
Vietnam Journal of Mechanics, Vol. 45, No. 3 (2023), pp. 273 – 286

DOI: https://doi.org/10.15625/0866-7136/19040

A NOVEL CRITERION FOR CRACK DETECTION IN BEAM
STRUCTURES BY FREQUENCY RESPONSE FUNCTIONS

Nguyen Tien Khiem1,∗ , Tran Thanh Hai1, Le Khanh Toan1,
Nguyen Thi Lan1, Ho Quang Quyet1

1Institute of Mechanics, Vietnam Academy of Science and Technology, Hanoi, Vietnam
∗E-mail: ntkhiem@imech.vast.vn

Received: 15 March 2023 / Published online: 30 September 2023

Abstract. The frequency response function (FRF) is a fruitful attribute that includes al-
most all dynamical characteristics of a structure such as natural frequencies and modes,
damping coefficients, or resonance and antiresonance conceptions. However, the complex
feature of FRF has not been thoroughly employed for structural damage detection. In the
present study, a novel indicator extracted from FRFs of beam structures is developed for
crack identification. The damage indicator originated from the well-known mode assur-
ance criterion (MAC) and therefore it is termed spectral assurance criterion (SAC). First, a
coherence coefficient calculated from FRFs of intact and damaged beams and called herein
spectral damage index (SDI) is analyzed for examining sensitivity of FRFs to crack. Then,
SAC calculated for different FRFs of the same damaged structure is employed for crack
detection by the so-called contour method. Results obtained in numerical examples of the
crack detection problem show that SAC is really a novel and efficient criterion for crack
identification in beams from measured FRFs.

Keywords: crack identification, frequency response function frequency domain assurance
criterion, contour method.

1. INTRODUCTION

The frequency response functions have been early employed for structural dam-
age detection problems [1–9], however, most of the studies were based on the damage-
induced changes in the FRF’s shape or its constituents from points to points of a dis-
cretized structure. The FRFs as functions in the frequency domain were utilized to solve
the damage detection problem by the authors of Ref [10]. Indeed, FRFs in the frequency
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domain have been used earlier for model correlation and updating [11] through the well-
known assurance criterion concept [12–14] that was developed for structural damage
detection in [15–18].

In the present study, a novel indicator extracted from frequency domain FRFs of
beam structures is developed for crack identification. The damage indicator originated
from the well-known mode assurance criterion (MAC) and therefore it is called spectral
assurance criterion (SAC). First, a coherence coefficient calculated from FRFs of intact and
damaged beams and called herein spectral damage index (SDI) is analyzed for examining
sensitivity of FRFs to crack. Then, SAC calculated for different FRFs of the same dam-
aged structure is employed for crack detection by the so-called contour method. Results
obtained in numerical examples of the crack detection problem show that SAC is really a
novel and efficient criterion for crack identification in beams from measured FRFs.

2. FREQUENCY RESPONSE FUNCTION MULTIPLE CRACKED BEAMS

Now, let’s consider a Euler-Bernoulli (EB) beam of material and geometry constants:
E, G, ν, ρ are the elastic and shear modulus, Poisson coefficient and mass density; `, A =

b× h, I = bh3/12 - the length, cross-section area and moment of inertia. Moreover, it is
assumed that the beam is cracked at positions 0 ≤ e1 < e2 < . . . < en−1 < en ≤ ` and
all the cracks are transverse and open with depths respectively (a1, . . . , an) as shown in
Fig. 1 [19].

I. FREQUENCY RESPONSE FUNCTION MULTIPLE CRACKED BEAMS 

Now, let’s consider a Euler-Bernoulli (EB) beam  of material and geometry constants: 𝐸, 𝐺, 𝜈, 𝜌 

are the elastic and shear modulus, Poisson coefficient and mass density; ℓ, 𝐴 = 𝑏 × ℎ, 𝐼 = 𝑏ℎ3/12  

- the length, cross-section area and moment of inertia. Moreover, it is assumed that the beam is 

cracked at positions 0 ≤ 𝑒1 < 𝑒2 < ⋯ < 𝑒𝑛−1 < 𝑒𝑛 ≤ ℓ and all the cracks are transverse and open 

with depths respectively (𝑎1, … , 𝑎𝑛) as shown in Fig. 3 [19].  

 

 

Fig. 1. Model of multiple cracked beam 

1.1. Vibration shape of multiple cracked beam 

As well known, vibration shape of an EB-beam is defined as solution of equation 

𝑑4𝜙(𝑥)

𝑑𝑥4
− 𝜆4𝜙(𝑥) = 0, 𝜆4 = 𝜌𝐴𝜔2/𝐸𝐼,                                                (1) 

that is solved together with boundary conditions. Moreover, in the recently published review [3] 

general solution for vibration shape of multiple cracked EB beam has been obtained in the form 

