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Abstract. The homogenization method is used to investigate temperature effects on the
water content–capillary pressure relationship and on the poro–mechanical behavior of un-
saturated porous media. Two different phenomena have been considered: the tempera-
ture variations of surface tensions and the thermal dilatation of the solid phase in the
framework of micromechanical models that are proposed in order to highlight the influ-
ence of the deformability of the solid phase on the macroscopic behavior. The result show
that taking into account the coupling between the deformation of the porous space and
the capillary effects can radically modify the prediction of the temperature influence on
the capillary curve.

Keywords: beam, nonlinear vibration, vibration equation, resonance oscillation, asymptotic
method.

1. INTRODUCTION

The influence of temperature on the properties of geomaterials is of major concern
in the design of engineering applications as high-level radioactive waste disposal [1].
To relate the effects of partial saturation and temperature changes within a macroscopic
thermodynamic framework requires one is able to postulate the form of macroscopic
constitutive laws from experimental data. Because of couplings between many phases
and of the experimental evidence that most of the unsaturated porous media have a non
linear behavior, this question is still debated. For instance, such an important question as
the temperature effects on the water content–capillary pressure relationship has not yet

https://doi.org/10.15625/0866-7136/19023
mailto: viettb@utc.edu.vn


236 Bao Viet Tran, Xavier Chateau

received a satisfactory answer. Because of its ability to incorporate at the macroscopic
level the physics of the microscopic level as well as the morphological aspects, at least
partly, it is believed that homogenization methods may be a helpful modeling tool. In the
present paper, the formulation of the thermo–poro–mechanical behavior of unsaturated
media is addressed within the framework of upscaling techniques.

In the first section following the introduction, it is briefly recalled that the water
content-capillary pressure curve scales like the surface tension in the capillary inter-
face when it is assumed that the solid matrix is rigid and the interactions between the
solid phase and the capillary interfaces are described by the classical Laplace and Young-
Dupré laws [2]. Then, departure from this scaling law may be ascribed to deformation of
the solid phase or to physico chemical interactions between the fluid phases and the solid
matrix. In this paper, only the effects of solid phase deformations are taken into account.

In order to evaluate the influence of the solid phase deformability, we address the
situation where the solid matrix is linear elastic.

In the third section of this paper, the porous space is modeled as a set of spherical
pores which are either filled by liquid or by gas. Special attention is devoted to the link
between the sorption-desorption hysteretic phenomena and the thermo-mechanical be-
havior of the porous medium. In the fourth section of the paper, we consider the situation
where the porous space is made up of cracks connected one another. Unlike the previous
model, this model accounts for nonlinear coupling between the solid matrix strains and
the capillary internal forces. It is shown that this coupling induces temperature effects on
the water content–capillary pressure relationship. A brief conclusion is given at the end
of the paper.

2. RIGID POROUS MATERIALS

To begin with, it is assumed that the solid phase is made up of a rigid material.
In this situation, the water content–capillary pressure relationship depends on the mor-
phological properties of the porous space and on the surface tension values. Then, the
temperature variations of the surface tensions are expected to induce change of the wa-
ter content–capillary pressure relationship. The main problem one has to face to model
the temperature effects on the water retention curve of porous media is the lack of ex-
perimental data. Whereas it is rather difficult to experimentally measure the solid–fluid
surface tension on well–defined samples [3], it is even more difficult, if not impossible,
to estimate these quantities for porous materials. In most of the situations of practical in-
terest, only the relationship between the liquid–gas surface tension and the temperature
is known. Consequently, it is generally assumed that the wetting angle does not depend
on the temperature.
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Let us consider a rigid porous material, the porous space of which is filled by a liquid
and a gas. For simplicity, it is assumed that the liquid perfectly wets the solid phase and
the solid–liquid surface tension is naught. Then the surface tension in the liquid-gas
interface and in the solid-gas interface are equal. Temperature dependence of surface
tensions is described by the law:

γ(θ) = γ0 f (θ), (1)

where θ denotes the temperature difference between the current configuration and the
reference configuration, γ(θ) the solid–gas and the liquid–gas surface tensions at temper-
ature θ and γ0 is the surface tension at the reference temperature. When the unsaturated
material is in mechanical and thermodynamical equilibrium at temperature θ, the pres-
sures are uniform over the domains occupied by the fluid phases, even if these domains
are not connected. The fluid pressures are then related by the Laplace law

pc(θ) = pg(θ)− p`(θ) =
2γ(θ)

r`g
, (2)

where 2/r`g denotes the mean curvature of the liquid–gas interface. Putting Eq. (1) into
Eq. (2) yields the relationship between the capillary pressure and the temperature for a
given configuration of the capillary interface within the porous space:

pc(θ) =
γ(θ)

