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Abstract. This paper presents a simplified model of cracked beam by single-degree-of-
freedom system. Equivalence between the beam and SDOF models means that they have
the same fundamental natural frequency and similar frequency response functions (FRFs).
Similarity of FRFs is checked by using the frequency-domain assurance criterion acknowl-
edged herein as spectral similarity index (SSI). Finally, FRFs of both the cracked beam and
its simplified SDOF model have been examined versus crack location and depth using the
so-called spectral damage index (SDI). Numerical results show that SDI is significantly
sensitive to crack and could be used as a novel indicator for crack detection in beam by
measurements of frequency response functions.

Keywords: cracked beam, simplified model, frequency response function, frequency do-
main assurance criterion.

1. INTRODUCTION

Converting a continuous system to a discrete system with finite degrees of freedom is
the simplest and most reasonable way to the dynamic analysis of elastic structures [1, 2].
It is also the conventional and essential technique for solving partial differential equa-
tions using the well-developed theory of ordinary differential equations. However, the
approach is feasible only in case a set of the orthogonal basic functions such as the eigen-
functions of a differential operator or the mode shapes of free vibration of the structure
under consideration is available. This is incapable of applying for analysis of damaged
structures because finding the basic functions of the structures is not a problem of less dif-
ficulty. In the latter case, the well-known finite element method [3] should be applied, but
the finite element model exists only in an implicit numerical formulation, and it requires

https://doi.org/10.15625/0866-7136/18464
mailto: tthai@imech.vast.vn


184 Tran Thanh Hai, Do Nam

many degrees of freedom. Since most of the vibration energy is usually concentrated in
the fundamental mode, it is sufficient to find a single degree of freedom (SDOF) model
for dynamic analysis of the beam structures [4, 5]. Namely, it was proved both theoret-
ically and experimentally in [6] that SDOF model is satisfactory for investigating free
vibration of a cantilever beam with a breathing crack. Stochino and Carta [7] established
a mass-spring oscillator model of a reinforced concrete beam under impulsive load that
was validated by comparing its displacement maximum and midspan deflection calcu-
lated for the beam with the experimental result. Mousavi et al. [8] proposed an SDOF
model of cracked beam subjected to a moving load and utilized it for detecting crack lo-
cation and severity. They have determined equivalent stiffness and external force using
midspan deflection of the beam under the moving load.

In the present paper, there is constructed an SDOF model of cracked simply sup-
ported beam based mainly on that natural frequency of SDOF oscillator is equal to an
approximate fundamental eigenfrequency of cracked beam. The damping coefficient of
equivalent oscillator is also selected from energy dissipation coeficients of the beam. The
criterion accepted for validating the equivalent models is correlation between Frequency
Response Functions (FRF) of beam and its SDOF model. Finally, sensitivity of the FRFs
to crack is examined using so-called frequency domain assurance criterion [9, 10].

2. SINGLE DEGREE OF FREEDOM SYSTEMS

Let’s consider one degree of freedom system given in Fig. 1, where m, c, k denote
respectively mass, damping coefficient, stiffness of the system and x and P(t) are dis-
placements of the mass and external force respectively.

I. SINGLE DEGREE OF FREEDOM SYSTEMS 

Let’s consider one degree of freedom system given in Fig. 1, where 𝑚, 𝑐, 𝑘 denote respectively 

mass, damping coefficient, stiffness of the system and 𝑥 and P(t)  are displacements of the mass 
and external force respectively. 

 

Fig.1. Single degree of freedom system model 

It is easily to write down equation of motion for the single degree of freedom (SDOF) system in 

the form 

𝑚𝑥̈(𝑡) + 𝑐𝑥̇(𝑡) + 𝑘𝑥(𝑡) = 𝑃(𝑡).                                            (1) 

Introducing following notations 

𝜔0
2 = 𝑘/𝑚, 2𝜁 = 𝑐/√𝑘𝑚 

the equation (1) can be rewritten as 

𝑥̈(𝑡) + 2𝜁𝜔0𝑥̇(𝑡) + 𝜔0
2𝑥(𝑡) = (1/𝑚)𝑃(𝑡).                                          (2) 

In the latter equation 𝜔0 = √𝑘/𝑚 is acknowledged as natural frequency and 𝜁 – damping ratio of 

the system. 