𝜙0(𝑥, 𝜔) = 𝐶1Φ1(𝜆𝑥) + 𝐶2Φ2(𝜆𝑥) + 𝐶3Φ3(𝜆𝑥) + 𝐶4Φ3(𝜆𝑥),                            (2) 

where 𝐶1, 𝐶2, 𝐶3, 𝐶4 are constants, 𝜆 = (𝜌𝐴𝜔2/𝐸𝐼)1/4 and Φ𝑘(𝜆𝑥), 𝑘 = 1,2,3,4 are 

Φ1(𝜆𝑥) =  𝐿01(𝜆𝑥) + ∑ 𝜇𝑗1𝐾(𝑥 − 𝑒𝑗)
𝑛
𝑗=1 ; Φ2(𝜆𝑥) =  𝐿02(𝜆𝑥) + ∑ 𝜇𝑗2𝐾(𝑥 − 𝑒𝑗)

𝑛
𝑗=1 ;  (3) 

Φ3(𝜆𝑥) =  𝐿03(𝜆𝑥) + ∑ 𝜇𝑗3𝐾(𝑥 − 𝑒𝑗)
𝑛
𝑗=1 ; Φ40(𝜆𝑥) =  𝐿04(𝜆𝑥) + ∑ 𝜇𝑗4𝐾(𝑥 − 𝑒𝑗)

𝑛
𝑗=1 ; 

𝐾(𝑥) = {
0      for 𝑥 < 0
𝑆(𝑥) for 𝑥 ≥ 0

 ;  𝑆(𝑥) = (1/2𝜆)(sinh 𝜆 𝑥 + sin 𝜆 𝑥);                          (4) 

𝜇𝑗1 = 𝛾𝑗[𝐿01
′′ (𝜆𝑒𝑗) + ∑ 𝜇𝑘1𝑆

′′(𝑒𝑗 − 𝑒𝑘)
𝑗−1
𝑘=1 ];  

𝜇𝑗2 = 𝛾𝑗[𝐿02
′′ (𝜆𝑒𝑗) + ∑ 𝜇𝑘2𝑆

′′(𝑒𝑗 − 𝑒𝑘)
𝑗−1
𝑘=1 ];                                    (5) 

𝜇𝑗3 = 𝛾𝑗[𝐿03
′′ (𝜆𝑒𝑗) + ∑ 𝜇𝑘3𝑆

′′(𝑒𝑗 − 𝑒𝑘)
𝑗−1
𝑘=1 ]; 𝜇𝑗4 = 𝛾𝑗[𝐿04

′′ (𝜆𝑒𝑗) + ∑ 𝜇𝑘4𝑆
′′(𝑒𝑗 − 𝑒𝑘)

𝑗−1
𝑘=1 ]. 

The functions 𝐿01(𝜆𝑥), 𝐿02(𝜆𝑥), 𝐿03(𝜆𝑥), 𝐿04(𝜆𝑥) are four independent solutions of free vibration 

problem for uncracked beam and (𝑛 × 4) − matrix of so-called damage indexes 

[𝛍] = {𝜇𝑗𝑘, 𝑗 = 1,… , 𝑛; 𝑘 = 1,2,3,4} 
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Fig. 1. Model of multiple cracked beam

2.1. Vibration shape of multiple cracked beam

As well known, vibration shape of an EB-beam is defined as solution of equation

d4φ (x)
dx4 − λ4φ (x) = 0, λ4 = ρAω2/EI, (1)
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that is solved together with boundary conditions. Moreover, in the recently published
review [3] general solution for vibration shape of multiple cracked EB beam has been
obtained in the form

φ0 (x, ω) = C1Φ1 (λx) + C2Φ2 (λx) + C3Φ3 (λx) + C4Φ3 (λx) , (2)

where C1, C2, C3, C4 are constants, λ =
(
ρAω2/EI

)1/4
and Φk (λx) , k = 1, 2, 3, 4 are

Φ1 (λx) = L01 (λx) +
n

∑
j=1

µj1K
(

x− ej
)

, Φ2 (λx) = L02 (λx) +
n

∑
j=1

µj2K
(
x− ej

)
,

Φ3 (λx) = L03 (λx) +
n

∑
j=1

µj3K
(

x− ej
)

, Φ4 (λx) = L04 (λx) +
n

∑
j=1

µj4K
(
x− ej

)
,

(3)

K (x) =

{
0 for x < 0
S (x) for x ≥ 0

, S (x) = (1/2λ) (sinh λx + sin λx) , (4)

µj1 = γj

[
L
′′
01
(
λej
)
+

j−1

∑
k=1

µk1S′′
(
ej − ek

)]
,

µj2 = γj

[
L
′′
02
(
λej
)
+

j−1

∑
k=1

µk2S′′
(
ej − ek

)]
,

µj3 = γj

[
L
′′
03
(
λej
)
+

j−1

∑
k=1

µk3S′′
(
ej − ek

)]
,

µj4 = γj

[
L
′′
04
(
λej
)
+

j−1

∑
k=1

µk4S′′
(
ej − ek

)]
.

