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Abstract. In this paper, the Proportional Topology Optimization (PTO) algorithm is ex-
tended for the two-scale concurrent topology optimization, in which both the structure
and material cellular micro-structure are subject to design. PTO was originally devel-
oped on the concept that the amount of material being distributed to an element would
be proportional to the contribution of that element in the objective function. Sensitivity
analysis is not required. In a two-scale concurrent topology optimization problem, two
sets of design variables are defined, one for macro-structure and one for micro-structure.
Here, the objective function is reformulated such that the contribution of each micro-scale
design variable can be determined, facilitating the employment of PTO. The macroscopic
effective elastic tensor is evaluated by the energy-based homogenization method (EBHM),
providing a link between micro-structure and macro-structure. Feasibility and efficiency
of the proposed PTO approach are demonstrated via several benchmark examples of both
two and three dimensional structures.

Keywords: proportional topology optimization, PTO, two-scale, lattice structures.

1. INTRODUCTION

During the last decades, topology optimization has been emerging as a useful nu-
merical tool for finding the material layout (within a pre-defined design domain) that
maximizes certain performance of a given structure. The art can be traced back to the
work by Bendsøe and Kikuchi [1], in which material layout was simply displayed by
black (filled by material) and white (voided region). Since then, various methods have
been proposed such as the Solid Isotropic Material with Penalization (SIMP) [2–5], the
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Evolutionary Structural Optimization (ESO/BESO) [6, 7], the Level Set Method [8, 9], the
Phase Field Method [10], etc. In the above methods, the design variables are usually
associated with finite element mesh, either element center or nodes. Recently, the ex-
plicit techniques such as the geometry projection [11] and the Moving Morphable Com-
ponents/Voids [12, 13] have been introduced. In explicit techniques, a certain number
of parameterized shapes is given. Design variables are defined by the parameters of the
geometric shapes and thus are independent from the finite element mesh.

In many fields of engineering, lightweight structures have been increasingly attracted
attention due to many advantages such as energy effectiveness and environmental friend-
liness. Among them, lattice structures with repeating unit cells can be designed to achieve
both lightweight and desirable properties. Not only the shape of the structure, but also
the shape of the unit cell(s) (and their arrangement as well) have influence on the over-
all performance. Recently, many authors have explored the employment of two-scale
topology optimization in design of lattice structures, such that both the topology of the
macro-scale structure and the micro-scale structure (the unit cell) are simultaneously op-
timized [14–18]. Two finite element models are established, one for each structure. Based
on the design of micro-scale unit cell, the macroscopic effective properties would be eval-
uated by homogenization techniques. The macro-scale structure is assumed to be homo-
geneous, in which material properties are taken as the homogenized properties. Both the-
oretical and numerical implementation aspects of homogenization have been thoroughly
discussed in various published works, for e.g. see [17, 19–22]. Influence of arrangement
of unit cells could be taken into account, by considering the angle of orientation as addi-
tional design variables [15, 23]. The existence of multiple -structures has also been con-
sidered by various authors [16, 24–26]. In such cases, connectivity between adjacent cells
of different types is usually not available and has to be enforced [16, 25]. Alternatively,
interface layer is defined [26].

Most of the works on topology optimization available in the literatures are based on
sensitivity analysis. The sensitivity information, i.e. the derivatives of objective func-
tion and constraints with respect to design variables, is required to update the design.
On the other hand, there exist alternative methods do not need the calculation of sen-
sitivity. Early attempts rely on black/white (0/1) representation of material layout and
meta-heuristic search algorithms such as ant colony algorithm, genetic algorithm, parti-
cle swarm optimization, etc. [27–29]. This approach was criticized for inefficiency [30].
Although a search algorithm is expected to overcome local optimum, it does not guar-
antee that a global optimum can be achieved. Even when there are only two options for
each element, 0 or 1, the number of possible combinations would be 2N for a mesh of N
finite elements. Therefore, the searching space is quickly scaled up when a fine mesh is
used, tremendously increasing the computational cost. Recently, Guirguis et al [31, 32]
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introduced a level-set approach without calculation of sensitivity, in which the evolution
of level set function is updated by pattern search algorithm. The concept of cellular au-
tomata was employed by various authors for topology optimization of many problem
types: minimum compliance [33], design of materials [34], and two-scale concurrent op-
timization [24]. In this concept, design variable in each element is updated by comparing
strain energy value with other elements within a pre-defined neighborhood. The Propor-
tional Topology Optimization (PTO) algorithm was originally developed by Biyikli and
To [35] for volume-constrained compliance minimization and stress-constrained mass
minimization problems. The core idea of PTO method is quite simple: the amount of
material distributed into each element is proportional to the contribution of that element
in the objective function (for e.g. the structural compliance). Wang et al. [36] proposed an
improvement on update scheme of PTO for minimum compliance problems. The stress-
constrained mass minimization by PTO was further discussed by Cheng et al. [37] and
Ullah et al. [38]. Wang et al. [39] later included loading uncertainty into PTO procedure.
A version of PTO for multi-material problems was also freshly developed by Nguyen et
al. for compliance problems [40] and compliant mechanism problems [41], with the aid of
the Alternative Active Phase Algorithm (AAPA) [42]. An attempt on hybrid approach for
two-scale topology optimization was discussed in [43], such that PTO algorithm was em-
ployed for macro-scale structure while the common Optimality Criteria (OC) algorithm
was used for design of micro-scale structure.

