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Abstract. In this paper, we present the establishment the vibration equation for the study
of nonlinear beam effects. A illustrative example allows us to derive equations und use
nonlinear vibration for calculating vibration of beams.
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1. INTRODUCTION

When studying the bending vibrations of beams, we assume that the beam cross-
section is symmetrical about two axes. For example, the cross-section of a beam is cir-
cular, rectangular, or I-shaped. If the cross-section of the beam is not symmetrical about
two axes, the beam will undergo bending, longitudinal, and torsional vibrations simul-
taneously. In this report, we do not consider the beam torsional vibration problem, only
the beam bending and longitudinal vibration problem. Neglecting the rotational inertia
and the sliding deformation of the beam axis, we have Euler–Bernoulli beams. If we are
interested in rotational inertia and Gleitverformung deformation of beam axis, we have
Timoshenko beam.

The problem of bending and longitudinal vibrations of linear beams has been stud-
ied very carefully. However, the bending and longitudinal vibrations of nonlinear beams
are still a little explored area. In the book “Nonlinear Mechanics” [1], Kauderer presented
the basics of the theory of nonlinear vibration of beams with relative care. In our coun-
try, the presentation of the mechanical principles of deformed solids was presented in [2]
and some other documents. In [3, 4] the basic problems of setting up the equations of
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motion of non-linear beams were presented relatively carefully. In order to extend some
assumptions about the relationship between stress and strain, the relationship between
strain and displacement, in this paper we establish equations for bending and document
vibrations of nonlinear beams of beams under the action of axial force. Studying the com-
putation of the oscillation of this class of problems is of interest at Hanoi University of
Science and Technology.

2. ESTABLISHING THE NONLINEAR BENDING VIBRATION EQUATION OF
THE BEAM SUBJECTED TO THE LONGITUDINAL FORCE AT THE BEAM END

In this section, we establish the bending vibration equation of the beam taking into
account the geometric nonlinearity, the physical nonlinearity and the longitudinal force
acting at the beam end (Fig. 1).

Assume that in the un-deformed state, the geometric axis of the beam coincides with the 

axis x of the perpendicular coordinate system xyz. The ends of the beams have coordinates 

x=0 and x=l. Assume that the principal axes of inertia at the intersection of the cross-

section with the axis x are parallel to the axes y and z that the beam's axis is bent only in 

the plane of symmetry (x,z). The symbol is the mass per unit length of the beam, is 

the mass density, is the cross-sectional area of the beam, the beam length is , the 

beam is homogeneous. Using the Bernoulli hypothesis, consider the beam's cross-section 

to be consistently flat and perpendicular to the beam's deflection axis. 

2.1 Dynamic balance equations of beams

To establish the beam bending vibration equation, imagine separating a small element

of the beam at two cross-sections and . The symbol for the length of the element 

before deformation is , after deformation is . The symbol is the deflection of 

the beam at the section x, is the axial displacement of the beam at the section , 

is the angle of rotation of the beam at the section . Neglect rotational inertia and 

shear deformation of beam shaft. Applying d'Alembert principle, set up the dynamic 

equations of the investigated beam element as shown in Figure 2. In Figure 2, we use the 

symbols: w is the deflection of the beam in the z direction, u is the displacement. along the 

x axis.

( )xm r

( )A x l

x x dx+

dx ds ( , )w x t

( , )u x t x

( , )x tj x

x

z

( , )p x t

0P (t )

Fig. 1

Assume that in the un-deformed state, the geometric axis of the beam coincides with
the axis x of the perpendicular coordinate system xyz. The ends of the beams have coor-
dinates x = 0 and x = l. Assume that the principal axes of inertia at the intersection of
the cross-section with the axis x are parallel to the axes y and z that the beam’s axis is bent
only in the plane of symmetry (x, z). The symbol m(x) is the mass per unit length of the
beam, r is the mass density, A(r) is the cross-sectional area of the beam, the beam length is
l, the beam is homogeneous. Using the Bernoulli hypothesis, consider the beam’s cross-
section to be consistently flat and perpendicular to the beam’s deflection axis.

2.1. Dynamic balance equations of beams

To establish the beam bending vibration equation, imagine separating a small ele-
ment of the beam at two cross-sections x and x + dx. The symbol for the length of the
element before deformation is dx, after deformation is ds. The symbol w(x, t) is the de-
flection of the beam at the section x, u(x, t) is the axial displacement of the beam at the
section x, j(x, t) is the angle of rotation of the beam at the section x. Neglect rotational
inertia and shear deformation of beam shaft. Applying d’Alembert principle, set up the
dynamic equations of the investigated beam element as shown in Fig. 2. In Fig. 2, we use
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the symbols: w is the deflection of the beam in the z direction, u is the displacement along
the x axis.