(5)

The functions L01 (λx) , L02 (λx) , L03 (λx) , L04 (λx) are four independent solutions
of free vibration problem for uncracked beam and (n× 4) - matrix of so-called damage
indexes

[µ] =
{

µjk, j = 1, . . . , n; k = 1, 2, 3, 4
}

,

given in Eq. (5) is calculated from crack parameters
(
ej, γj, j = 1, . . . , n

)
by

{µ} = [G]−1 [B] , (6)

where G=
[
gij, i, j = 1, 2, 3, . . . , n

]
is n× n - matrix with elements

gij = {1 if i = j; 0 for i < j;−γiS′′
(
ei − ej

)
for i > j},

and matrix [B] = [b1, b2, b3, b4] of 4 vectors of dimension n:

{b1}=
{

γ1L
′′
01 (λe1) , . . . , γnL

′′
01 (λen)

}T
, {b2}=

{
γ1L

′′
02 (λe1) , . . . , γnL

′′
02 (λen)

}T
,

{b3}=
{

γ1L
′′
03 (λe1) , . . . , γnL

′′
03 (λen)

}T
, {b4}=

{
γ1L

′′
04 (λe1) , . . . , γnL

′′
04 (λen)

}T
,

γj = 6π
(
1− ν2) (h/`) fb

(
aj/h

)
,

(7)
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fb (z) = z2
(

0.6272− 1.04533z + 4.5948z2 − 9.9736z3 + 20.2948z4 − 33.0351z5

+47.1063z6 − 40.7556z7 + 19.6z8) .
(8)

Substituting vibration modes (2) into boundary conditions for simply supported beam

φ (0, ω) = 0, φ′′ (0, ω) = 0, φ (`, ω) = 0, φ′′ (`, ω) = 0, (9)

leads to the equations allowing one to find natural frequencies and mode shapes of mul-
tiple cracked EB-beams. Namely, it is easily to verify that vibration shape (2) satisfying
boundary conditions (9) at the left end of beam can be represented as

φ0 (x, ω) = AL1 (λx) + BL2 (λx) , (10)

with

L1 (λx) = sinh λx +
n

∑
j=1

µj1K
(

x− ej
)

, L2 (λx) = sin λx +
n

∑
j=1

µj2K
(
x− ej

)
. (11)

Then, remaining boundary conditions in (11) yield the equations

AL1 (λ`) + BL2 (λ`) = 0, AL
′′
1 (λ`) + BL

′′
2 (λ`) = 0, (12)

that result in the so-called frequency equation for multiple cracked beams in the form

L1 (λ`) L
′′
2 (λ`)− L

′′
1 (λ`) L2 (λ`) = 0. (13)

In case of beam with single crack, Eq. (13) gets the form:

fss (λ) + γ1gss (λ, e1) = 0, (14)

where
fss (λ) = 2λ sinh λ` sin λ`,

gss (λ, e) = sinh λ (`− e1) sinh λe1 sin λ`− sinh λ` sin λ (`− e1) sin λe1.

2.2. Frequency response function

We consider now forced vibration in multiple cracked beams under concentrated at
xe load described by the equations [20]

EI
∂4

∂x4

(
1 + µ2

∂

∂t

)
w (x, t) + ρAµ1

∂w (x, t)
∂t

+ ρA
∂2w (x, t)

∂t2 = P0eiωtδ
(
x− xp

)
. (15)

Seeking solution of Eq. (15) in the form

w (x, t) = φ (x) eiωt,

one gets following equation for vibration shape φ(x)

d4φ (x)
dx4 − λ̂4φ (x) = P̂0δ

(
x− xp

)
, (16)
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where

λ̂4 =
ρA
(
ω2 − iωµ1

)
EI (1 + iωµ2)

, P̂0 =
P0

EI (1 + iωµ2)
.

First, let’s consider complex frequency parameter

λ̂4 =
ρA
(
ω2 − iωµ1

)
EI (1 + iωµ2)

=
ρAω2 (α− iβ)

EI
=

ρAω̂2

EI
, (17)

with
ω̂2 = ω2 (α + iβ) ,

α = (1 + µ1µ2) /
(
1 + ω2µ2

2
)

, β =
(
µ1 + ω2µ2

)
/ω

(
1 + ω2µ2

2
)

.
(18)

It was well-known that general solution of Eq. (15) is

φ (x) = φ0 (x) + P̂0

∫ x

0
h (x− s) δ

(
s− xp

)
ds = φ0 (x) + P̂0h

(
x− xp

)
, (19)

where functions

h (x) =
{

0 : for x ≤ xp;
(
sinh λ̂x− sin λ̂x

)
/2λ̂3 : for x > xp

}
, (20)

and φ0 (x) given in Eq. (10). Since both the functions φ0 (x) and h (x) satisfy the first
two conditions in (9), the solution (19) also satisfies the boundary conditions. Therefore,
putting (19) into remaining conditions (9) at the beam’s right end yields

AL1
(
λ̂`
)
+ BL2

(
λ̂`
)
= −P̂0h (`− x0) , AL

′′
1
(
λ̂`
)
+ BL

′′
2
(
λ̂`
)
= −P̂0h′′ (`− x0) ,

that give the constants A, B to be calculated as

A =
(

P̂0/∆
)

Â, B =
(

P̂0/∆
)

B̂,

with
Â =

[
h′′
(
`− xp

)
L2
(
λ̂`
)
+ h (`− x0) L

′′
2
(
λ̂`
)]