γ0
pc(0). (3)

Then, it is easily seen from Eq. (3) that when all the assumptions described above are
fulfilled, the water content–capillary pressure relationship is described by a master curve
as depicted in Fig. 1.
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Figure 1: Water retention master curve for a rigid porous medium in the
normalized water content–normalized capillary pressure diagram.

by the macroscopic strain E and by the temperature θ. At the microscopic
level, the solid obeys the state law

σ = C : (e − αθ). (4)

where C denotes the isothermal tensor of elastic moduli of the solid phase
while α is the thermal expansion tensor of the solid phase. Both quanti-
ties are assumed to be uniform over the solid domain (homogeneous solid
phase). The internal forces in the porous space are described by the liq-
uid pressure pℓ in the liquid domain, the gas pressure pg in the gaseous
domain and by the surface tension γ(θ) in the gas–liquid and the solid–
gas interfaces (it is again assumed that the liquid phase perfectly wets the
solid phase and that the surface tension is naught in the liquid–solid in-
terface). It is also assumed that the porous space is made up of N subsets
of spherical pores, each subset being characterized by the pore radius Rβ

and the volume fraction Sβ (β = 1, . . . , N). The distribution of liquid and
gas in the pore network is described by the set Ig according to the follow-
ing rule: if β ∈ Ig, the pores of the subset β are filled with gas whereas
they are filled with liquid if β /∈ Ig. Then, performing exactly the same
computations that in [4], it is shown that the general formulation of the
macroscopic state law is

Σ = Ch : (E − αθ) +
(
Sr pc − pg

)
B

+ ∑
β∈Ig

2γ(θ)

Rβ
SβB

(5)

4

Fig. 1. Water retention master curve for a rigid porous medium in the normalized water content–
normalized capillary pressure diagram

Interestingly, this property does not depend on the morphology of the studied porous
medium.
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3. LINEAR POROELASTIC MODEL

The thermo–poro–elastic behavior of an unsaturated porous medium is addressed in
the framework of upscaling techniques performing exactly the same approach that in [4]
the only difference coming from the temperature changes considered in this paper. The
mechanical loading applied to the representative elementary volume of porous medium
is now defined by the macroscopic strain E and by the temperature θ. At the microscopic
level, the solid obeys the state law

σ = C : (e− αθ). (4)

where C denotes the isothermal tensor of elastic moduli of the solid phase while α is the
thermal expansion tensor of the solid phase. Both quantities are assumed to be uniform
over the solid domain (homogeneous solid phase). The internal forces in the porous
space are described by the liquid pressure p` in the liquid domain, the gas pressure pg in
the gaseous domain and by the surface tension γ(θ) in the gas–liquid and the solid–gas
interfaces (it is again assumed that the liquid phase perfectly wets the solid phase and
that the surface tension is naught in the liquid–solid interface). It is also assumed that the
porous space is made up of N subsets of spherical pores, each subset being characterized
by the pore radius Rβ and the volume fraction Sβ (β = 1, . . . , N). The distribution of
liquid and gas in the pore network is described by the set Ig according to the following
rule: if β ∈ Ig, the pores of the subset β are filled with gas whereas they are filled with
liquid if β /∈ Ig. Then, performing exactly the same computations that in [4], it is shown
that the general formulation of the macroscopic state law is

Σ = Ch : (E− αθ) +
(
Sr pc − pg

)
B

+ ∑
β∈Ig

2γ(θ)

Rβ
SβB, (5)

where Ch denotes the overall elastic tensor, B, the Biot tensor and Sr the saturation ratio.
It is recalled that the Biot tensor reads

B = δ :
(

I−C−1 : Ch

)
, (6)

where δ denotes the second order unit tensor and I the fourth order unit tensor.

In order to relate the evolutions of the set Ig to the variations of the capillary pressure,
we use the classical model in which the pore network is made up of spherical pores of
decreasing radius connecting one another by capillary necks of decreasing radius rβ as
described in [4, 5] (see Fig. 2).

As it is well known, this model explains the hysteresis of the capillary curve by the
fact that the capillary pressure at which the gas enters the pore is controlled by the neck
radius rβ whereas the liquid enters the pore at a capillary pressure controlled by the pore
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where Ch denotes the overall elastic tensor, B, the Biot tensor and Sr the
saturation ratio. It is recalled that the Biot tensor reads

B = δ :
(

I − C−1 : Ch

)
(6)

where δ denotes the second order unit tensor and I the fourth order unit
tensor.