Supposing now that 

𝑃(𝑡) = 𝑃0𝑒
𝑖ω𝑡, 

Eq. (2) becomes 

𝑥̈(𝑡) + 2𝜁𝜔0𝑥̇(𝑡) + 𝜔0
2𝑥(𝑡) = 𝑃̂0𝑒

𝑖ω𝑡, 𝑃̂0 = 𝑃0/𝑚.                                (3) 

Seeking solution of Eq.(3) in the form 

 𝑥(𝑡) = 𝑋𝑒𝑖ω𝑡                                                              (4) 

one gets 

𝑋(𝜔) = 𝑃̂0/[𝜔0
2 −ω2 + 2𝑖𝜁𝜔0𝜔].                                            (5) 

Therefore,  

𝐴(𝜔) = 𝑅𝑒𝑋(𝜔) = 𝑃̂0/[(𝜔0
2 −ω2)2 + 4𝜁2𝜔0

2𝜔2];                             (6) 

𝜑(𝜔) = atan⁡[2𝜁𝜔0𝜔/(𝜔0
2 −ω2)]                                         (7) 

are the amplitude and dephase respectively of the forced vibration (4). It can be seen from the later 

equations that the forced vibration amplitude reaches its maximum for exciting frequency 𝜔 =

 

m 

x(t) 

P(t) 

k c 

Fig. 1. Single degree of freedom system model
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It is easily to write down equation of motion for the single degree of freedom (SDOF)
system in the form

mẍ (t) + cẋ (t) + kx (t) = P (t) . (1)

Introducing following notations

ω2
0 = k/m, 2ζ = c/

√
km.

Eq. (1) can be rewritten as

ẍ (t) + 2ζω0 ẋ (t) + ω2
0x (t) = (1/m) P (t) . (2)

In the latter equation ω0 =
√

k/m is acknowledged as natural frequency and ζ is damp-
ing ratio of the system.

Supposing now that

P (t) = P0eiωt.

Eq. (2) becomes

ẍ (t) + 2ζω0 ẋ (t) + ω2
0x (t) = P̂0eiωt, P̂0 = P0/m. (3)

Seeking solution of Eq. (3) in the form

x (t) = Xeiωt, (4)

one gets

X (ω) = P̂0/
[
ω2

0 −ω2 + 2iζω0ω
]

. (5)

Therefore,

A (ω) = ReX (ω) = P̂0/
[(

ω2
0 −ω2)2

+ 4ζ2ω2
0ω2

]
, (6)

ϕ (ω) = atan
[
2ζω0ω/

(
ω2

0 −ω2)] , (7)

are the amplitude and dephase respectively of the forced vibration (4). It can be seen from
the later equations that the forced vibration amplitude reaches its maximum for exciting

frequency ω = ωr = ω0

√
1− 2ζ2 that is called resonant frequency and very close to the

natural frequency in case of small damping ratio.

On the other hand, the function

FRF (ω) = A0/
[
ω2

0 −ω2 + 2iζω0ω
]

, (8)

is acknowledged as frequency response function of the SDOF system.
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3. VIBRATORY MODEL OF CRACKED BEAMS

Now, let’s consider a Euler–Bernoulli (EB) beam of meterial and geometry constants:
E, G, ν, ρ are the elastic and shear modulus, Poisson coefficient and mass density; `, A =

b× h, I = bh3/12 is the length, cross-section area and moment of inertia. Moreover, it is
assumed that the beam is multiple cracked at positions 0 ≤ e1 < e2 < . . . < en−1 < en ≤ `

and all the cracks are transverse and open with depths repectively (a1, . . . , an) as shown
in Fig. 2.

𝜔𝑟 = 𝜔0√1 − 2𝜁2 that is called resonant frequency and very close to the natural frequency in case 

of small damping ratio. 