,

B̂ =
[

L
′′
1
(
λ̂`
)

h
(
`− xp

)
− L1

(
λ̂`
)

h′′
(
`− xp

)]
,

(21)

∆ = L1
(
λ̂`
)

L
′′
2
(
λ̂`
)
− L

′′
1
(
λ̂`
)

L2
(
λ̂`
)

, (22)

Finally, solution (19) gets the form

φ
(

x, xp, ω
)
=
(

P̂0/∆
) [

h
(
x− xp

)
∆+ ÂL1

(
λ̂x
)
+ B̂L2

(
λ̂x
)]

, (23)

and therefore, the so-called frequency response function of the beam measured at xq is

FRF
(
xp, xq, ω

)
= φ

(
xp, xq, ω

)
/P̂0 = h

(
xq − xp

)
+

ÂL1
(
λ̂xq
)
+ B̂L2

(
λ̂xq
)

L1
(
λ̂`
)

L′′2
(
λ̂`
)
− L′′1

(
λ̂`
)

L2
(
λ̂`
) .

(24)

Denote the module of the frequency response function by Hpq (ω) =
∣∣FRF

(
xp, xq, ω

)∣∣
that is examined below as a frequency domain signal in dependence upon measuring re-
sponse location xq and excitation position xp. In case if both measuring response and
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excitation locations are duplicated xp = xq ≡ xm, the location is called driving point and
the function Hpq (ω) is reduced to

Hm (ω) = |FRF (xm, xm, ω)| =
∣∣∣∣∣ ÂL1

(
λ̂xm

)
+ B̂L2

(
λ̂xm

)
L1
(
λ̂`
)

L′′2
(
λ̂`
)
− L′′1

(
λ̂`
)

L2
(
λ̂`
) ∣∣∣∣∣ . (25)

3. SPECTRAL ASSURANCE CRITERION FOR CRACKED BEAM

In this section the so-called frequency domain assurance criterion is developed for
detecting cracks in beam structures by measurement of frequency response functions.
First, let’s consider a correlation coefficient defined for two vectors S =

{
Sj, j = 1, . . . , N

}
and Q =

{
Qj, j = 1, . . . , N

}
as

Φ (S, Q) =

( N

∑
k=1

SkQk

)2

/

(
N

∑
k=1

S2
k ×

N

∑
k=1

Q2
k

)1/2

.

Obviously, the coefficient ranges from 0 to 1 depending on the correlation between
the vectors and represents the degree of their consistency. Particularly, the vectors are
acknowledged as entirely consistent if the coefficient equals 1. Originally, the coefficient
was utilized for checking similarity of two mode shapes for a structure as the so-called
Modal Assurance Criterion (MAC) [13] and then it had got to be employed for mode
shape-based damage detection as Mode Shape Damage Index (MSDI) [18] in case the
vectors are mode shapes of damaged and undamaged structures. Then, Messina and
Williams developed MAC for structural damage detection by measurements of natural
frequencies and introduced the so-called Multiple Location Assurance Criterion (MDAC)
[15, 16]. It is worth noting here the case when the correlation coefficient is examined for
frequency response functions, and it is called Frequency Domain Assurance Criterion
(FDAC). FDAC was used first for model correlation and updating [11, 12] and then for
damage detection [17].

If the compared signals are frequency response functions of cracked and intact beams,
the coherence coefficient describes the change of the functions due to crack. Therefore, the
coefficient calculated for a frequency response function at cracked Hc

pq (ω) = Hpq (ω, e, a)
and intact H0

pq (ω) = Hpq (ω) respectively conditions, as

SDI (e, a, p, q) =

( N

∑
k=1

H0
pq
(
ωj
)

Hc
pq
(
ωj
))2

/

(
N

∑
k=1

H02
pq
(
ωj
)
×

N

∑
k=1

Hc2
pq
(
ωj
))1/2

, (26)

is termed by spectral damage index (SDI) of the given frequency response function. This
coefficient characterizes the sensitivity of frequency response function to a crack, and it
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will be employed below for examining the crack-induced change in a frequency response
function.

However, the above-introduced SDI is still difficult to employ for crack detection
from a measured frequency response of a structure because of the following reasons.
First, it is seldom to have frequency responses of both intact and damaged structures
simultaneously measured. Second, every measured frequency response gives only one
value of SDI that is insufficient for detecting even a single crack represented by two pa-
rameters, its location and depth. Therefore, one should have at least two frequency re-
sponse functions of the structure under consideration that might be measured at different
locations for various loads. Thus, let’s introduce the coefficient

SAC
(
e, a, p, q, p′, q′

)
=

( N

∑
k=1

Hc
pq
(
ωj
)

Hc
p′q′
(
ωj
))2

/

(
N

∑
k=1

Hc2
pq
(
ωj
)
×

N

∑
k=1

Hc2
p′q′
(
ωj
)) 1

2

,

(27)
that is called Spectral Assurance Criterion (SAC) calculated from two different frequency
response functions measured for a structure in the same damage condition. The SAC
determined by quotient (27) is ranged between 0 and and 1 and it equals to 1 for the
same or fully consistent frequency response functions. The deviation of SAC from unique
represents the effect of cracks and locations where the frequency response functions have
been measured. Therefore, SAC could be efficiently used as a novel indicator for crack
identification by frequency response functions if the response measurement and applied
load locations are properly chosen.