In this paper, the PTO algorithm is further extended for both scales of the two-scale
concurrent design of lattice structures. The key point is design of micro-structure by PTO.
To do that, the contribution of each micro-domain element in the objective function (the
compliance of macro-structure has to be determined. The macroscopic effective elastic
tensor is numerically evaluated using the energy-based homogenization method.

The paper is organized as follows. Right after the Introduction is a brief on the
Energy-based homogenization method in Section 2. Section 3 is reserved for the for-
mulation of PTO algorithm for the two-scale topology optimization. Several numerical
examples are investigated in Section 4 to demonstrate the capability of the proposed ap-
proach. Finally, some concluding remarks are given in Section 5.

2. ENERGY-BASED HOMOGENIZATION METHOD (EBHM)

Within the scope of linear elasticity, the macroscopic effective elastic tensor can be
estimated through homogenization techniques being applied on a micro-scale unit cell
(micro-structure) [19]. For better accuracy, the following two assumptions have to be
satisfied: (i) the micro-structure is periodically distributed within the macro-structure,
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and (ii) the bulk size of the macro-scale structure is much larger than that of the micro-
structure. Here, the estimation is numerically conducted via the energy-based homog-
enization method (EBHM) [17, 22]. Assuming that the micro-scale unit cell is defined
within a square domain Ωm, the homogenized elastic tensor can be computed by

DH =
1
|Ωm|

∫
Ωm

(
ε
(
u0

m
)
− ε (um)

)T
Dm

(
ε
(
u0

m
)
− ε (um)

)
dΩm, (1)

where Dm is the local varying elastic tensor and ε(u0
m) is the linearly independent unit

test strain field. Note that subscript m is used throughout this paper to indicate that a
quantity belongs to the micro-structure. ε(um) is the unknown strain field within the
unit cell, and can be determined by solving the equilibrium equation (see Eq. (6)) with
periodic boundary condition [17, 22]. By using SIMP [4, 5], the tensor Dm is computed as

Dm(ρm,j) =
(

k + (1− k)ρp
m,j

)
D0, (2)

where D0 is the elastic tensor of the base material and ρm,j is the design variable associated
with the jth element of the micro-structure domain. k is a very small positive value that
is chosen to avoid zero stiffness when ρm,j ≈ 0, and p is the penalization number.

3. FORMULATION FOR THE TWO-SCALE TOPOLOGY OPTIMIZATION BY THE
PTO ALGORITHM

3.1. Problem statement for compliance minimization

The two-scale concurrent topology optimization for minimum compliance of macro-
structure can be mathematically stated as follows

Find : ρi ∈ [0, 1], ρm,j ∈ [0, 1], (i = 1, 2, 3, . . . , N) , (j = 1, 2, 3, . . . , Nm) (3)

Objective : minimize c =
∫
Ω

(ε (u))T Dε (u)dΩ = uTKu, (4)

subject to

Ku = F, (5)∫
Ωm

(ε (δum))
T Dmε (um)dΩm =

∫
Ωm

(ε (δum))
T Dmε

(
u0

m
)

dΩm, (6)

∫
Ω

ρdΩ = ∑
i

ρiVi ≤ v̄|Ω|, (7)

∫
Ωm

ρmdΩm = ∑
i

ρm,iVm,i ≤ v̄m|Ωm|. (8)
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Here, the design variables (pseudo-density values ρi for macro-scale and ρm,j for
micro-scale) are defined at the element center. Thus the number of design variables (N
and Nm) are equal to the number of elements. The compliance in Eq. (4) is a measure
of elastic strain energy. u is the displacement vector of the macro-structure, and can be
obtained by solving the equilibrium in Eq. (5), in which K is the stiffness matrix and F
is the load vector. Eq. (6) is the equilibrium in micro-structure, in which δum is the test
function that satisfies the requirement for finite element analysis. Eq. (7) and Eq. (8) are
the volume constraint for the macro-structure and micro-structure, respectively. Vi and
Vm,j denote the volume of element (or area for 2D domain) in macro- and micro-scale,
while v̄ and v̄m are the given volume fractions.

