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Abstract. This study presents an innovative numerical method that combines the polyg-
onal finite element method (Poly-FEM) with conic optimization techniques within the
framework of structural shakedown analysis. The resulting optimization problem is for-
mulated as a second-order cone programming (SOCP) problem and is efficiently solved
using the MOSEK primal-dual interior-point solver. Numerical experiments validate the
computational efficiency and efficacy of the proposed approach.
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1. INTRODUCTION

Shakedown analysis, employed in civil, aerospace, and mechanical engineering, eval-
uates structural responses to cyclic loads. It optimizes designs, predicts fatigue life, and
ensures long-term structural integrity, enhancing safety and efficiency across engineering
applications.

Building upon Koiter’s [1] and Melan’s [2] bounding theorems, numerical shake-
down analysis involves solving an intricate min/max optimization problem character-
ized by nonlinear constraints. Initial methods, including piecewise-linear yield criteria
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and Newton-type schemes [3–5], were computationally demanding due to intricate cal-
culations. The interior-point method later emerged as an efficient algorithm for large-
scale engineering problems [6, 7], primarily applied to the von Mises yield criterion.
Recent advancements in plastic analysis have significantly expanded shakedown anal-
ysis capabilities. Andersen [8] notably introduced a primal-dual interior-point algorithm
with second-order cones, enhancing shakedown analysis potential. Subsequent studies,
conducted by researchers including [9–13], have provided further validation of these ad-
vancements.

Simultaneously, numerical techniques have evolved to enhance the computational
efficiency of shakedown analysis. Significantly, the standard finite element method (FEM)
[4, 10, 14–17] has played a pivotal role in this domain. Another approach, known as iso-
geometric analysis (IGA), has also emerged [18]. Complementing FEM advancements,
smoothed finite element methods (S-FEMs) have found application in this context [11,
19, 20]. Additionally, mesh-free methods have been effectively employed in shakedown
analysis, as seen in the nodal natural element method [21] and the stabilized integrated
radial basis function method [12].

When tackling complex problems, studies have shown that polygonal elements out-
perform traditional triangular and quadrilateral elements in mesh design [22–24]. Build-
ing upon the foundation of Wachspress shape functions, originally introduced by [25],
numerous numerical approaches have been developed over the years to create polygo-
nal/polyhedral finite elements. These approaches include the Voronoi cell finite element
method (VCFEM), Hybrid polygonal element (HPE), n-Sided polygonal smoothed finite
element method (nSFEM), Polygonal scaled boundary finite element method (PSBFEM),
Virtual node method (VNM), among others. Polygon-based finite element methods have
found extensive applications in various fields of mechanics, including elasticity analy-
sis [24, 26], simulations of crack growth [27], topology optimization [28, 29], and many
other areas.

This study aims to develop an efficient and resilient numerical approach for kine-
matic shakedown analysis of structures. This is accomplished by integrating the polyg-
onal finite element method with conic programming, where the optimization problem is
formulated in a conic manner to effectively reduce its size. High-performance interior-
point solvers are employed to swiftly determine shakedown limits. Rigorous compar-
isons with reference results from the literature are carried out to assess the accuracy and
convergence rate of the obtained solutions. These assessments are based on numerical
investigations conducted on a benchmark structure subjected to monotonic and repeated
loads. Furthermore, the distribution of dissipation work is employed to predict collapse
mechanisms, offering practical insights for structural design at the limit state and en-
hancing the practical relevance of this study.
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2. KINEMATIC SHAKEDOWN FORMULATION

Consider an elastic-perfectly plastic body with an area denoted as Ω. This body has
a kinematic boundary Γu, a static boundary Γt, and is subjected to cyclic loads t. Based on
Koiter’s kinematic theorem, the shakedown analysis formulation can be mathematically
expressed as follows

λ+
sd = min

εp,u

∫
t

∫
Ω
D(εp)dΩdt,

s.t


∫

t

∫
Ω
(σe)T εp dΩdt = 1,

∆ε =
∫

t
εp dt, in Ω

u = 0, on Γu

(1)

where λ+
sd signifies the upper bound shakedown load multiplier, D(εp) represents the

plastic dissipation rate associated with the plastic strain rate εp, ∆ε is the accumulative
admissible plastic strain rate at the end of a loading cycle t ∈ [0, T], σe is the related
fictitious elastic stress, and u is the displacement velocity.