 
From the condition of dynamic equilibrium in the direction , we have 

   (1) 

From the condition of dynamic equilibrium in the direction , we have 

  (2) 

From the torque equilibrium condition, we get the equation   

  (3) 

Where N is the component of the normal force, is the shear force, is the bending 

moment and is the external resistance acting on the element of length . Suppose 

external resistance is proportional to velocity 

  (4) 

where  is a constant. 

Notice that , , . 

2.2 Some assumptions and approximate formulas describing the properties of the beam 

a) Stress–strain characteristic equation (constitutive equation) 
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From the condition of dynamic equilibrium in the direction z, we have

∑ Fkz = − dm
∂2w
∂t2 − Fd −Q cos ϕ + (Q + dQ) cos(ϕ + dϕ)

+ N sin ϕ− (N + dN) sin(ϕ + dϕ) + p∗(x, t)ds = 0.
(1)

From the condition of dynamic equilibrium in the direction x, we have

∑ Fkx = − dm
∂2u
∂t2 −Q sin ϕ + (Q + dQ) sin(ϕ + dϕ)

− N cos ϕ + (N + dN) cos(ϕ + dϕ) = 0.
(2)

From the torque equilibrium condition, we get the equation

∑ m̄T

(
~Fk

)
= −My + My + dMy −Q

ds
2
− (Q + dQ)

ds
2

= 0, (3)

where N is the component of the normal force, Q is the shear force, My is the bending
moment and Fd is the external resistance acting on the element of length dx. Suppose
external resistance is proportional to velocity

Fd = c
∂w
∂t

ρA(x)dx, (4)

where c is a constant.
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Notice that µ(x) = ρA(x), dm = µ(x)dx = ρA(x)dx = µ∗(x)ds, p∗(x, t)ds = p(x, t)dx.

2.2. Some assumptions and approximate formulas describing the properties of the
beam

2.2.1. Stress–strain characteristic equation (constitutive equation)

When considering the physical non-linearity of beams, the relationship between
stress and strain is often expressed by a general formula in the form of a stress-strain
curve, as follows [2]

f (σx, σ̇x, εx, ε̇x, t) = 0. (5)

For the nonlinear elastic model, the stress-strain characteristic equations (5) have the
following form:

- Stress-strain relationship of the nonlinear rheological model

σx = E(1− a3E2ε2
x)εx. (6)

- Stress-strain relationship of the viscoelastic Kelvin–Voigt model

σ̇x + γ(1 + K)σx = E(ε̇x + γεx). (7)

- Stress-strain relationship of the nonlinear rheological model

σx + bσ̇x = k1εx + k3ε3
x + h1 ε̇x + h3 ε̇3

3. (8)

For the creeping beam model, the stress-strain characteristic equation (5) is com-
monly used in the following form [2]

ε =
σ(t)

E
+

t∫
0

Φ(t)σ(τ)dτ, (9)

where the first term on the right-hand side represents the elastic strain that occurs in-
stantaneously after the load is applied, the second term represents the linear time accu-
mulation of strains from the differential variable. The function Φ(t) represents the creep
deformation rate. We can also consider Φ(t) as the creep rate (the creep softness in a unit
of time).

For creep beam model, in [3] stress-strain characteristic equation (5) is used in the
form

σx = a1εx + a3ε3
x +

t∫
0

K(t− τ)
dεx

dτ
dτ, (10)

where a1, a3 are the constants that characterize the physical properties of the material, the
function K(t− τ) is the kernel of the genetic function determined by empirical formulas.
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For the fractional viscoelastic nonlinear beam model, the stress-strain characteristic
equation (5) has a very rich form [5, 6]. Below we introduce two types of stress-strain
characteristic equations that are commonly used

σx = E
(

εx + µα
dαεx

dtα

)
, (11)

where α is a real number (0 < α < 1, or 1 < α < 2), and

σ(t) + a1Dασ(t) = b0ε(t) + b1Dαε(t), (12)

where α is a real number.