Via finite element analysis, the (macro-scale) global stiffness matrix K in Eq. (4) is
computed by

K =
N

∑
i=1

Ke,i, (9)

The stiffness matrix of each element i, Ke,i, is given by

Ke,i =
∫

Ωe,i

BTD(ρi)BdΩ, (10)

where B denotes the operator to calculate the components of strain tensor ε, such that
ε (ue,i) = Bue,i, and ue,i is the vector of nodal displacement of element i. D(ρi) is the
elastic tensor with respect to the (pseudo) density, which is calculated using the SIMP
technique as

D(ρi) =
(
k + (1− k)ρp

i

)
DH, (11)

where DH is determined from Eq. (1).

3.2. PTO algorithm for macro-scale design variables

The PTO algorithm was originally introduced by Biyikli and To [35], such that ma-
terial would be distributed into an arbitrary element proportionally to the contribution
of that element in the objective function. For the problem of minimum compliance, ele-
ments with high value of compliance (high value of elastic strain energy) would receive
more amount of material than elements with low value of compliance. Within the frame-
work of finite element analysis, it was implied in [35] that one pseudo-density (design
variable) was defined for each element (at the element center). However, the idea could
be extended for other ways of defining design variables, for e.g. when meshfree anal-
ysis [38, 44] or virtual element method [45] is employed instead of conventional finite
element analysis.
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By finite element analysis, the structural compliance in Eq. (4) can be written as a
sum of elemental values

c =
N

∑
i=1

ci, (12)

ci = uT
e,iKe,iue,i. (13)

Material is distributed into element i by

ρ̂i = ρ̂i + ∆ρ̂i, ρ̂i ∈ [0, 1] (14)

∆ρ̂i = RM
ci

N

∑
k=1

ckVk

, (15)

In order to avoid checkerboard, a density filter is applied as follows

ρi =
∑ wikρ̂k

∑ wik
, (16)

in which the weight coefficient wik > 0 can be determined by a decay function with
respect to the distance between the center points of element i and element k. For more
details, readers are referred to Refs. [4,5,35]. RM in Eq. (15) denotes the remaining amount
of material. At the beginning of the PTO loop, RM is taken as the total amount of material
TM, which is defined by the constraint in Eq. (7), i.e. RM = TM = v̄|Ω|. Via the PTO
loop, RM is updated by RM = RM −∑ ρiVi. The loop stops when RM is less than a
predefined value, for e.g. RM ≤ 0.001 TM. After the PTO loop, the density value can be
further blended with history value to enhance convergence

ρt+1 = αρt + (1− α)ρPTO, (17)

where ρt+1 is the density value at current iteration, ρt is the density value at previous
iteration and ρPTO is the density value calculated by PTO algorithm. Coefficient α controls
the weight of ρt and ρPTO. No update occurs if α = 1, while history value has no effect if
α = 0. In this paper, α = 0.5 is selected.

3.3. PTO algorithm for micro-scale design variables

In order to employ PTO algorithm for updating micro-scale design variables, it is
essential to calculate the contribution of each element j (of the micro-structure) in the
compliance given in Eq. (4). Substituting Eq. (10) and Eq. (11) into Eq. (13) reads

ci = uT
e,i

 ∫
Ωe,i

BT (k + (1− k)ρp
i

)
DHBdΩ

ue,i. (18)
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The homogenized elastic tensor DH in Eq. (1) is given by an integral over the micro-
scale domain. By numerical integration, DH can thus be computed as a sum of elemental
values, i.e.