On the other hand, the function 

𝐹𝑅𝐹(𝜔) = 𝐴0/[𝜔0
2 −ω2 + 2𝑖𝜁𝜔0𝜔]                                            (8) 

is acknowledged as frequency response function of the SDOF system. 

II. VIBRATORY MODEL OF CRACKED BEAMS 

Now, let’s consider a Euler-Bernoulli (EB) beam  of meterial and geometry constants: 𝐸, 𝐺, 𝜈, 𝜌 

are the elastic and shear modulus, Poisson coefficient and mass density; ℓ, 𝐴 = 𝑏 × ℎ, 𝐼 = 𝑏ℎ3/12  

- the length, cross-section area and moment of inertia. Moreover, it is assumed that the beam is 

multiple cracked at positions 0 ≤ 𝑒1 < 𝑒2 < ⋯ < 𝑒𝑛−1 < 𝑒𝑛 ≤ ℓ and all the cracks are transverse 

and open with depths repectively (𝑎1, … , 𝑎𝑛) as shown in Fig. 3.  

 

 

Fig. 3. Model of multiple cracked beam 

2.1. Vibration mode and frequency equation 

As well known, vibration shape of an EB-beam is difined as solution of equation 

𝑑4𝜙(𝑥)

𝑑𝑥4
− 𝜆4𝜙(𝑥) = 0, 𝜆4 = 𝜌𝐴𝜔2/𝐸𝐼,                                                (9) 

that is solved together with boundary conditions. Moreover, in the recently published review [3] 

general solution for vibration shape of multiple cracked EB beam has been obtained in the form 

𝜙(𝑥,𝜔) = 𝐶1Φ1(𝜆𝑥) + 𝐶2Φ2(𝜆𝑥) + 𝐶3Φ3(𝜆𝑥) + 𝐶4Φ3(𝜆𝑥),                            (10) 

where 𝐶1, 𝐶2, 𝐶3, 𝐶4 are constants, 𝜆 = (𝜌𝐴𝜔2/𝐸𝐼)1/4 and Φ𝑘(𝜆𝑥), 𝑘 = 1,2,3,4 are 

Φ1(𝜆𝑥) = ⁡𝐿01(𝜆𝑥) + ∑ 𝜇𝑗1𝐾(𝑥 − 𝑒𝑗)
𝑛
𝑗=1 ; Φ2(𝜆𝑥) = ⁡𝐿02(𝜆𝑥) + ∑ 𝜇𝑗2𝐾(𝑥 − 𝑒𝑗)

𝑛
𝑗=1 ;  (11) 

Φ3(𝜆𝑥) = ⁡𝐿03(𝜆𝑥) + ∑ 𝜇𝑗3𝐾(𝑥 − 𝑒𝑗)
𝑛
𝑗=1 ; Φ40(𝜆𝑥) = ⁡𝐿04(𝜆𝑥) + ∑ 𝜇𝑗4𝐾(𝑥 − 𝑒𝑗)

𝑛
𝑗=1 ; 

𝐾(𝑥) = {
0⁡⁡⁡⁡⁡⁡for⁡𝑥 < 0
𝑆(𝑥)⁡for⁡𝑥 ≥ 0

⁡; ⁡𝑆(𝑥) = (1/2𝜆)(sinh 𝜆 𝑥 + sin 𝜆 𝑥);                          (12) 

𝜇𝑗1 = 𝛾𝑗[𝐿01
′′ (𝜆𝑒𝑗) + ∑ 𝜇𝑘1𝑆

′′(𝑒𝑗 − 𝑒𝑘)
𝑗−1
𝑘=1 ];  

ℓ 

1 
j 

j 1 

x E, , A 

Kj 

ej 

aj 

e1 

a1 

Fig. 2. Model of multiple cracked beam

3.1. Vibration mode and frequency equation

As well known, vibration shape of an EB-beam is difined as solution of equation

d4φ (x)
dx4 − λ4φ (x) = 0, λ4 = ρAω2/EI, (9)

that is solved together with boundary conditions. Moreover, in the recently published
review [3] general solution for vibration shape of multiple cracked EB beam has been
obtained in the form