2.2.2. Approximate formula for determining the relative strain and displacement relationship

Due to the assumption that the displacement in the direction y of the points on the
beam is zero (v = 0), from the displacement and deformation formulas in [1] we deduce

εx0 =
1
2

λxx =
∂u
∂x

+
1
2

[(
∂u
∂x

)2

+

(
∂w
∂x

)2
]

. (13)

Using Kirchhoff’s hypothesis, considering partial derivatives of small u relative to
partial derivatives of w, we have

εx0 =
1
2

λxx =
∂u
∂x

+
1
2

(
∂w
∂x

)2

, (14)

One can prove that εx0 depends only on t, not on x. Therefore, from (14) we have

εx0(t) =
1
`

`∫
0

[
∂u
∂x

+
1
2

(
∂w
∂x

)2
]

dx =
1
`
[u(`, t)− u(0, t)] +

1
2`

`∫
0

(
∂w
∂x

)2

dx. (15)

If u(`, t)− u(0, t) = 0 then from (15) deduce

εx0(t) =
1
`

`∫
0

1
2

(
∂w
∂x

)2

dx. (16)

According to [7], the relative strain of the layer a distance from the neutral axis (axis
x) a segment z is of the form

εx(x, z, t) = εx0(x, t)− z
∂2w
∂x2 . (17)
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From (16) and (17), we deduce the approximate formula determining the relationship
between the relative length strain and displacement

εx(x, z, t) = εx0(t)− z
∂2w
∂x2 =

1
2`

`∫
0

(
∂w
∂x

)2

dx− z
∂2w
∂x2 . (18)

2.2.3. Approximate formula for determining axial forces

Fig. 3 shows the deformation of a beam element dx at the survey location and at the
initial position.

c) Approximate formula for determining axial forces 

Figure 3 shows the deformation of a beam element dx at the survey location and at the 

initial position. 

 

 
 

According to figure 3, we have 

  (19) 

   (20) 

where is the force along the x axis, is the force along the z axis. 

First, we determine the elongation of the beam. Consider the beam elements before and 

after deformation as shown in Figure 3. The coordinate of point before deformation, 

after deformation  

  (21) 

From (21) we deduce      

            (22) 

The length of this element after deformation is 

  (23) 
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According to Fig. 3, we have

H(x, t) = Q sin ϕ + N cos ϕ, (19)

V(x, t) = Q cos ϕ− N sin ϕ, (20)

where H(x, t) is the force along the x axis, V(x, t) is the force along the z axis.

First, we determine the elongation of the beam. Consider the beam elements before
and after deformation as shown in Fig. 3. The coordinate of point P(x, 0) before defor-
mation, after deformation P→ P∗(x∗, z∗)

x∗ = x + u, z∗ = w. (21)

From (21) we deduce

dx∗ =
(

1 +
∂u
∂x

)
dx, dz∗ =

∂w
∂x

dx. (22)
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The length of this element after deformation is

ds =
√
(dx∗)2 + (dz∗)2 =

√(
1 +

∂u
∂x

)2

+

(
∂w
∂x

)2

dx,

=

√
1 + 2

∂u
∂x

+

(
∂u
∂x

)2

+

(
∂w
∂x

)2

dx.

(23)

Notice the formula
√

1 + x ≈ 1 +
1
2

x (when |x| < 1), we have

ds ≈
{

1 +
∂u
∂x

+
1
2

[(
∂u
∂x

)2

+

(
∂w
∂x

)2
]}

dx = 1 + εx0dx. (24)

The elongation due to elastic deformation of the element is

d∆ = ds− dx =

[
∂u
∂x

+
1
2

(
∂u
∂x

)2

+
1
2

(
∂w
∂x

)2
]

dx. (25)

Due to assumption of Kirchhoff,
(

∂u
∂x

)2

is small compared to
(

∂w
∂x

)2

, the expression

(25) has the form

d∆ =

[
∂u
∂x

+
1
2

(
∂w
∂x

)2
]

dx. (26)

From (26), the elongation due to total strain is

∆ = u(`)− u(0) +
1
2

∫ `

0

(
∂w
∂x

)2

dx. (27)

If at the two ends of the beam u(`)− u(0) = 0, from (27) we deduce

∆ =
1
2

∫ `

0

(
∂w
∂x

)2

dx. (28)

So the compressive force due to elastic deformation at the end of the beam has the
following form

S =
EA
`

∆ =
EA
2`

∫ `

0

(
∂w
∂x

)2

dx. (29)

Now we move on to determine the tensile force at the section x.