DH =
Nm

∑
j=1

DH
m,j. (19)

Therefore the structural compliance can be written by

c =
N

∑
i=1
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N

∑
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uT
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i

) (Nm

∑
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)
BdΩ

ue,i (20)

Rearranging Eq. (20) leads to
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∑
j=1
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)
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j BdΩ

ue,i

 =
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cm,j, (21)

cm,j =
N

∑
i=1

uT
e,i
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Ωe,i

BT (k + (1− k)ρp
i

)
DH

m,jBdΩ

ue,i. (22)

The contribution of each micro-scale element j is given in Eq. (22) and could be inter-
preted as the elastic strain energy of the macro-structure when DH

m,j is taken as the elastic
tensor. Once the contribution of each micro-scale element is computed via Eq. (22), it is
possible to update the micro-scale (pseudo) density by the PTO algorithm as described
in Section 3.2.

Calculation of Eq. (22) requires a domain integral over the micro-structure domain,
and this process has to be conducted for every micro-scale element j. It is noticed that
the integral in Eq. (22) has the same form with that of the element stiffness matrix Ke,i in
Eq. (10), in which DH is replaced by DH

m,j. This observation could be exploited for efficient
implementation [43].

4. NUMERICAL EXAMPLES

For demonstration of the proposed approach (PTO algorithm for two-scale design
by topology optimization), four benchmark examples including a cantilever beam, an
annular cylinder being tangentially loaded, a three-dimensional support structure, and
a three-dimensional beam under torsional forces. Without loss of generality, an artificial
material with elastic modulus E = 1 MPa and Poisson’s ration ν = 0.3 is selected in
numerical analysis. Initially, the configuration of both macro- and macro-scale domain
are as follows (see Fig. 1 for illustration):
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• Macro-scale domain: the value of every design variable is equal to the required
volume fraction.
• Micro-scale domain: the value of every design variable is equal to one, except

for the hole at the center of the domain which is voided region.

For stopping criterion of optimization process, it is required that changes of designs
in both scales must not exceed 1%.

Fig. 1. Illustration of initial configurations. The design domain for macro-structure will be speci-
fied for each numerical example, while the design domain for micro-structure is a square domain
of size 0.1× 0.1 mm. In three-dimensional (3D) case(s), the design domain for micro-structure is a
cube of size 0.1× 0.1× 0.1 mm with a spherical hole at center. For finite element analysis, a mesh
of 60× 60 four-node quadrilateral elements is used for the 2D micro-scale domain, while a mesh

of 20× 20× 20 eight-node brick elements is used for the 3D micro-scale domain

4.1. Two-scale design of a doubly clamped beam

In this example, design of a doubly clamped beam being loaded by multiple concen-
trated forces, as depicted in Fig. 2. A mesh of 120× 30 four-node quadrilateral elements
is used to discretize the beam domain.

Fig. 2. Schematic sketch of a doubly clamped beam being loaded by multiple concentrated forces

Fig. 3 presents the designs by PTO for two cases: (Case 1) volume fraction of the
macro-domain is v̄ = 60% and volume fraction the micro-domain is v̄m = 40%, and
(Case 2) v̄ = 40% and v̄m = 40%. The shape of the two designs shares some similarities.
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Due to smaller volume fraction, the macro-structure in Case 2 has smaller thickness and
does not have upper part. The history curves of the compliance values of the two designs
are depicted in Fig. 4.

(a) Case 1: v̄ = 60%, v̄m = 40% (b) Case 2: v̄ = 40%, v̄m = 40%

Fig. 3. Designs by PTO for two cases

Fig. 4. History curves of compliance values of the two designs in Fig. 3

4.2. Two-scale design of an annular cylinder being tangentially loaded

The problem of an annular cylinder being tangentially loaded, as sketched in Fig. 5,
is studied in this example. Fig. 6 presents a comparison between three approaches: OC
algorithm for both scales, hybrid approach (PTO for macro-structure and OC for micro-
structure) [43], and the proposed approach in this study - PTO algorithm for both scales.
There are slight differences in the three designs, leading to different values of compliance.
The lowest value of compliance is obtained by the proposed approach. History curves
of compliance are presented in Fig. 7. It is interesting that computational time decreases
when PTO replaces OC in macro-scale design (case b)), and when PTO replaces OC in
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both scales (case c)). The reason is probably due to less number of iterations, as the
average time needed for each iteration is almost equivalent between PTO and OC [41].

In this paper, no projection technique is adopted to push the density values close
to 0 or 1. Hence, grey regions (i.e., elements with intermediate density values) can be
observed in Fig. 6. Based on suggestion of Ref. [46], the measure of non-discreteness is
calculated as

Mnd =

NE

∑
e=1

4ρe(1− ρe)

NE
× 100%, (23)

where ρe is the (filtered) density value at element e and NE is the number of elements.
The value of Mnd would be 100% if the domain is totally grey, i.e. the density values
are all equal to 0.5. The lower the value of Mnd is, the lower the non-discreteness is.
Mnd = 0% indicates that the result is indeed binary, i.e. the element density is either 0
or 1 for all elements. As reported in Table 1, the non-discreteness values for all the three
cases are almost equivalent.