φ (x, ω) = C1Φ1 (λx) + C2Φ2 (λx) + C3Φ3 (λx) + C4Φ3 (λx) , (10)

where C1, C2, C3, C4 are constants, λ =
(
ρAω2/EI

)1/4
and Φk (λx) , k = 1, 2, 3, 4 are

Φ1 (λx) = L01 (λx) +
n

∑
j=1

µj1K
(
x− ej

)
, Φ2 (λx) = L02 (λx) +

n

∑
j=1

µj2K
(
x− ej

)
, (11)

Φ3 (λx) = L03 (λx) +
n

∑
j=1

µj3K
(
x− ej

)
, Φ4 (λx) = L04 (λx) +

n

∑
j=1

µj4K
(
x− ej

)
,

K (x) =

{
0 for x < 0
S (x) for x ≥ 0

, S (x) = (1/2λ) (sinh λx + sin λx) , (12)
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µj1 = γj

[
L
′′
01
(
λej
)
+

j−1

∑
k=1

µk1S′′
(
ej − ek

)]
,

µj2 = γj

[
L
′′
02
(
λej
)
+

j−1

∑
k=1

µk2S′′
(
ej − ek

)]
, (13)

µj3 = γj

[
L
′′
03
(
λej
)
+

j−1

∑
k=1

µk3S′′
(
ej − ek

)]
, µj4 = γj

[
L
′′
04
(
λej
)
+

j−1

∑
k=1

µk4S′′
(
ej − ek

)]
.

The functions L01 (λx) , L02 (λx) , L03 (λx) , L04 (λx) are four independent solutions
of free vibration problem for uncracked beam and (n× 4) - matrix of so-called damage
indexes

[µ] =
{

µjk, j = 1, . . . , n; k = 1, 2, 3, 4
}

,

given in Eq. (13) is calculated from crack parameters
(
ej, γj, j = 1, . . . , n

)
by

{µ} = [G]−1 [B] ,

where G=
[
gij, i, j = 1, 2, 3, . . . , n

]
is n× n - matrix with elements

gij = {1 if i = j; 0 for i < j;−γiS′′
(
ei − ej

)
for i > j} (14)

and matrix [B] = [b1, b2, b3, b4] of 4 vectors of dimension n

{b1} =
{

γ1L
′′
01 (λe1) , . . . , γnL

′′
01 (λen)

}T
, {b2} =

{
γ1L

′′
02 (λe1) , . . . , γnL

′′
02 (λen)

}T
,

{b3} =
{

γ1L
′′
03 (λe1) , . . . , γnL

′′
03 (λen)

}T
, {b4} =

{
γ1L

′′
04 (λe1) , . . . , γnL

′′
04 (λen)

}T
,

(15)
γj = 6π

(
1− ν2) (h/L) fb

(
aj/h

)
,

fb (z) = z2
(

0.6272− 1.04533z + 4.5948z2 − 9.9736z3 + 20.2948z4 − 33.0351z5

+47.1063z6 − 40.7556z7 + 19.6z8) .
(16)

Substituting vibration modes (10) into general boundary conditions given in the form

φ(p0) (0, ω) = 0, φ(q0) (0, ω) = 0, φ(p1) (`, ω) = 0, φ(q1) (`, ω) = 0, (17)

with derivative orders p0, q, p1, q1 that could be equal to one of the values (0, 1, 2, 3),
leads to the equations allowing one to find natural frequencies and mode shapes of mul-
tiple cracked EB-beams. Namely, suppose that vibration shape (10) satisfying boundary
conditions (17) at the left end of beam can be represented as

φ (x, ω) = AL1 (λx) + BL2 (λx) , (18)

with

L1 (λx) = L01 (λx) +
n

∑
j=1

µj1K
(
x− ej

)
, L2 (λx) = L02 (λx) +

n

∑
j=1

µj2K
(
x− ej

)
. (19)
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Then, remaining boundary conditions in (17) yield the equations