In order to relate the evolutions of the set Ig to the variations of the
capillary pressure, we use the classical model in which the pore network is
made up of spherical pores of decreasing radius connecting one another by
capillary necks of decreasing radius rβ as described in [4,5] (see Figure 2).
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Figure 2: A morphological model for the hysteresis of the capillary curve.

As it is well known, this model explains the hysteresis of the capillary
curve by the fact that the capillary pressure at which the gas enters the
pore is controlled by the neck radius rβ whereas the liquid enters the pore
at a capillary pressure controlled by the pore radius Rβ. In the framework
of this sample model, the overall state law reads

Σ = Ch : (E − αθ)

+
(
Sr pc − pg + Σg(Sr, θ)

)
B

(7)

with Σg(Sr, θ) defined by (see Figure 3):

Σg(Sr, θ) =
∫ 1

Sr
pc(θ)(dSr > 0)dSr (8)

In equation 8, pc(θ)(dSr > 0) denotes the imbibition saturation–capillary
pressure relationship. As the saturation ratio–capillary pressure relation-
ship is evaluated on the unloaded configuration at θ = 0, the water re-
tention behavior of the material is again described by a master curve in
the water content–normalized capillary pressure diagram. Then, this mi-
cromechanical model does not explain why some materials do not obey
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Fig. 2. A morphological model for the hysteresis of the capillary curve

radius Rβ. In the framework of this sample model, the overall state law reads

Σ = Ch : (E− αθ)

+
(
Sr pc − pg + Σg(Sr, θ)

)
B,

(7)

with Σg(Sr, θ) defined by (see Fig. 3):

Σg(Sr, θ) =
∫ 1

Sr

pc(θ)(dSr > 0)dSr. (8)
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Figure 3: Prestress Σ(Sr, 0) in the capillary pressure–saturation ratio dia-
gram.

the simple rule depicted in Figure 1. Nevertheless, this micromechanical
model accounts for temperature effects on the poromechanical behavior
of the porous medium as a function of both the thermal dilatation of the
solid phase and the temperature variations of surface tension. As the un-
saturated porous state law reads:

Σ = Ch : (E − αθ)

+
γ(θ)

γ0

(
Sr pc(0)− pg + Σg(Sr, 0)

)
B

(9)

it can be evaluated from the knowledge of the water content–capillary
pressure diagram measured at the reference temperature, the thermal di-
latation tensor of the solid matrix α and the drained mechanical tensors
Ch and B. State equation 9 generalizes the model described in [2] to the
situations in which temperature effects can not be neglected. As for the
isothermal evolutions of the system, the capillary pressure curves and the
drained thermo–mechanical properties allow to characterize the thermo–
mechanical behavior in unsaturated conditions.

4 NONLINEAR POROELASTIC MODEL
We now take into consideration the coupling between the deformation of
the pores and the capillary effects. We consider an unsaturated mesoc-
racked medium the pores of which are modeled as oblate ellipsoids as
described in [6, 7] (see Figure 4). For simplicity, we only consider the sit-
uations where the cracks are identical (ie same shape, same size and same
capillary state) except for theirs orientations. More precisely, it is assumed
that each crack can be satisfactory described by an oblate ellipsoid with
radius a and opening c (see Figure 4). The dilute scheme, pertinent to the

6

Fig. 3. Prestress Σ(Sr, 0) in the capillary pressure–saturation ratio diagram

In Eq. (8), pc(θ)(dSr > 0) denotes the imbibition saturation–capillary pressure re-
lationship. As the saturation ratio–capillary pressure relationship is evaluated on the
unloaded configuration at θ = 0, the water retention behavior of the material is again de-
scribed by a master curve in the water content–normalized capillary pressure diagram.
Then, this micromechanical model does not explain why some materials do not obey the
simple rule depicted in Fig. 1. Nevertheless, this micromechanical model accounts for
temperature effects on the poromechanical behavior of the porous medium as a function
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of both the thermal dilatation of the solid phase and the temperature variations of surface
tension. As the unsaturated porous state law reads:

Σ = Ch : (E− αθ)

+
γ(θ)

γ0

(
Sr pc(0)− pg + Σg(Sr, 0)

)
B,

(9)

it can be evaluated from the knowledge of the water content–capillary pressure diagram
measured at the reference temperature, the thermal dilatation tensor of the solid matrix
α and the drained mechanical tensors Ch and B. State Eq. (9) generalizes the model
described in [2] to the situations in which temperature effects can not be neglected. As
for the isothermal evolutions of the system, the capillary pressure curves and the drained
thermo–mechanical properties allow to characterize the thermo–mechanical behavior in
unsaturated conditions.