Fig. 5. Schematic sketch of an annular cylinder being tangentially loaded

Table 1. The measure of non-discreteness evaluated for the three cases of Fig. 6

OC Hybrid PTO

Macro-structure 28.7% 27.2% 27.2%
Micro-structure 22.1% 22.3% 22.9%
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(a) OC (b) Hybrid

(c) PTO

Fig. 6. Design obtained by three approaches: a) OC for both scales, b) Hybrid approach (PTO for
macro-structure, and OC for micro-structure) [43], and c) PTO algorithm for both scales

4.3. Two-scale design of a three-dimensional (3D) supported structure

In this example, the proposed PTO approach is employed for design of a three-
dimensional supported structure, as depicted in Fig. 8. Comparison between the three
approaches (OC algorithm, Hybrid approach, and PTO algorithm) in Fig. 9 again ex-
hibits that a design with lowest value of compliance can be obtained by PTO. For a closer
look, the measure of non-discreteness for the three designs are reported in Table 2. In
this particular problem, the non-discreteness of PTO design is a little bit better than that
of the other two counterparts. The PTO algorithm also requires less number of iterations
than the other two approaches, as depicted in Fig. 10.
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Fig. 7. History curves of compliance values for
the three designs in Fig. 6

Fig. 8. Schematic sketch of a 3D-
supported structure

(a) OC (b) Hybrid

(c) PTO

Fig. 9. Design obtained by three approaches: a) OC algorithm, b) Hybrid approach [43], and c)
PTO algorithms for the 3D supported structure. Volume fraction: v̄ = 20% and v̄m = 30%
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Table 2. The measure of non-discreteness evaluated for the three cases in Fig. 9

OC Hybrid PTO

Macro-structure 21.9% 16.2% 16.1%
Micro-structure 36.0% 36.0% 34.2%

Fig. 10. History curves of compliance values for the three designs in Fig. 9

4.4. Two-scale design of a 3D cantilever beam subjected to torsional forces

The two-scale design of 3D beam, as depicted in Fig. 11, is investigated in this exam-
ple. One end of the beam is clamped, while the other end is subjected to torsional forces.
Given the volume fraction of macro-scale structure as v̄ = 20% and that of micro-scale
structure as v̄m = 30%, the design by PTO is depicted in Fig. 12. The corresponding
history curve of compliance value is presented in Fig. 13, in which the evolution of the
results are also included, clearly showing that both scales are simultaneously optimized.

Fig. 11. Schematic sketch of a 3D beam subjected to torsional forces
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Fig. 12. Design obtained by PTO algorithms for cantilever beam subjected to torsional forces.
Volume fraction: v̄ = 20% and v̄m = 30%

Fig. 13. History curve of compliance value for the design in Fig. 12

5. CONCLUSIONS

The PTO algorithm has been successfully extended for both scales of the two-scale
topology optimization for design of lattice structures. The main contribution of this study
is that the objective function (the structural compliance) is mathematically transformed to
enable the application of PTO algorithm to update the micro-scale design variables. Via
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several numerical examples, performance of the proposed approach have been demon-
strated. It is also shown that the proposed approach is capable for both two- and three-
dimensional problems. As PTO algorithm for design of compliant mechanisms has been
recently introduced [41, 45], the two-scale concurrent design of compliant mechanisms
by PTO could also be conducted without much difficulty. A remedy to reduce the grey
zone and boost the discreteness of the optimized results would be the employment of
Heaviside-type projection [47, 48]. Adaptation of the volume-preserving Heaviside pro-
jection technique into PTO algorithm has been discussed in [37, 45].

The current work would facilitate further research on application of PTO algorithm
for design of micro-structures with desired homogenized properties based on the EBHM
method [22]. Another possible extension that could be investigated in future works is the
consideration of multiple micro-structures. In that case, the connection between different
micro-structures has to be taken into account [16, 49].

A drawback of the current formulation is that it does not take the effect of micro-
structure size on deformation into account. In fact, there exist some attempts to consider
the size-dependent effect in topology optimization, for e.g. using strain gradient theory
[50] or couple stress theory [51, 52]. This would be an interesting extension for future
works on design of lattice structures by multi-scale topology optimization.
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