C1L(p1)
1 (λ`) + C2L(p1)

2 (λ`) = 0, C1L(q1)
1 (λ`) + C2L(q1)

2 (λ`) = 0 (20)

that result in the so-called frequency equation for multiple cracked beams in the form

L(p1)
1 (λ`) L(q1)

2 (λ`)− L(q1)
1 (λ`) L(p1)

2 (λ`) = 0. (21)

In case of simply supported beams functions L01 (λx) , L02 (λx) can be chosen as

L01 (λx) = sinh λx, L02 (λx) = sin λx,

and, therefore, frequency equation (21) for simply supported beam with single crack is
reduced to [11]

fss (λ) + γ1gss (λ, e1) = 0, (22)

where
fss (λ) = 2λ sinh λ` sin λ`,

gss (λ, e) = sinh λ (`− e1) sinh λe1 sin λ`− sinh λ` sin λ (`− e1) sin λe1.

3.2. Frequency response function

We consider now forced vibration in multiple cracked beams described by the equa-
tions [12]

EI
∂4

∂x4

(
1 + iµ2

∂

∂t

)
w (x, t) + ρAµ1

∂w (x, t)
∂t

+ ρA
∂2w (x, t)

∂t2 = P0eiωtδ (x− `/2) . (23)

Seeking solution of Eq. (23) in the form

w (x, t) = φ (x) eiωt,

one gets following equation for vibration shape φ(x)

d4φ (x)
dx4 − λ̂4φ (x) = P̂0δ (x− `/2) , (24)

where

λ̂4 =
ρA
(
ω2 − iωµ1

)
EI (1 + iωµ2)

, P̂0 =
P0

EI (1 + iωµ2)
.

First, let’s consider complex frequency parameter

λ̂4 =
ρA
(
ω2 − iωµ1

)
EI (1 + iωµ2)

=
ρAω2 (α− iβ)

EI
=

ρAω̂2

EI
, (25)

with
ω̂2 = ω2 (α + iβ) , (26)

α = (1 + µ1µ2) /
(
1 + ω2µ2

2
)

, β =
(
µ1 + ω2µ2

)
/ω

(
1 + ω2µ2

2
)

.
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It was well-known that general solution of Eq. (23) is

φ (x) = φ0 (x) + P̂0

∫ x

0
h (x− s) δ (s− `/2)ds = φ0 (x) + P̂0h (x− `/2) , (27)

where
h (x) =

{
0 : for x < 0;

(
sinh λ̂x− sin λ̂x

)
/2λ̂3 : forx ≥ 0

}
, (28)

and function φ0 (x) as mentioned above can be expressed in the form of Eqs. (18) and (19)
satisfying given boundary conditions at the left end of the beam. Thus, now putting (27)
with (18) into boundary conditions at the right end one gets the equations

AL(p1)
1

(
λ̂`
)
+ BL(p1)

2

(
λ̂`
)
= −P̂0h(p1) (`/2) , AL(q1)

1

(
λ̂`
)
+ BL(q1)

2

(
λ̂`
)
= −P̂0h(q1) (`/2) ,

that give the constants A, B to be calculated as

A =
(

P̂0/∆
)

Â, B =
(

P̂0/∆
)

B̂,

with
Â =

[
h(q1) (`/2) L(p1)

2

(
λ̂`
)
+ h(p1) (`/2) L(q1)

2

(
λ̂`
)]

, (29)

B̂ =
[

L(q1)
1

(
λ̂`
)

h(p1) (`/2)− L(p1)
1

(
λ̂`
)

h(q1) (`/2)
]

, (30)

∆ = L(p1)
1

(
λ̂`
)

L(q1)
2

(
λ̂`
)
− L(q1)

1

(
λ̂`
)

L(p1)
2

(
λ̂`
)

. (31)

Obviously, the right-hand side of Eq. (31) becomes the left-hand side of Eq. (21) if
the damping coefficients µ1 = µ2 = 0. Finally, solution (27) gets the form