From Fig. 4, ignoring
∂2u
∂t2 , we have

−H − P0(t) + S = 0.
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Notice the formula (when ), we have

(24) 

The elongation due to elastic deformation of the element is

(25) 

Due to assumption of Kirchhoff, is small compared to , the expression (25) 

has the form

(26) 

From (26), the elongation due to total strain is

(27) 

If at the two ends of the beam , from (27) we deduce 

(28) 

So the compressive force due to elastic deformation at the end of the beam has the
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Now we move on to determine the tensile force at the section . 
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Therefore H = S− P0(t)

H(t) =
EA
2`

∫ `

0

(
∂w
∂x

)2

dx− P0(t). (30)

Note: From formula (24), we have

ds =

[
1 +

∂u
∂x

+
1
2

(
∂w
∂x

)2
]

dx. (31)

2.3. General nonlinear bending vibration equation of elastic beam

Using approximate formulas

sin x ≈ x− x3

6
, cos x ≈ 1− x2

2
, (32)

sin(ϕ + dϕ) = sin ϕ cos(dϕ) + cos ϕ sin(dϕ)

≈ sin ϕ

[
1− (dϕ)2

2

]
+ cos ϕ

[
dϕ− (dϕ)3

6

]
,

(33)

cos(ϕ + dϕ) = cos ϕ cos(dϕ)− sin ϕ sin(dϕ)

≈ cos ϕ

[
1− (dϕ)2

2

]
− sin ϕ

[
dϕ− (dϕ)3

6

]
.

(34)

Substituting (33), (34) into Eqs. (1), (2) and paying attention to formula (31), we have

ρA(x)dx
∂2w
∂t2 = −c

∂w
∂t

ρA(x)dx−Q cos ϕ

+ (Q + dQ)

{
cos ϕ

[
1− (dϕ)2

2

]
− sin ϕ

[
dϕ− (dϕ)3

6

]}
+ N sin ϕ

− (N + dN)

{
sin ϕ

[
1− (dϕ)2

2

]
+ cos ϕ

[
dϕ− (dϕ)3

6

]}
+ p(x, t)dx

≈ −c
∂w
∂t

ρA(x)dx + dQ cos ϕ−Q sin ϕdϕ− dN sin ϕ− N cos ϕdϕ + p(x, t)dx

≈ −c
∂w
∂t

ρA(x)dx + d(Q cos ϕ− N sin ϕ) + p(x, t)dx.
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Simplifying the above equation, we have

ρA(x)
∂2w
∂t2 = −ρA(x)

(
c

∂w
∂t

)
+

∂V
∂x

+ p(x, t), (35)

ρA(x)dx
∂2u
∂t2 = Q sin ϕ + (Q + dQ)

{
sin ϕ

[
1− (dϕ)2

2

]
+ cos ϕ

[
dϕ− (dϕ)3

6

]}
− N cos ϕ + (N + dN)

{
cos ϕ

[
1− (dϕ)2

2

]
− sin ϕ

[
dϕ− (dϕ)3

6

]}
≈ dQ sin ϕ + Q cos ϕdϕ + dN cos ϕ− N sin ϕdϕ

≈ d(Q sin ϕ + N cos ϕ).

So we have

ρA(x)
∂2u
∂t2 =

∂H
∂x

. (36)

From Eq. (26) we have

dMy = Qds + dQ
ds
2
⇒

∂My

∂s
= Q +

dQ
2
≈ Q⇒ Q =

∂My

∂x
∂x
∂s

. (37)

In the sense of the derivation we have

cos ϕ =
∂x
∂s

. (38)

Substituting (38) into (37) we get

Q =
∂My

∂x
cos ϕ. (39)

From Fig. 4, we have Q = H sin ϕ + V cos ϕ. Therefore, expression (39) has the form

∂My

∂x
cos ϕ = H sin ϕ + V cos ϕ. (40)

Divide both sides of (40) by cos ϕ, we have

V =
∂My

∂x
− H tan ϕ. (41)

When
∂2u
∂t2 viewed as small, from (32) we deduce

∂H
∂x

= 0 ⇒ H = H(t). Using the
approximation

tan ϕ ≈ ϕ +
ϕ3

3
,

the formula (41) is rewritten as

V =
∂My

∂x
− H

(
ϕ +

ϕ3

3

)
. (42)
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From (42) deduce the approximate formula

V(x, t) =
∂My

∂x
− H(t)ϕ. (43)

Substituting the expression (43) into (35) we get

ρA(x)
∂2w
∂t2 = −ρA(x)

(
c

∂w
∂t

)
+

∂2My

∂x2 − H(t)
∂ϕ

∂x
+ p(x, t). (44)

Note that the relationship between deflection and rotation has the following form [7]

tan ϕ = −
∂w
∂x

1 + ∂u
∂x

.