Let’s consider the problem of detecting a single crack represented by its location and
depth (e, a), using the above-introduced SAC. Suppose that the indicator calculated from
an established model of the cracked structure as a function of the crack parameters is rep-
resented by function Λk = fk (e, a) = SAC

(
e, a, pk, qk, p

′
k, q

′
k

)
, k = 1, 2, . . . , m and its val-

ues calculated from measured frequency response functions are denoted by (Λ∗1 , . . . ,Λ∗m).
Hence, the crack location and depth would be positive roots of the equations

Λ∗1 = f1 (e, a) , . . . ,Λ∗m = fm (e, a) . (28)

If the functions fk (e, a) , k = 1, 2, . . . are available only graphically and given in the
form of the surfaces zk = fk (e, a) , k = 1, 2, . . . m, actual crack location and depth would
be intersections of the contours z1 = Λ∗1 , . . ., zm = Λ∗m in the plane (e, a). This is the
desired solution to the crack detection problem resolved by using the so-called contour
method. In the case of measurement noise presence, the solution to the crack detection
problem can be found as a solution to the problem

E =
m

∑
k=1

[Λ∗k − fk (e, a)]2 ⇒
(e,a)

min . (29)
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4. NUMERICAL VALIDATION AND ANALYSIS

Numerical illustrations are accomplished in this section for, first, analysis of crack-
induced changes in the spectral damage index that represent a new insight to sensitivity
of FRFs to crack and, second, demonstration of the spectral assurance criterion applied
for crack identification from measured frequency response functions. For shortness, we
consider herein only functions (25) that are diagonal elements of matrix function Hpq (ω)

in three typical points xp = xq = xm, where xm = 0.25, 0.5, 0.75, respectively.

used as a novel indicator for crack identification by frequency response functions if the response 

measurement and applied load locations are properly chosen. 

Let’s consider the problem of detecting a single crack represented by its location and depth 

(𝑒, 𝑎), using the above-introduced SAC. Suppose that the indicator calculated from an established 

model of the cracked structure as a function of the crack parameters is represented by function 

Λ𝑘 = 𝑓𝑘(𝑒, 𝑎) = SAC(𝑒, 𝑎, 𝑝𝑘, 𝑞𝑘, 𝑝𝑘
′ , 𝑞𝑘

′ ), 𝑘 = 1,2, … ,𝑚 and its values calculated from measured 

frequency response functions are denoted by (Λ1
∗ , … , Λ𝑚

∗ ). Hence, the crack location and depth 

would be positive roots of  the equations  

Λ1
∗ = 𝑓1(𝑒, 𝑎), … , Λ𝑚

∗ = 𝑓𝑚(𝑒, 𝑎).                                               (28) 

If the functions 𝑓𝑘(𝑒, 𝑎), 𝑘 = 1,2, … are available only graphically and given in the form of the 

surfaces 𝑧𝑘 = 𝑓𝑘(𝑒, 𝑎), 𝑘 = 1,2, …𝑚, actual crack location and depth would be intersections of the 

contours 𝑧1 = Λ1
∗ ,…, 𝑧𝑚 = Λ𝑚

∗  in the plane (𝑒, 𝑎). This is the desired solution to the crack 

detection problem resolved by using the so-called contour method. In the case of measurement 

noise presence, the solution to the crack detection problem can be found as a solution to the 

problem 

ℰ = ∑ [Λ𝑘
∗ − 𝑓𝑘(𝑒, 𝑎)]

2𝑚
𝑘=1 (𝑒,𝑎)

⇒  𝑚𝑖𝑛 .                                                 (29) 

III. NUMERICAL VALIDATION AND ANALYSIS 

Numerical illustrations are accomplished in this section for, first, analysis of crack-induced 

changes in  the spectral damage index that represent a new insight to sensitivity of FRFs to crack 

and, second, demonstration of the spectral assurance criterion applied for crack identification from 

measured frequency response functions. For shortness, we consider herein only functions (25) that 

are diagonal elements of matrix function 𝐻𝑝𝑞(𝜔) in three typical points 𝑥𝑝 = 𝑥𝑞 = 𝑥𝑚, where 

𝑥𝑚 = 0.25, 0.5, 0.75 respectively. 

 

Fig. 2. Spectral damage index of FRF in dependence on crack location and depth in case of 

driving positions  xm = 0.5. 
Fig. 2. Spectral damage index of FRF in dependence on crack location and

depth in case of driving positions xm = 0.5

4.1. Sensitivity of FRF to crack observed through spectral damage index (SDI)

SDI as functions of crack position in different relative crack depth are shown in Fig. 2
for xm = 0.5 and Fig. 3 for xm = 0.25, 0.75. Obviously, graphs displayed in the Figures,
representing the crack-induced changes in SDI have the same form as that for the first
natural frequency but with significantly increased magnitude. Namely, deviation of SDI
from unique increasing with crack depth and it reaches maximum for crack at beam mid-
dle. Symmetric cracks have the same effect on the SDI, but FRFs defined at symmetrical
driving points (0.25 and 0.75) have different sensitivities to crack, especially, for the crack
of relative depth higher than 10%. The above remarks confirm the significant advantage
of using FRFs for crack detection compared to the natural frequencies that are much less
sensitive to cracks and do not allow to detection of symmetrical cracks in beams with
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symmetric boundary conditions. This will be substantiated below in the subsequent sub-
section.