4. NONLINEAR POROELASTIC MODEL

We now take into consideration the coupling between the deformation of the pores
and the capillary effects. We consider an unsaturated mesocracked medium the pores of
which are modeled as oblate ellipsoids as described in [6, 7] (see Fig. 4).

x3

x1R2

R1

a

c

Figure 4: The unsaturated elliptic crack

situations where one can consider that the cracks are not interacting, is
adopted. Furthermore, it is assumed that the cracks are isotropically dis-
tributed within an isotropic solid matrix. It is convenient to introduce the
aspect ratio X = c/a and the crack density ε defined by n = 4/3π [8].
n denotes the porosity in the actual configuration. The overall behavior
of the material is isotropic characterized in the dry situation by the shear
modulus µh

µh = µ (1 − β) (10)
with

β =
32
45

ε
(5 − ν)(1 − ν)

2 − ν
(11)

and the bulk modulus kh

kh = k (1 − b) with b =
16
9

ε
1 − ν2

1 − 2ν
(12)

where µ and k denote the shear modulus and the bulk modulus of the
solid matrix and ν is the Poisson ratio. It is worth noting that the elastic
properties of the cracked medium does not depend on the aspect ratio
of the cracks [6, 7]. Then the macroscopic state equation is linear in the
saturated regime as long as the cracks remain open.

When thermal expansion of the solid phase and temperature varia-
tion of the surface tensions are taken into account, the overall behavior of
the unsaturated cracked material is obtained performing exactly the same
approach that in [6]. The macroscopic thermal expansion tensor of the
cracked material is equal to that of the solid matrix.

When the cracks are saturated by a fluid at pressure p, the change of
scale approach allows to recover the classical Biot state law of poroelastic-
ity [9]

Σ + pbδ = Ch : (E − αθδ) (13)
To address the unsaturated regime, it is assumed that the distribution

of the fluid phases inside the cracks complies with the property of cylin-
drical symmetry around the smaller axis of the crack. The solution of this

7

Fig. 4. The unsaturated elliptic crack

For simplicity, we only consider the situations where the cracks are identical (ie same
shape, same size and same capillary state) except for theirs orientations. More precisely, it
is assumed that each crack can be satisfactory described by an oblate ellipsoid with radius
a and opening c (see Fig. 4). The dilute scheme, pertinent to the situations where one can
consider that the cracks are not interacting, is adopted. Furthermore, it is assumed that
the cracks are isotropically distributed within an isotropic solid matrix. It is convenient
to introduce the aspect ratio X = c/a and the crack density ε defined by n = 4/3π [8]. n
denotes the porosity in the actual configuration. The overall behavior of the material is
isotropic characterized in the dry situation by the shear modulus µh

µh = µ (1− β) , (10)
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with

β =
32
45

ε
(5− ν)(1− ν)

2− ν
, (11)

and the bulk modulus kh

kh = k (1− b) with b =
16
9

ε
1− ν2

1− 2ν
, (12)

where µ and k denote the shear modulus and the bulk modulus of the solid matrix and ν

is the Poisson ratio. It is worth noting that the elastic properties of the cracked medium
does not depend on the aspect ratio of the cracks [6,7]. Then the macroscopic state equa-
tion is linear in the saturated regime as long as the cracks remain open.

When thermal expansion of the solid phase and temperature variation of the surface
tensions are taken into account, the overall behavior of the unsaturated cracked material
is obtained performing exactly the same approach that in [6]. The macroscopic thermal
expansion tensor of the cracked material is equal to that of the solid matrix.

When the cracks are saturated by a fluid at pressure p, the change of scale approach
allows to recover the classical Biot state law of poroelasticity [9]

Σ + pbδ = Ch : (E− αθδ). (13)

To address the unsaturated regime, it is assumed that the distribution of the fluid
phases inside the cracks complies with the property of cylindrical symmetry around the
smaller axis of the crack. The solution of this problem is carried out within the framework
of the toroidal approximation [10, 11]. The intersection of the liquid–gas interface with a
plane containing the small axis of the ellipsoid is approximated by an arc of a circle with
radius R1, whose center is located in the plane Ox1x3 at a distance R2 from the axis 0x3

(Figure 4). Within the framework defined by this approximation, it is possible to compute
analytically both the capillary pressure and the the average of the capillary forces with
consideration of the presence of the fluids in the pore.