This study employs the von Mises yield criterion, which can be mathematically ex-
pressed in terms of second-order polynomials as

ϕ(σ) =
√

σTPσ − σp, (2)

where, ϕ is the yield function linked to the yield stress σp, while the matrix P represents
the coefficients associated with the material’s strength properties.

Let Θ denote the inverse of P, which is given by the following matrix for a plane
stress problem

Θ =
1
3

4 2 0
2 4 0
0 0 1

 . (3)

The plastic dissipation power can be computed using the following expression

D(εp) = σp

√
(εp)T

Θεp. (4)

To simplify the time-dependent integration in the shakedown formulation (1), Konig’s
two convex theorems [30] can be applied. These theorems state that it is sufficient to eval-
uate the shakedown limits at the vertices of the convex polyhedral load domain. Conse-
quently, the optimization problem (1) can be reformulated as
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λ+
sd = min

εp,u

Nv

∑
j=1

∫
Ω

σp

√
(εp)T

ΘεpdΩ,

s.t



u = 0, on Γu

∆ε =
Nv

∑
j=1

ε
p
j , in Ω

Nv

∑
j=1

∫
Ω

(
σe

j

)T
ε

p
j dΩ = 1.

(5)

In this reformulation (5), Nv represents the number of vertices of the convex polyhedral
load domain L. Notably, the shakedown formulation (5) reduces to the limit analysis
problem when considering only one load vertex.

3. A BRIEF REVIEW ON POLYGONAL FINITE ELEMENT METHOD

Consider a polygonal master element denoted as Ωe, which possesses N vertices,
denoted as {x1, x2, . . . , xN}. These vertices are arranged in a counter-clockwise manner,
where xi =

(
cos 2πi

N
, sin 2πi

N

)
, for i = 1, 2, . . . , N and N ≥ 3. Among the various polyg-

onal shape functions proposed in the existing literature, this study focuses on the utiliza-
tion of Wachspress coordinates, which provide a straightforward and efficient means for
constructing shape functions on convex polygons [31]. It should be noted that Wachs-
press coordinates represent the lowest-order barycentric coordinates that simultaneously
satisfy the properties of boundedness, linearity along the edges, and linear independence
within convex polygons [32].

For any given point ξ(r, s) within Ωe, the Wachspress shape functions is defined as
follows

ψi(ξ) =
ωi(ξ)

∑N
j=1 ωj(ξ)

, with ωi(ξ) =
A (xi−1, xi, xi+1)

A (ξ, xi−1, xi) A (ξ, xi, xi+1)
, (6)

where A
(
xα, xβ, xγ

)
represents the signed area of the triangle formed by nodes

(
xα, xβ, xγ

)
,

as depicted in Fig. 1.

As the polygonal master element is regular in shape, the area A (xi−1, xi, xi+1) con-
sistent for all vertices and can be factored out of the expression in Eq. (6). The weight
function ωi(ξ) can be reformulated as follows

ωi(ξ) =
1

Ai(ξ) Ai+1(ξ)
, (7)
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where the triangular area Ai(ξ) can be determined by:

Ai(ξ) = A (ξ, xi−1, xi) =
1
2

∣∣∣∣∣∣
r s 1

x(1)
i−1 x(2)

i−1 1
x(1)

i x(2)
i 1

∣∣∣∣∣∣ . (8)

xi-1

xi xi+1

s

r
ξ(r, s)

Ai
 (ξ)

Ai+1
 (ξ)

Fig. 1. Illustration of triangle areas used to define the Wachspress coordinates
in the master element

The derivatives of the shape functions can be calculated as follows

∂ψi(ξ)

∂r
=

1

∑N
j=1 ωj(ξ)

[
∂ωi(ξ)

∂r
− ψi(ξ)

N

∑
j=1

∂ωj

∂r

]
, (9a)

∂ψi(ξ)

∂s
=

1

∑N
j=1 ωj(ξ)

[
∂ωi(ξ)

∂s
− ψi(ξ)

N

∑
j=1

∂ωj

∂s

]
, (9b)

where
∂ωj

∂r
= −ωj(ξ)

[
1

Aj(ξ)

∂Aj(ξ)

∂r
+

1
Aj+1(ξ)

∂Aj+1(ξ)

∂r

]
, (10a)

∂ωj

∂s
= −ωj(ξ)