3.1. Sensitivity of FRF to crack observed through spectral damage index (SDI) 

SDI as functions of crack position in different relative crack depth are shown in Fig. 2 for 

𝑥𝑚 = 0.5 and Fig. 3 for 𝑥𝑚 = 0.25, 0.75. Obviously, graphs displayed in the Figures, representing 

the crack-induced changes in SDI have the same form as that for the first natural frequency but 

with significantly increased magnitude. Namely, deviation of SDI from unique increasing with 

crack depth and it reaches maximum for crack at beam middle. Symmetric cracks have the same 

effect on the SDI, but FRFs defined at symmetrical driving points (0.25 and 0.75) have different 

sensitivities to crack, especially, for the crack of relative depth higher than 10%. The above 

remarks confirm the significant advantage of using FRFs for crack detection compared to the 

natural frequencies that are much less sensitive to cracks and do not allow to detection of 

symmetrical cracks in beams with symmetric boundary conditions. This will be substantiated 

below in the subsequent subsection. 

 

Fig. 3. Spectral damage index of FRF diagonal elements in dependence on crack location and 

depth in case of driving positions   xm = 0.25; 0.75. 

Table 1. Scenarios of cracked beam denoted by SCJK 

a/h e/L=0.25 e/L=0.5 e/L=0.75 

5% SC11 SC12 SC13 

10% SC21 SC22 SC23 

20% SC31 SC32 SC33 

30% SC41 SC42 SC43 

3.2. Crack detection by contours plots of SAC 

In this subsection we consider three cases of crack location: (a) e/L=0.25, (b) e/L=0.25, (c) 

e/L=0.75 with relative crack depth: a/h = 5 – 10 – 20 – 30%. So, we have 12 scenarios given in 

Table 1. Furthermore, propose that three FRFs have been measured for the 12 crack scenarios as 

Fig. 3. Spectral damage index of FRF diagonal elements in dependence on crack location and
depth in case of driving positions xm = 0.25; 0.75

4.2. Crack detection by contours plots of SAC

In this subsection we consider three cases of crack location: (a) e/L = 0.25, (b) e/L =

0.25, (c) e/L = 0.75 with relative crack depth: a/h = 5 – 10 – 20 – 30%. So, we have 12
scenarios given in Table 1. Furthermore, propose that three FRFs have been measured for
the 12 crack scenarios as

H(k)
1 (ω) = |FRF (0.25, 0.25, ω)| , H(k)

1 (ω) = |FRF (0.5, 0.5, ω)| ,

H(k)
1 (ω) = |FRF (0.75, 0.75, ω)| , k = 1, 2, . . ., 12,

and corresponding values of SAC are computed as follow

S(k)
12 = SAC [H1 (ω) , H2 (ω)] , S(k)

13 = SAC [H1 (ω) , H3 (ω)] ,

S(k)
23 = SAC [H2 (ω) , H3 (ω)] .
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Table 1. Scenarios of cracked beam denoted by SCJK

a/h e/L = 0.25 e/L = 0.5 e/L = 0.75

5% SC11 SC12 SC13
10% SC21 SC22 SC23
20% SC31 SC32 SC33
30% SC41 SC42 SC43

Now, for every crack scenario three contours S(k)
12 = S12 (e, a); S(k)

13 = S13 (e, a);
S(k)

23 = S23 (e, a) are plotted and depicted in 12 boxes of Figs. 4, 5, 6 corresponding to
three cases of crack locations (a), (b), (c) given above. Thus, results of crack identifica-
tion are displayed in the boxes where coordinates of exact interaction of three plotted
contours give detected actual crack location and depth.

𝐻1
(𝑘)(𝜔) =  |𝐹𝑅𝐹(0.25,0.25, 𝜔)|, 𝐻1

(𝑘)
(𝜔) =  |𝐹𝑅𝐹(0.5,0.5,𝜔)|, 

 𝐻1
(𝑘)
(𝜔) =  |𝐹𝑅𝐹(0.75,0.75, 𝜔)|, k =1,2, …,12 

and corresponding values of SAC are computed as follow 

𝑆12
(𝑘)
= 𝑆𝐴𝐶[𝐻1(𝜔),𝐻2(𝜔)]; 𝑆13

(𝑘)
= 𝑆𝐴𝐶[𝐻1(𝜔),𝐻3(𝜔)]; 𝑆23

(𝑘)
= 𝑆𝐴𝐶[𝐻2(𝜔), 𝐻3(𝜔)]. 

Now, for every crack scenario three contours 𝑆12
(𝑘)
= 𝑆12(𝑒, 𝑎); 𝑆13

(𝑘)
= 𝑆13(𝑒, 𝑎)]; 𝑆23

(𝑘)
= 𝑆23(𝑒, 𝑎) 

are plotted and depicted 12 boxes shown in Fig. 4, 5, 6 corresponding to three cases of crack 

locations (a), (b), (c) given above. Thus, results of crack identification are displayed in the boxes 

where coordinates of exact interaction of three plotted contours give detected actual crack location 

and depth. 