φ (x, ω) =
(

P̂0/∆
) [

h
(

x− `

2

)
∆ + ÂL1

(
λ̂x
)
+ B̂L2

(
λ̂x
)]

. (32)

Furthermore, solution (32) calculated at the beam middle would be

φ (`/2, ω) =
(

P̂0/∆
) [

ÂL1
(
λ̂`/2

)
+ B̂L2

(
λ̂`/2

)]
and therefore, the so-called frequency response function of midspan deflection of the
beam is

FRF (`/2, ω) = φ (`/2, ω) /P̂0 =
ÂL1

(
λ̂`/2

)
+ B̂L2

(
λ̂`/2

)
L(p1)

1

(
λ̂`
)

L(q1)
2

(
λ̂`
)
− L(q1)

1

(
λ̂`
)

L(p1)
2

(
λ̂`
) . (33)

4. A SIMPLIFIED MODEL OF CRACKED BEAM

This section is devoted to finding a single-degree-of-freedom system that could equiv-
alently represent a simply supported Euler–Bernoulli beam with single crack. In princi-
ple, a SDOF system is determined by three parameters: mass m, stifness k and damping
coefficient c. However, from the mechanics point of view, the system can be character-
ized by two features: natural frequency ω0 =

√
k/m and damping ratio ζ = c/2

√
km as

shown in Eq. (2) or Eq. (8).
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First, the natural frequency ωE of the sought equivalent system can be accepted to
be equal to the fundamental frequency of the cracked beam given by

ω2
E = ω2

01

[
1−

n

∑
j=1

χ
(
aj
)

ϕ
(
ej
)]

, (34)

where ω2
01 =

EI
ρA

(π

`

)4
is fundamental frequency of uncracked simply supported beam

and the functions χ (a) , ϕ (e) are determined from the condition

(ωE −ω1)
2 → min, (35)

where ω1 = λ2
1

√
EI/ρA with λ1 being the first solution of Eq. (22). Solving the optimiza-

tion problem (35) gives the solution

χ (a) = fb (a1/h) , (36)

with
a1 = g (a) = 0.04 + 1.4167a− 5.8333a2 + 33.3333a3 − 66.6667a4, (37)

and function fb (z) is defined in (16) and

ϕ (e) = 2.9e (1− e) . (38)

Thus, we found that

ω2
E =

k
m

=
EI
ρA

(π

`

)4
ϑ = ω2

01ϑ, (39)

with

ϑ = 1−
n

∑
j=1

χ
(
aj
)

ϕ
(
ej
)

. (40)

Particularly, the mass and stiffness of the desired system can be accepted as [8]

m =
48ρA`

π4 , k =
48EI
`3 ϑ. (41)

On the other hand, complex eigenfrequency of damped SDOF system is a root of the
equation

ω2
0 −ω2 + 2iζω0ω = 0,

with respect to ω that gives rise

ω̂2
0 = ω2

0

[
1− 2ζ2 ± 2iζ

√
1− ζ2

]
. (42)

Comparing (42) with (26) allows one to obtain

β/α =
µ1 −ω2µ2

ω (1 + µ1µ2)
=

2ζ
√

1− ζ2

1− 2ζ2 ,
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that yields

ζ = ζE =

{
1
2

[
1− (1− µ1µ2) /

√
1 + µ2

1µ2
2 + ω2

0µ2
2 + µ2

1/ω2
0

]}1/2

. (43)

Obviously, if µ1 = µ2 = 0, then ζE = 0, otherwise,

ζE =

{
1
2

[
1− 1/

√
1 + µ2

1/ω2
0

]}1/2

when µ2 = 0,

and

ζE =

{
1
2

[
1− 1/

√
1 + ω2

0µ2
2

]}1/2

when µ1 = 0. (44)

Substituting (42) and (43) into (8) leads the frequency response function of equivalent
SDOF system to get the form

FRF (ω) = PE/
[
ω2

E −ω2 + 2iζEωEω
]

, (45)

with constant PE would be corrected by correlation between frequency response func-
tions of the beam and its equivalent oscillator.