Using the approximation X � 1 into the equations allowing to compute the capillary
pressure and the saturation ratio yields the following equation for the capillary curve

pc =
γ

aX
1

cos ϕ
, Sr = cos3 ϕ, (14)

where ϕ is a scalar varying from 0 to π/2. The average of the prestress (defined as the
fluid pressure in the fluid domains and the surface tension in the interfaces) over the
domain occupied by a crack reads

< σp >=
γ

aX

(
3− cos2ϕ

2
δ− 3

2
sin2 ϕ e3 ⊗ e3

)
− pgδ. (15)
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The quantity (e3 ⊗ e3) :< σp > is denoted by σp in the sequel. It is easily shown from
Eq. (15) that we have

σp =
γ cos2 ϕ

aX
− pg =

γ3

a3X3
1
p2

c
− pg. (16)

Of course, the surface tension γ involved in Eqs. (14), (15) and (16) depends upon the
temperature θ.

We now investigate the effect of the variation of the cracks aspect ratio on the overall
behavior of the unsaturated cracked material. The possibility of a total closing of cracks
is set aside. Due to the geometrical change, an incremental approach is necessary.

When the free stress configuration is taken as a reference, it can be shown that the
overall state law reads

Σ = Ch : (E− αθδ) + Σp, (17)

with

Σp = ε
∫ ϕ=π

ϕ=0

∫ ψ=2π

ψ=0

X < σp >

3
T sin ϕdψdϕ. (18)

The macroscopic prestress Σp is computed by integrating the microscopic quantities over
the definition set for Euler’s angles. In Eq. (18), the quantities X, T and < σp > usually
depend on the Euler’s angles. For each crack, T(ψ, ϕ) is a fourth order tensor allowing to
compute the deformation of the crack as a function of the macroscopic prescribed strain
in the isothermal dry regime [7].

Strictly speaking, Eq. (17) is valid only if the cracks shape remains that of an oblate
ellipsoid in the course of the material deformation. As this property holds only if the
prestress tensor is uniform over the cracks domain, the state law (17) may be seen as a
first estimate to the behavior of unsaturated cracked materials accounting for the cracks
geometry change. Similarly, it is assumed in the sequel that the results allowing to com-
pute the average of the prestress tensor over the cracks are still valid when the cracks
deform.

The localization tensor T relates the cracks strain increment to the increment of the
macroscopic strain and the variation of the prestress in the crack. The integration of this
equation from the reference state (E = 0, σp = 0 in each crack) provides the link between
the macroscopic strain, the aspect ratio and the average of the capillary prestress tensor
over the crack

X− X0 = (e3 ⊗ e3) : T :
(
(E− αθδ)−C−1 :< σp >

)
,

(19)

where X0 denotes the aspect ratio of the crack in the initial configuration.

To evaluate the temperature effects, we consider evolutions of the material made up
of cracks with identical radius and aspect ratio randomly distributed in an elastic linear
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isotropic solid matrix submited to an isotropic loading defined by Σ = Σδ and E = Eδ.
As both the material and the loading are isotropic, all the cracks are in the same state
(i.e., same capillary prestress and same aspect ratio). As the expressions for Ch and Σ

are preserved, the state equation reads when the geometrical non-linearity is taken into
account

Σ = 3kh (E− αθ) + bσp, (20)

where σp is defined by the second equation 16 when the cracks are unsaturated and σp

is equal to −p` when the cracks are filled only by the liquid phase. The variation of the
cracks aspect ratio reads

∆X = X− X0 =
9b

4πε
(E− αθ − σp

3k
). (21)

Eqs. (16), (20) and (21) describe the behavior of the unsaturated cracked medium submit-
ted to an isotropic loading. The water content, defined here as the ratio of the volume of
liquid in the deformed configuration to the volume of the cracks in the reference config-
uration reads

wns =
4
3

πε
γ3

a3X2 p3
c

. (22)

In the saturated regime, Eqs. (20) and (21) are still valid with σp = −pc (it is recalled
that the gas pressure is naught). The water content is then defined by

ws =
4
3

πεX. (23)

In the sequel, we consider the situation where no macroscopic stress is applied to the ma-
terial and the gas pressure is taken as reference (i.e., pg = 0). Putting Σ = 0 into Eq. (21)
yields the equation linking the macroscopic isotropic strain E and the temperature θ to
the cracks aspect ratio X. Then it is possible to eliminate the aspect ratio of the cracks
from the state equations for the isotropic loading under consideration.