[
1

Aj(ξ)

∂Aj(ξ)

∂s
+

1
Aj+1(ξ)

∂Aj+1(ξ)

∂s

]
, (10b)

where
∂Aj(ξ)

∂r
=

1
2

(
x(2)

j−1 − x(2)
j

)
,

∂Aj(ξ)

∂s
=

1
2

(
x(1)

j−1 − x(1)
j

)
. (11)

In Fig. 2, the Wachspress shape function for the hexagonal master element is de-
picted. It’s crucial to emphasize that the Wachspress shape functions, as defined in Eq. (6),
exhibit several fundamental characteristics essential for finite element analysis. These
characteristics encompass non-negativity, adherence to the partition of unity, compliance



264 Phuc L. H. Ho, Canh V. Le, Phuong H. Nguyen, Dung T. Tran

with the Kronecker delta condition, linear completeness within the element’s domain,
and linear interpolation between neighboring nodes along all element boundaries [33].

(a) The Wachspress shape function (b) The contour of Wachspress shape function

Fig. 2. The Wachspress shape function for the hexagonal master element

4. NUMERICAL DISCRETIZATION USING POLY-FEM AND SOCP

Using the Poly-FEM approach, the displacement field is approximated as

uh(x) = N(x)d, (12)

where, N represents the Wachspress shape functions as defined in Eq. (6), and d is the
displacement vector given by

dT = [u1, v1, . . . , uNnod , vNnod ], (13)

where Nnod is the number of discretized nodes in the computational domain.

The strain rate is then calculated as

εp = Bd, (14)

where B represents the strain-displacement matrix consisting of the derivatives of shape
function.

The fictitious elastic stress σe can be determined using Hooke’s law, which relates
stress to strain through the following equation:

σe = Dε = DBd, (15)

where D denotes the constitutive matrix.
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Plastic dissipation can be expressed as a sum of norms

D(εp) = σp

Nv

∑
j=1

Ng

∑
k=1

ζk‖ρjk‖, (16)

where Ng is the number of integration points, ζk represents the integration weight at the
point k, and ‖ · ‖ denotes the Euclidean norm, i.e., ‖x‖ =

√
xTx. The additional variables

ρjk for the plane stress problem can be defined as

ρjk =

ρ1
ρ2
ρ3

 =
1√
3

2 0 0
1
√

3 0
0 0 1

 . (17)

Let tjk be the auxiliary variable belonging to the standard conic constraint defined as

C =

{
x ∈ Rn | x1 ≥

√
x2

2 + x2
3 + · · ·+ x2

n

}
. (18)

The kinematic shakedown analysis problem (5) can be formulated as a second-order
cone programming problem as follows

λsd = min
εp

j , u

Nv

∑
j=1

Ns

∑
k=1

σpζktjk,

s.t



d = 0, on Γu

∆ε
p
j =

Nv

∑
j=1

Bd,

Nv

∑
j=1

Ns

∑
k=1

(
σe

jk

)T
ε

p
jk = 1,

‖ρjk‖ ≤ tjk, j = 1 . . .Nv, k = 1 . . .Ng.

(19)

5. NUMERICAL RESULTS

In this section, a numerical investigation is conducted to evaluate the performance
of the proposed method under plane stress conditions and various specified load combi-
nations. To solve the formulated optimization problems, the academic MOSEK software
package [34] is employed, and integrated into the MATLAB environment. The computa-
tions take place on a 3.2 GHz Intel Core i9 PC running Windows 11.

Consider a square plate with a central circular cutout subjected to in-plane traction
forces (p1, p2), as depicted in Fig. 3(a). Noteworthy input parameters for this analysis
include R = 1 m, A = 5R, E = 2.1× 105 MPa, ν = 0.3, and σp = 250 MPa. To simplify the
analysis, only the upper-right quarter of the plate is modeled due to geometric symmetry,
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as shown in Fig. 3(b). Fig. 3(c) visually represents the computational domain discretized
using 193 polygonal elements.

p1

p2

(a)

p1

p2

R

(b)

(c)

Fig. 3. Plate hole problem: (a) Geometry, dimensions, and loading; (b) Computational domain;
(c) Finite element discretization

5.1. Plate under monotonous loads

Initially, the investigation focuses on the plate’s response to a proportionally increas-
ing single load p1 to assess the accuracy and convergence of the proposed method. An
analytical solution for this loading scenario is available, as reported in [35], expressed as
λe

lm = 0.800× p1
σp

. Table 1 summarizes the computed limit load multipliers λ+
lm for var-

ious mesh resolutions. The convergence of these numerical results is further illustrated
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in Fig. 4. It’s worth noting that as the number of variables increases, the obtained solu-
tions consistently decrease and gradually approach the analytical solution. For the finest
mesh, the relative error between the current collapse load factor and the value reported
by Gaydon and McCrum [35] is merely 0.47%.