 

  

  
Fig. 4. Single crack detected by the contour method using spectral assurance criterion 

Actual crack at position e/L=0.25, in case of different crack depth 5-10-20-30% (SC11 - SC41). Fig. 4. Single crack detected by the contour method using spectral assurance criterion.
Actual crack at position e/L = 0.25, in case of different crack depth 5− 10− 20− 30%

(SC11 - SC41)
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Fig. 5. Single crack detected by the contour method using spectral assurance criterion 

 Actual crack at position e/L=0.5, in case of different crack depth 5-10-20-30% (SC12 - SC42). 

 

 

 

Fig. 5. Single crack detected by the contour method using spectral assurance criterion
Actual crack at position e/L = 0.5, in case of different crack depth 5− 10− 20− 30%

(SC12 - SC42)

 

 

Fig. 5. Single crack detected by the contour method using spectral assurance criterion 

 Actual crack at position e/L=0.5, in case of different crack depth 5-10-20-30% (SC12 - SC42). 
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Fig. 6. Single crack detected by the contour method using spectral assurance criterion 

 Actual crack at position e/L=0.75, in case of different crack depth 5-10-20-30% (SC13 - SC43). 

Observing all the boxes in the Figures allows us to make the following remarks: (1) All actual 

cracks can be exactly identified, even the small ones of depth 5%, for accurately measured FRFs, 

however, cracks of depth more than 10% are more clearly and easily detected; (2) Symmetrical 

cracks such as e/L = 0.25 and e/L = 0.75 are both uniquely detected by measurements of FRFs, 

but they are more difficult to be detected than the crack at the beam middle in case of small depth 

5% and 10%. 

IV. CONCLUSION 

Thus, a novel criterion has been developed for crack identification in beams from measured 

frequency response functions. First, a coherent coefficient between frequency response 

functions of intact and cracked beams called spectral damage index is determined and used for 

sensitivity analysis of FRFs to crack. Numerical analysis shows that frequency response 

functions of beam structures, in the viewpoint of the spectral damage index, are more 

significantly sensitive to cracks compared to the dynamical characteristics such as natural 

frequencies and mode shapes. Then, the above coefficient calculated for different FRFs of a 

cracked beam and called spectral assurance criterion is conducted as a novel indicator for crack 

identification of the beam structure. Using the spectral assurance criterion in combination with 

the contour method allows obtaining the exact and unique solution of the crack identification 

problem even for beams with symmetric boundary conditions. 

ACKNOWLEDGEMENTS. This work has been completed with the support from the 

Institute of Mechanics, VAST under the project of the Technical Diagnostics Department in 

2023. 

REFERENCES 

1. Z. Wang, R.M. Lin, M.K. Lim. Structural damage detection using measured FRF data. 

Computer Methods in Applied Mechanics and Engineering 147 (1997) 187-197. 

2. S.K. Thyagarajan, M.J. Schulz, P.F. Pai, J. Chung. Detecting structural damage using 

frequency response functions. J. Sound Vib. 210 (1998) 162–170.  

Fig. 6. Single crack detected by the contour method using spectral assurance criterion.
Actual crack at position e/L = 0.75, in case of different crack depth 5− 10− 20− 30%

(SC13 - SC43)

Observing all the boxes in the Figures allows us to make the following remarks: (1)
All actual cracks can be exactly identified, even the small ones of depth 5%, for accurately
measured FRFs, however, cracks of depth more than 10% are more clearly and easily
detected; (2) Symmetrical cracks such as e/L = 0.25 and e/L = 0.75 are both uniquely
detected by measurements of FRFs, but they are more difficult to be detected than the
crack at the beam middle in case of small depth 5% and 10%.

5. CONCLUSION

Thus, a novel criterion has been developed for crack identification in beams from
measured frequency response functions. First, a coherent coefficient between frequency
response functions of intact and cracked beams called spectral damage index is deter-
mined and used for sensitivity analysis of FRFs to crack. Numerical analysis shows that
frequency response functions of beam structures, in the viewpoint of the spectral damage
index, are more significantly sensitive to cracks compared to the dynamical characteris-
tics such as natural frequencies and mode shapes. Then, the above coefficient calculated
for different FRFs of a cracked beam and called spectral assurance criterion is conducted
as a novel indicator for crack identification of the beam structure. Using the spectral
assurance criterion in combination with the contour method allows obtaining the exact
and unique solution of the crack identification problem even for beams with symmetric
boundary conditions.

DECLARATION OF COMPETING INTEREST

The authors declare that they have no known competing financial interests or per-
sonal relationships that could have appeared to influence the work reported in this paper.



A novel criterion for crack detection in beam structures by frequency response functions 285

ACKNOWLEDGEMENTS

This work has been completed with the support from the Institute of Mechanics,
VAST under the project of the Technical Diagnostics Department in 2023.