According to the assumption of Kichhhoff:
∂u
∂x

is small compared to
∂w
∂x

so tan =

−∂w
∂x

. Replace tan ϕ = ϕ +
ϕ3

3
we have ϕ +

ϕ3

3
= −∂w

∂x
.

Therefore

ϕ ≈ −∂w
∂x

. (45)

Substituting expressions (26) and (41) into equation (40), we get a nonlinear vibra-
tional equation of the beam

ρA(x)
∂2w
∂t2 + ρA(x)

(
c

∂w
∂t

)
−

∂2My

∂x2 +

[
P0(t)−

EA
2`

∫ `

0

(
∂w
∂x

)2

dx

]
∂2w
∂x2 = p(x, t), (46)

within

My =
∫

A
zσxdA =

∫
A

zσxdydz =
∫

A
z f (εx, ε̇x) dydz. (47)

Eq. (46) is the equation of flexural vibration of a nonlinear beam under the action of
axial force P0(t) at the shaft end. Depending on the physical nonlinear stress-strain equa-

tion of beam f (σx, σ̇x, εx, ε̇x, t) = 0, we will calculate the derivative
∂2My

∂x2 , then substitute
into Eq. (46).

2.4. Nonlinear bending vibration equation of beam when choosing simple physical
nonlinear law

We choose a fairly simple nonlinear physical law like formula (6)

σx = E(1− a3E2ε2
x)εx. (48)
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With a3 is a constant. Which εx is calculated according to (18)

εx =
1
2`

∫ `

0

(
∂w
∂x

)2

dx− z
∂2w
∂x2 . (49)

Here we will show how to calculate the derivative
∂2My

∂x2 to substitute Eq. (46). Sub-
stituting (49) into (48), we get

σx = f (εx) = E
(
1− a3E2ε2

x
)

εx

= E

[
1
2`

∫ `

0

(
∂w
∂x

)2

dx− z
∂2w
∂x2

]
− a3E3

[
1
2`

∫ `

0

(
∂w
∂x

)2

dx− z
∂2w
∂x2

]3

=

E
1
2`

∫ `

0

(
∂w
∂x

)2

dx− a3E3

[
1
2`

∫ `

0

(
∂w
∂x

)2

dx

]3


− zE
∂2w
∂x2

1− 3a3E2

[
1
2`

∫ `

0

(
∂w
∂x

)2

dx

]2


− 3z2a3E3 1
2`

∫ `

0

(
∂w
∂x

)2

dx
(

∂2w
∂x2

)2

+ z3a3E3
(

∂2w
∂x2

)3

.

(50)

Substituting (50) into (47), we get the expression for calculating bending moment

My =
∫

A
zσxdA

=
∫

A


z
[
Eεx0(t)− a3E3ε3

x0(t)
]
− z2E

∂2w
∂x2

[
1− 3a3E2ε2

x0(t)
]

−3z3a3E3εx0(t)
(

∂2w
∂x2

)2

+ z4a3E3
(

∂2w
∂x2

)3

 dA.
(51)

Because is a function of and is a function of and so we have∫
A

z
[
Eεx0(t)− a3E3ε3

x0(t)
]

dA =
[
Eεx0(t)− a3E3ε3

x0(t)
] ∫

A
zdA = 0,∫∫

A

∂2w
∂x2

[
1− 3a3E2ε2

x0(t)
]

z2dA =
∂2w
∂x2

[
1− 3a3E2ε2

x0(t)
] ∫∫

A
z2dA

=
∂2w
∂x2

[
1− 3a3E2ε2

x0(t)
]

I0,∫
A

z3a3E3εx0(t)
(

∂2w
∂x2

)2

dA = a3E3εx0(t)
(

∂2w
∂x2

)2 ∫
A

z3dA = 0,

∫∫
A

(
∂2w
∂x2

)3

z4dA =

(
∂2w
∂x2

)3 ∫∫
A

z4dA =

(
∂2w
∂x2

)3

I2.
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In which we denote

I0 =
∫∫

A
z2dA, I2 =

∫∫
A

z4dA. (52)

So the expression for bending moment is

My = −EI0
∂2w
∂x2

[
1− 3a3E2ε2

x0(t)
]
+ a3E3 I2

(
∂2w
∂x2

)3

. (53)

From (53) we have

∂2My

∂x2 = −EI0
∂4w
∂x4

[
1− 3a3E2ε2

x0(t)
]
+ a3E3 I2

∂2

∂x2

(
∂2w
∂x2

)3

. (54)

Notice that with g = g(x, t), we have

∂

∂x
g3 = 3g2 ∂g

∂x
⇒ ∂

∂x

[
∂

∂x
g3
]
=

∂

∂x

[
3g2 ∂g

∂x

]
= 6g

∂g
∂x

∂g
∂x

+ 3g2 ∂2g
∂x2 .