For checking similarity or equivalence of two frequency response functions F1 (ω),
F2 (ω) the following coherence coefficient acknowledged as so-called assurance criterion
can be utilized

COH (F1, F2) =

( N

∑
k=1

SkQk

)2

/

(
N

∑
k=1

S2
k ×

N

∑
k=1

Q2
k

)1/2

, (46)

where Sk = F1 (ωk), Qk = F2 (ωk) , k = 1, . . . , N. Namely, two frequency response
function are considered similar if coherence coefficient (46) is closed to unique and it
is acknowledged as Spectral Similarity Index (SSI) of the frequency-dependent signals.
Namely, two signals would be considered spectrally similar if the index is close to unique
and even in case the coefficient (46) calculated with a frequency shift δ, i. e. Sk = F1 (ωk),
Qk = F2 (ωk + δ) , k = 1, . . . , N is about 1.

Moreover, the coherence coefficient (46), calculated for frequency response func-
tions of undamaged F0 (ω) and damaged Fc (ω, e, a) circumstances of a given structure,
is named by spectral damage index (SDI) of the structure

SDI (e, a) =

( N

∑
k=1

F0
(
ωj
)

Fc
(
ωj, e, a

))2

/

(
N

∑
k=1

F2
0
(
ωj
)
×

N

∑
k=1

F2
c
(
ωj, e, a

))1/2

(47)

This is an indicator representing the damage-induced change of frequency response func-
tion of a system that will be examined below for both cracked beam and equivalent SDOF
system.
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5. NUMERICAL VALIDATION AND ANALYSIS

First, the frequency ratio r = (λ1/λ01)
4 with λ1 being first solution of Eq. (22) and

λ01 = (π/`)4 is computed versus crack location e/` ∈ [0, 1] for different crack depth and
compared with ratio

ω2
E/ω2

01 = [1− χ (a) ϕ (e)] ,

given by Eq. (34). The comparison shown in Fig. 3 demonstrates that natural frequen-
cies of both the beam and its reduced model are almost the same and they are similarly
sensitive to crack.

 

Fig. 4. Compared crack-induced change in exact and approximate fundamental frequencies for 

simply supported beam with single crack 

Table 1. Spectral Similarity Index of frequency response functions for beam and SDOF models 

Crack 

depth 

Crack location 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0% 0.9971 0.9971 0.9971 0.9971 0.9971 0.9971 0.9971 0.9971 0.9971 

10% 0.9990 0.9994 0.9991 0.9986 0.9982 0.9982 0.9985 0.9986 0.9982 

15% 0.9996 0.9994 0.9983 0.9967 0.9958 0.9964 0.9979 0.9991 0.9990 

20% 0.9984 0.9972 0.9953 0.9923 0.9908 0.9921 0.9955 0.9988 0.9996 

30% 0.9882 0.9872 0.9874 0.9852 0.9842 0.9856 0.9900 0.9966 0.9999 

 

Second, the frequency response functions of the systems are calculated for different crack 

locations and depths and presented in Figs. 5 – 7, corresponding respectively to cases of crack 

locations 𝑒/ℓ = 0.25; 0.5; 0.75. Obviously, the Figues show that the difference between the FRFs 

is the shift of approximate FRFs to the right and it is endorsed by graphs given in the small boxes 

where there are given the frequency response function of the beam and shifted to the left (𝛿 =
|𝜔1 − 𝜔𝐸|) frequency response function of the simplified SDOF model. It can be seen from the 

Figures that the frequency response functions are similar, and it is validated by their spectral 

similarity index calculated and depicted in Table 1. Note, the similarity of the FRFs is assured with 

the confidence of more than 0.99 for the crack of depth less than 30%. This means that the SDOF 

model is well accepted for the beam only in the case when the crack depth is within 20% of the 

beam thickness. 