REFERENCES

[1] Z. Wang, R. M. Lin, and M. K. Lim. Structural damage detection using measured FRF
data. Computer Methods in Applied Mechanics and Engineering, 147, (1997), pp. 187–197.
https://doi.org/10.1016/s0045-7825(97)00013-3.

[2] S. K. Thyagarajan, M. J. Schulz, P. F. Pai, and J. Chung. Detecting structural damage us-
ing frequency response functions. Journal of Sound and Vibration, 210, (1998), pp. 162–170.
https://doi.org/10.1006/jsvi.1997.1308.

[3] R. P. C. Sampaio, N. M. M. Maia, and J. M. M. Silva. Damage detection using the frequency-
response-function curvature method. Journal of Sound and Vibration, 226, (1999), pp. 1029–
1042. https://doi.org/10.1006/jsvi.1999.2340.

[4] U. Lee and J. Shin. A frequency response function-based structural damage identification
method. Computers & Structures, 80, (2002), pp. 117–132. https://doi.org/10.1016/s0045-
7949(01)00170-5.

[5] N.-G. Park and Y.-S. Park. Detection using spatially incomplete frequency re-
sponse functions. Mechanical Systems and Signal Processing, 17, (2003), pp. 519–532.
https://doi.org/10.1006/mssp.2001.1423.

[6] H. Y. Hwang and C. Kim. Damage detection in structures using a few fre-
quency response measurements. Journal of Sound and Vibration, 270, (2004), pp. 1–14.
https://doi.org/10.1016/s0022-460x(03)00190-1.

[7] X. Liu, N. A. J. Lieven, and P. J. Escamilla-Ambrosio. Frequency response function shape-
based methods for structural damage localisation. Mechanical Systems and Signal Processing,
23, (2009), pp. 1243–1259. https://doi.org/10.1016/j.ymssp.2008.10.002.

[8] R. P. Bandara, T. H. T. Chan, and D. P. Thambiratnam. Structural damage detection method
using frequency response functions. Structural Health Monitoring, 13, (2014), pp. 418–429.
https://doi.org/10.1177/1475921714522847.

[9] M. Dilena, M. P. Limongelli, and A. Morassi. Damage localization in bridges via the FRF
interpolation method. Mechanical Systems and Signal Processing, 52-53, (2015), pp. 162–180.
https://doi.org/10.1016/j.ymssp.2014.08.014.

[10] N. T. Khiem, P. T. Hang, and L. K. Toan. Crack detection in pile by measurements of fre-
quency response function. Nondestructive Testing and Evaluation, 31, (2015), pp. 122–141.
https://doi.org/10.1080/10589759.2015.1081904.

[11] R. Pascual, J.-C. Golinval, and M. Razeto. A frequency domain correlation technique for
model correlation and updating. In 15th International Modal Analysis Conference (IMAC XV),
(1997), pp. 587–592.

[12] D. Fotsch and D. J. Ewins. Application of MAC in the frequency domain. CiteSeerX, The College
of Information Sciences and Technology, The Pennsylvania State University, (2000).

[13] R. J. Allemang. The modal assurance criterion–twenty years of use and abuse. Sound and
vibration, 37, (8), (2003), pp. 14–23.

[14] S. Lei, K. Mao, L. Li, W. Xiao, and B. Li. Direct method for second-order sensitivity analysis
of modal assurance criterion. Mechanical Systems and Signal Processing, 76-77, (2016), pp. 441–
454. https://doi.org/10.1016/j.ymssp.2016.02.003.

https://doi.org/10.1016/s0045-7825(97)00013-3
https://doi.org/10.1006/jsvi.1997.1308
https://doi.org/10.1006/jsvi.1999.2340
https://doi.org/10.1016/s0045-7949(01)00170-5
https://doi.org/10.1016/s0045-7949(01)00170-5
https://doi.org/10.1006/mssp.2001.1423
https://doi.org/10.1016/s0022-460x(03)00190-1
https://doi.org/10.1016/j.ymssp.2008.10.002
https://doi.org/10.1177/1475921714522847
https://doi.org/10.1016/j.ymssp.2014.08.014
https://doi.org/10.1080/10589759.2015.1081904
https://doi.org/10.1016/j.ymssp.2016.02.003


286 Nguyen Tien Khiem, Tran Thanh Hai, Le Khanh Toan, Nguyen Thi Lan, Ho Quang Quyet

[15] A. Messina, E. J. Williams, and T. Contursi. Structural damage detection by a sensitiv-
ity and statistical-based method. Journal of Sound and Vibration, 216, (1998), pp. 791–808.
https://doi.org/10.1006/jsvi.1998.1728.

[16] E. J. Williams and A. Messina. Applications of the multiple damage loca-
tion assurance criterion. Key Engineering Materials, 167-168, (1999), pp. 256–264.
https://doi.org/10.4028/www.scientific.net/kem.167-168.256.

[17] R. P. C. Sampaio, N. M. M. Maia, and J. M. M. Silva. The frequency domain assurance cri-
terion as a tool for damage detection. Key Engineering Materials, 245-246, (2003), pp. 69–76.
https://doi.org/10.4028/www.scientific.net/kem.245-246.69.
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