For g(x, t) =
∂2w
∂x2 , we have

∂

∂x

[
∂

∂x

(
∂2w
∂x2

)3
]
= 6

∂2w
∂x2

(
∂3w
∂x3

)2

+ 3
(

∂2w
∂x2

)2
∂4w
∂x4 . (55)

Substituting the expression (55) into (54), we get

∂2My

∂x2 = −EI0
∂4w
∂x4

[
1− 3a3E2ε2

x0(t)
]
+ 3a3E3 I2

[
∂4w
∂x4

∂2w
∂x2 + 2

(
∂3w
∂x3

)2
]

∂2w
∂x2

= −EI0
∂4w
∂x4

1− 3a3E2

[
1
2`

∫ `

0

(
∂w
∂x

)2

dx

]2


+ 3a3E3 I2

[
∂4w
∂x4

∂2w
∂x2 + 2

(
∂3w
∂x3

)2
]

∂2w
∂x2 .

(56)

Substituting (56) into the nonlinear oscillation equation (46), we get the bending os-
cillation equation of the geometric and nonlinear physical elastic beam according to for-
mula (44) and subjected to axial force

ρA(x)
∂2w
∂t2 + ρA(x)

(
c

∂w
∂t

)
+ EI0

∂4w
∂x4

1− 3a3E3 I0

[
1
2`

∫ `

0

(
∂w
∂x

)2

dx

]2


+

[
P0(t)−

EA
2`

∫ `

0

(
∂w
∂x

)2

dx

]
∂2w
∂x2 = 3a3E3 I2

[
∂4w
∂x4

∂2w
∂x2 + 2

(
∂3w
∂x3

)2
]

∂2w
∂x2 + p(x, t).

(57)
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2.5. Some special cases of physical nonlinear law

a) In case the calculation of the physical law follows the linear elastic law, only the geo-
metric nonlinearity is taken into account and the beam is not subjected to the axial force
acting at the top of the shaft.

Then a3 = 0, P0(t) = 0, from (53) we get Eq. (48)

ρA(x)
∂2w
∂t2 + EI0

∂4w
∂x4 −

[
EA
2`

∫ `

0

(
∂w
∂x

)2

dx

]
∂2w
∂x2 = p(x, t). (58)

If we use the notation

N =
EA
2`

`∫
0

(
∂w
∂x

)2

dx, (59)

from Eq. (48) we get

ρA(x)
∂2w
∂t2 + EI0

∂4w
∂x4 − N

∂2w
∂x2 + β

∂w
∂t

+ k f w = p(x, t). (60)

b) In case the physical nonlinearity obeys the rule (48), the geometric nonlinearity is ig-
nored and the beam is not subjected to longitudinal forces acting at the shaft end

Then P0(t) = 0 and if the term is omitted εx0(t) =
1
2`

∫ `

0

(
∂w
∂x

)2

dx, from (59) we

get the equation

ρA(x)
∂2w
∂t2 + EI0

∂4w
∂x4 = 3a3E3 I2

[
∂4w
∂x4

∂2w
∂x2 + 2

(
∂3w
∂x3

)2
]

∂2w
∂x2 + p(x, t). (61)

3. ILLUSTRATED EXAMPLE

In this section, we present an example illustrating the calculation of nonlinear os-
cillations according to the equations given in the previous paragraph. Considering the
model of two hinged beams subjected to agitation of concentrated distributed forces as
shown in Fig. 5. According to (60), the vibration equation of the beam paying attention
to the geometric nonlinearity has the form

EI
∂4w
∂x4 − N

∂2w
∂x2 + ρA

∂2w
∂t2 + β

∂w
∂t

+ k f w = p(x, t). (62)

Adding the fractional order term βα
∂αw
∂tα

in the equation (62), we get the following
partial derivative equation
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EI
∂4w
∂x4 − N

∂2w
∂x2 + ρA

∂2w
∂t2 + β

∂w
∂t

+ βα
∂αw
∂tα

+ k f w = p(x, t). (63)

In (63) the axial force component Nhas the form

N =
EA
2L

∫ L

0

(
∂w
∂x

)2

dx. (64)
In (63) the axial force component N has the form 

  (64) 