The unsaturated evolutions of the system are described by the following dimension-
less equations:

pc =
pc

p?c
=

(
γ(θ)

γ0

) 3
2

√
−1

e(1 + e)3 , (24)

with

p?c =

√
bγ3

0

kha3X3
0n0

, (25)

and

e =
E− αθ

3n0
. (26)
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In the unsaturated regime, the normalized water content reads

wns =
wns

n0
=

(
γ(θ)

γ0

)− 3
2

(−e)
3
2 (1 + e)

5
2 . (27)

In Eqs. (24) and (27) n0 denotes the porosity in the undeformed configuration. As the
closure of the cracks is not consider in this paper, e must belong to the set [−1, 0].

In the saturated regime the cracked media obeys the following state equations:

pc = −
3khn0

b
e and ws = 1 + e. (28)

Therefore, it appears that taking into account the coupling between the deformation of
the pores and the capillary forces modifies the way the capillary pressure and the water
content depend on the surface tension in the unsaturated regime. In the framework of
the linear model, a temperature change induces a vertical dilatation of the water content–
capillary pressure curve proportional to the ratio γ0/γ(θ) whereas temperature changes
induce both vertical and horizontal dilatation of the water content–capillary pressure
curve when the capillary forces are evaluated on the deformed configuration. Moreover,
the intensity of this dilatation does not depend linearly on the ratio γ0/γ(θ) (see Eqs. (24)
and (27)). In the saturated regime, the water content–capillary pressure relation ship does
not depend on the temperature (see Eqs. (28)).

The predictions of the nonlinear model are depicted in Fig. 5.

pressure curve when the capillary forces are evaluated on the deformed
configuration. Moreover, the intensity of this dilatation does not depend
linearly on the ratio γ0/γ(θ) (see equations 24 and 27). In the saturated
regime, the water content–capillary pressure relation ship does not de-
pend on the temperature (see equations 28).

The predictions of the nonlinear model are depicted in Figure 5. To
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vℓ

Unsaturated regime (θ = 0)

Unsaturated regime (θ = 80K)

Saturated regime

Figure 5: The dimensionless capillary pressure as a function of the dimen-
sionless water content of a free stress unsaturated medium.

compute the data represented in Figure 5, it was assumed that γ(80K)/γ0 =
0.75, which corresponds roughly to the ratio of water surface tension at
100C over water surface tension at 20C.

5 CONCLUSIONS
Estimates of the temperature effects on the water content-capillary pres-
sure relationship have been proposed within the framework of a microme-
chanical approach to the behavior of unsaturated porous media. Two dif-
ferent phenomena have been considered: the temperature variations of
surface tensions and the thermal dilatation of the solid phase. State law
accounting for these two effects have been built when the solid phase in
rigid and when the solid phase behaves elastically. Furthermore, it has
been shown that taking into account the coupling between the deforma-
tion of the porous space and the capillary effects can radically modify the
prediction of the temperature influence on the capillary curve.

Of course, some others phenomena like physico-chemical coupling be-
tween the solid and the fluid phases cannot be neglected to model the
influence of temperature on the behavior of such materials as fine soils at
high suctions [1]. Then, we intend to develop micromechanical models
accounting for these phenomena in a forthcoming work.
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Fig. 5. The dimensionless capillary pressure as a function of the dimensionless water content of a
free stress unsaturated medium

To compute the data represented in Fig. 5, it was assumed that γ(80K)/γ0 = 0.75,
which corresponds roughly to the ratio of water surface tension at 100C over water sur-
face tension at 20C.
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5. CONCLUSIONS

Estimates of the temperature effects on the water content-capillary pressure relation-
ship have been proposed within the framework of a micromechanical approach to the
behavior of unsaturated porous media. Two different phenomena have been considered:
the temperature variations of surface tensions and the thermal dilatation of the solid
phase. State law accounting for these two effects have been built when the solid phase in
rigid and when the solid phase behaves elastically. Furthermore, it has been shown that
taking into account the coupling between the deformation of the porous space and the
capillary effects can radically modify the prediction of the temperature influence on the
capillary curve.

Of course, some others phenomena like physico-chemical coupling between the solid
and the fluid phases cannot be neglected to model the influence of temperature on the
behavior of such materials as fine soils at high suctions [1]. Then, we intend to develop
micromechanical models accounting for these phenomena in a forthcoming work.
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