Table 1. Plate hole: the computed solutions obtained with various meshes

Ne 55 193 747 1,690 2,923 4,601

Nvar 9,060 33,090 131,220 299,310 519,750 820,140

λ+
lm 0.843 0.819 0.810 0.806 0.805 0.804

e (%) 5.37 2.43 1.19 0.78 0.59 0.47

CPU-Time (s) 2.25 0.66 3.04 6.44 10.18 10.18

Ne: the number of elements; Nvar: the number of variables; λ+
lm: the upper bound limit load

factor; e: relative errors; CPU-Time: computational time for optimization problem.
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Fig. 4. Plate hole: the computed limit load multipliers versus the number of variables

In Table 1, the computational time indicates that the optimization problem can be
solved quickly, taking only 10.18 seconds, utilizing second-order cone programming.
This highlights the capacity of the proposed method to efficiently handle substantial en-
gineering problems. Additionally, Fig. 5 illustrates the normalized plastic dissipation
power distributions for different load combinations, offering insights into the plate’s col-
lapse mechanisms.
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(a) p1 6= 0, p2 = 0 (b) p1 = 2p2

Fig. 5. Plate hole: the dissipation power distributions for different load combinations

5.2. Plate under repeated variable loads

The effect of repeated variable pressures on the load-carrying capacity of the plate is
under investigation. Interaction diagrams associated with numerous points in the load-
ing domain are depicted in Fig. 6(a). Notably, the shakedown load envelope is consider-
ably smaller than the collapse limits. This suggests that under the influence of repeated
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Fig. 6. Plate hole: (a) Limit and shakedown interaction diagrams;
(b) The comparison with other studies
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variable external forces, the plate may lose its load-bearing capacity at load intensities
significantly lower than the ultimate stress of the material.

Table 2. Plate hole: the comparison with other studies

Loading case
(p1, p2)

λlm λsd

(1, 0) (1, 0.5) (1, 1) (1, 0) (1, 0.5) (1, 1)

Present study 0.804 0.904 0.884 0.589 0.500 0.434
da Silva and Antao [36] 0.807 0.915 0.899 - - -
Chen et al. [37] 0.798 0.899 0.874 - - -
Zouain et al. [15] 0.803 0.911 0.894 0.594 0.500 0.429
Groβ-Weege [14] 0.792 0.891 0.882 0.614 0.524 0.446
Krabbenhøft et al. [17] - - - 0.595 0.499 0.430
Genna [38] - - - 0.604 0.508 0.438
Tran et al. [19] - - - 0.610 0.514 0.444

Fig. 6(b) illustrates a graphical comparison between the computed collapse and shake-
down limits and the pseudo-lower solutions reported by Ho et al. [11] using the CS-FEM
and by Ho and Le [12] using the stabilized iRBF mesh-free method. In general, our cur-
rent results exhibit slightly lower values compared to those presented in [11, 12], partic-
ularly in the case of shakedown analysis. The close alignment between our findings and
those obtained in previous studies, as summarized in Table 2, serves as a validation of
the computational efficiency inherent to our proposed approach.

6. CONCLUSIONS

The polygonal finite element method, in conjunction with second-order cone pro-
gramming, has been formulated within the context of limit and shakedown analysis ap-
plied to structural systems. This research endeavors to assess the impact of both mono-
tonic and cyclic loading conditions on the structural load-carrying capacity. By doing
so, it aims to determine the collapse and shakedown limits of structures. The numer-
ical investigations have convincingly demonstrated that the proposed approach yields
highly accurate solutions while keeping computational demands at a minimum. In fu-
ture work, we intend to further enhance the efficiency of this approach by implementing
various smoothing techniques, such as edge-based, cell-based, or node-based strategies.
The objective is to reduce the size of the resulting optimization problem and consequently
improve the computational efficiency of the current procedure.
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