours 51’; = Sipp(ea); Sg? = Si3(ea);
Sg;) = Sy3(e,a) are plotted and depicted in 12 boxes of Figs. 4, 5, 6 corresponding to
three cases of crack locations (a), (b), (c) given above. Thus, results of crack identifica-
tion are displayed in the boxes where coordinates of exact interaction of three plotted

contours give detected actual crack location and depth.

50 i ! S0
\/ Actual crack: a/h=0.05, e/L=0.25 i ! \
i ! \
451 i i LYY
i i P
! i [
40 ! f 40h
i
i
i

w
&
T
w
&
T

w
S
T
w
S

N
=3

Detected crack

5
T
Relative crack depth, a/h (%)
N
&

Relative crack depth, a/h (%)
X
T
&

10+ 10 [
5F 51
L L L 1 L L L L L J ‘1 ‘2 : ‘4 ! : ‘7 L s
01 02 03 04 05 06 07 08 09 1 o 0z 03 04 05 06 07 08 09
Normalized crack location (e/L) Normalized crack location (e/L)
50 ¢ i
\ i
\ i
450 N i
< i
i
a0 f
| i —~
a5 /3 H ,/ §
s | | % Actualcrack: ah=02,el=025 i | s
£330 b F <
3 y Detected crack ! g
T 95 . - i °
% %
4 d
S0} 3
° 20 °
= 2
K] ]
3 155 z
x| 4
10 Py
5 5
. . . . . . . I . ) . . . . . I . . . )
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Normalized crack location (e/L) Normalized crack location (e/L)

Fig. 4. Single crack detected by the contour method using spectral assurance criterion.
Actual crack at position e/L = 0.25, in case of different crack depth 5 — 10 — 20 — 30%
(SC11 - SC41)
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i
| Actual crack: a’h=0.3, e/L=0.75
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Fig. 6. Single crack detected by the contour method using spectral assurance criterion.
Actual crack at position e/L = 0.75, in case of different crack depth 5 — 10 — 20 — 30%
(5C13 - 5C43)

Observing all the boxes in the Figures allows us to make the following remarks: (1)
All actual cracks can be exactly identified, even the small ones of depth 5%, for accurately
measured FRFs, however, cracks of depth more than 10% are more clearly and easily
detected; (2) Symmetrical cracks such as e/L = 0.25 and e¢/L = 0.75 are both uniquely
detected by measurements of FRFs, but they are more difficult to be detected than the
crack at the beam middle in case of small depth 5% and 10%.

5. CONCLUSION

Thus, a novel criterion has been developed for crack identification in beams from
measured frequency response functions. First, a coherent coefficient between frequency
response functions of intact and cracked beams called spectral damage index is deter-
mined and used for sensitivity analysis of FRFs to crack. Numerical analysis shows that
frequency response functions of beam structures, in the viewpoint of the spectral damage
index, are more significantly sensitive to cracks compared to the dynamical characteris-
tics such as natural frequencies and mode shapes. Then, the above coefficient calculated
for different FRFs of a cracked beam and called spectral assurance criterion is conducted
as a novel indicator for crack identification of the beam structure. Using the spectral
assurance criterion in combination with the contour method allows obtaining the exact
and unique solution of the crack identification problem even for beams with symmetric
boundary conditions.
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