Fig. 3. Compared crack-induced change in exact and approximate fundamental frequencies for
simply supported beam with single crack

Second, the frequency response functions of the systems are calculated for differ-
ent crack locations and depths and presented in Figs. 4–6, corresponding respectively to
cases of crack locations e/` = 0.25; 0.5; 0.75. Obviously, the Figues show that the differ-
ence between the FRFs is the shift of approximate FRFs to the right and it is endorsed
by graphs given in the small boxes where there are given the frequency response func-
tion of the beam and shifted to the left (δ = |ω1 −ωE|) frequency response function of
the simplified SDOF model. It can be seen from the Figures that the frequency response
functions are similar, and it is validated by their spectral similarity index calculated and
depicted in Table 1. Note, the similarity of the FRFs is assured with the confidence of
more than 0.99 for the crack of depth less than 30%. This means that the SDOF model is
well accepted for the beam only in the case when the crack depth is within 20% of the
beam thickness.
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Fig. 5. Compared Frequency Response Functions of Beam and SDOF models with crack at 

position 0.25 of relative depth 0% - 30%.    

 

Fig. 6. Compared Frequency Response Functions of Beam and SDOF models with crack at 

position 0.5 of relative depth 0% - 30%. 

Fig. 4. Compared Frequency Response Functions of Beam and SDOF models with crack
at position 0.25 of relative depth 0%–30%

 

 

Fig. 5. Compared Frequency Response Functions of Beam and SDOF models with crack at 

position 0.25 of relative depth 0% - 30%.    

 

Fig. 6. Compared Frequency Response Functions of Beam and SDOF models with crack at 

position 0.5 of relative depth 0% - 30%. 
Fig. 5. Compared Frequency Response Functions of Beam and SDOF models with crack

at position 0.5 of relative depth 0%–30%
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Fig. 7. Compared Frequency Response Functions of Beam and SDOF models with crack at 

position 0.75 of relative depth 0% - 30%. 

 

Fig. 8. Compared spectral damage indexes of beam and SDOF models along crack location and 

depth. 

Fig. 6. Compared Frequency Response Functions of Beam and SDOF models with crack
at position 0.75 of relative depth 0%–30%

Table 1. Spectral Similarity Index of frequency response functions for beam and SDOF models

Crack
depth

Crack location

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0% 0.9971 0.9971 0.9971 0.9971 0.9971 0.9971 0.9971 0.9971 0.9971

10% 0.9990 0.9994 0.9991 0.9986 0.9982 0.9982 0.9985 0.9986 0.9982

15% 0.9996 0.9994 0.9983 0.9967 0.9958 0.9964 0.9979 0.9991 0.9990

20% 0.9984 0.9972 0.9953 0.9923 0.9908 0.9921 0.9955 0.9988 0.9996

30% 0.9882 0.9872 0.9874 0.9852 0.9842 0.9856 0.9900 0.9966 0.9999

Spectral damge indexes of beam and SDOF models calculated along crack location
for different crack depth are exhibited in Fig. 7. Graphs given in the Figure show that
sensitivity of FRFs of the models is comparable only in the case of crack depth being
30%. For crack depth less than 30% FRF of SDOF model is much less sensitive to crack
than that of beam model. This may be explained by the fact that the reduced model has
ignored the effect of crack on mode shape of the beam.
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Fig. 7. Compared Frequency Response Functions of Beam and SDOF models with crack at 

position 0.75 of relative depth 0% - 30%. 

 

Fig. 8. Compared spectral damage indexes of beam and SDOF models along crack location and 

depth. 
Fig. 7. Compared spectral damage indexes of beam and SDOF models

along crack location and depth

6. CONCLUSION

In the present paper a single-degree-of-freedom system reprenting a simplified model
of simply supported beam with multiple cracks has been constructed. The equivalence
of the SDOF and beam models is defined by similarity of their frequency response func-
tions and similarity of two frequency-dependent signals is checked by using an assurance
criterion.

The sensitivity of frequency response functions of both models to crack is examined
by the introduced herein so-called spectral damage index. Numerical results demon-
strate that frequency response function of the reduced model is less sensitive to crack,
but the spectral damage index shows to be useful indicator that could be for crack iden-
tification problem by measurements of frequency response functions.
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