 
Fig. 5 

 

3.1 Transforming a partial differential equation into a system of differential equations 

        Applying the Ritz-Galerkin method, we find the solution of the differential - integral 

equation (63) in the form  

              (65) 

Where is the form function of the beam with no longitudinal force and no elastic 

foundation. According to [8] the form function has the following property 

  (66) 

In which we denote 

  (67) 

Using the formula to find the root (65), we can calculate the axial force easily  

  (68) 

To simplify the expression we put  . Therefore 
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3.1. Transforming a partial differential equation into a system of differential equa-
tions

Applying the Ritz–Galerkin method, we find the solution of the differential - integral
equation (63) in the form

w(x, t) =
∞

∑
n=1

Φn(x)qn(t), (65)

where Φn(x) is the form function of the beam with no longitudinal force and no elastic
foundation. According to [8] the form function Φn(x) has the following property

d4Φn(x)
dx4 =

ρA
EI

ω2
nΦn(x). (66)

In which we denote

ω2
n =

n4π4EI
ρAL4 . (67)

Using the formula to find the root (67), we can calculate the axial force easily

N =
EA
2L

∞

∑
i=1

∞

∑
j=1

[∫ L

0

dΦi(x)
dx

dΦj(x)
dx

dx
]

qi(t)qj(t). (68)

To simplify the expression we put ξ =
x
L

. Therefore∫ L

0

dΦi(x)
dx

dΦj(x)
dx

dx =
1
L

∫ L

0

dΦi(ξ)

dξ

dΦj(ξ)

dξ
dξ.

If we enter the symbol

Kij =
∫ L

0

dΦi(ξ)

dξ

dΦj(ξ)

dξ
dξ, (69)
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then ∫ L

0

dΦi (x)
dx

dΦj (x)
dx

dx =
1
L

Kij. (70)

Substituting (70) into (68) we get the expression to determine the axial force

N =
EA
2L2

∞

∑
i=1

∞

∑
j=1

Kijqi(t)qj(t). (71)

Using formula (65), Eq. (63) is transformed to the form

∞

∑
n=1

[
ρAq̈n(t) + βq̇n(t) + k f qn(t) + ρAω2

nqn(t) + βα
∂αqn(t)

∂tα

]
Φn(x)

− EA
2L2

∞

∑
n=1

∞

∑
i=1

∞

∑
j=1

Kijqi(t)qj(t)qn(t)
d2Φn(x)

dx2 = p(x, t).
(72)

Notice that we have the expression

d2Φn(x)
dx2 =

1
L2

d2Φn(ξ)

dξ2 .

So Eq. (72) can be rewritten as

∞

∑
n=1

[
ρAq̈n(t) + βq̇n(t) + k f qn(t) + ρAω2

nqn(t) + βα
∂αqn(t)

∂tα

]
Φn(ξ)

− EA
2L4

∞

∑
n=1

∞

∑
i=1

∞

∑
j=1

Kijqi(t)qj(t)qn(t)
d2Φn(ξ)

dξ2 = p(ξ, t).
(73)

Multiplying equation (73) by the form function Φm(ξ) and integrating over the length
of the beam from 0 to L, using the orthogonality of the form function, we get the formula[

ρAq̈m(t) + βq̇n(t) + k f qm(t) + ρAω2
mqm(t) + βα

∂αqn(t)
∂tα

] 1∫
0

Φ2
m(ξ)dξ

− EA
2L4

∞

∑
n=1

∞

∑
i=1

∞

∑
j=1

Kijqi(t)qj(t)qn(t)
1∫

0

Φm(ξ)
d2Φn(ξ)

dξ2 dξ =
1
L

1∫
0

Φm(ξ)p(ξ, t)dξ.

(74)

In some recent documents, we often choose the normalization function according to
the following conditions

1∫
0

Φ2
m(ξ)dξ = 1. (75)
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If we use the notation

Rmn =

1∫
0

Φm(ξ)
d2Φn(ξ)

dξ2 dξ, (76)

then Eq. (74) has the form

q̈m(t) +
β

ρA
q̇m(t) + ω2

mqm(t) +
k f

ρA
qm(t) +

βα

ρA
∂αqm(t)

∂tα

− E
2L4ρ

∞

∑
n=1

∞

∑
i=1

∞

∑
j=1

KijRmnqi(t)qj(t)qn(t) =
1

ρAL

1∫
0

Φm(ξ)p(ξ, t)dξ.
(77)

Notice that
1∫

0

Φm(ξ)
d2Φn(ξ)

dξ2 dξ =

1∫
0

Φm
d

dξ

(
dΦn

dξ

)
dξ

= Φm
dΦn

dξ

∣∣∣∣ξ=1

ξ=0︸ ︷︷ ︸
=0

−
1∫

0

dΦn

dξ

dΦm

dξ
dξ = −Knm.

(78)

Paying attention to the boundary conditions of the hinged beam at both ends. So
Eq. (77) now has the form

q̈m(t) +
β

ρA
q̇m(t) +

(
ω2

m +
k f

ρA

)
qm(t) +

βα

ρA
∂αqm(t)

∂tα

+
E

2ρL4

∞

∑
n=1

∞

∑
i=1

∞

∑
j=1

KijKmnqiqjqn =
1

ρAL

1∫
0

Φm(ξ)p(ξ, t)dξ = hm(t),
(79)

where the index m takes the values from 1 to mN . The right-hand side function in (79)
has the form

hm(t) =
1

ρAL

1∫
0

Φm(ξ)p(ξ, t)dξ. (80)

If we choose the normalized form functions according to the condition

Φm(ξ) =
√

2 sin(mπξ), (81)

then from (69) we have

Knm = Kmn =

1∫
0

dΦn

dξ

dΦm

dξ
dξ =

{
π2m2 when m = n
0 when m 6= n (82)
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Eq. (79) now takes the form

q̈m(t)+
β

ρA
q̇m(t)+ω2

m

(
1 +

α

m4

)
qm(t)+

βα

ρA
∂αqm(t)

∂tα
+

ω2
m

2R2m2

M

∑
n=1

n2q2
nqm = hm(t). (83)

Inside

ω2
m = ω2

0m4, ω2
0 =

π4EI
ρAL4 , k =

k f

ρAω2
0

, R =

√
I
A

, (84)

where ω0 is the fundamental frequency.

To simplify the calculation, we choose mN = 1, from (83) we have an equation as
follows

q̈1(t) +
β

ρA
q̇1(t) + ω2

0 (1 + k) q1(t) +
ω2

0
2R2 q3

1(t) +
βp

ρA
∂pq1(t)

∂tp = h1(t). (85)

Eq. (85) is a Duffing equation with the addition of a fractional derivative resistance
term. Shifting a few terms of Eq. (85) to the right hand side we get an equation of the
form

q̈1(t) + ω2
0q1(t) = −kω2

0q1(t)−
ω2

0
2R2 q3

1(t)−
β

ρA
q̇1(t)−

βp

ρA
∂pq1(t)

∂tp + h1(t). (86)

The function h1(t) on the right hand side now has the form

h1(t) =
1

ρAL

1∫
0

Φ1(ξ)p(ξ, t)dξ =
1

ρAL

1∫
0

√
2 sin(π ξ)p(ξ, t)dξ. (87)

Consider the case of beams subjected to uniformly distributed external loads

p(x, t) = P0 cos Ωt ⇒ p(ξ, t) = P0 cos Ωt. (88)

Then h1(t) has the form

h1(t) =
1

ρAL

1∫
0

√
2 sin(π ξ)P0 cos Ωtdξ =

2P0
√

2
πρAL

cos Ωt. (89)

3.2. Calculation of nonlinear oscillation

To study the main resonance oscillation of the system (86), when Ω ≈ ω0, we set

Ω2 = ω2
0 + εσ, (90)

where ε is a small parameter, σ representing the difference between Ω with ω0.
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With some assumptions about the parameters, Eq. (86) can now be reduced to the
form

q̈1(t) + Ω2q1(t) = − ε
[
k
(
Ω2 − εσ

)
− σ

]
q1(t)− ε

(
Ω2 − εσ

)
2R2 q3

1(t)

− εβ

ρA
q̇1(t)−

εβp

ρA
∂pq1(t)

∂tp + ε
2P0
√

2
πρAL

cos Ωt,
(91)

where ε is the small parameter. To simplify mathematical expressions we denote q =

q1(t). Ignoring the effect of higher order infinity ε2, Eq. (91) is rewritten as

q̈(t) + Ω2q(t) = ε f (t, q, Dpq, q̇) . (92)

Inside

f (t, q, Dpq, q̇) = −
(
kΩ2 − σ

)
q(t)− αq3(t)− δq̇(t)− δp

∂pq(t)
∂tp + E cos Ωt,

α =
Ω2

2R2 , δ =
β

ρA
, δp =

βp

ρA
, E =

2P0
√

2
πρAL

.
(93)

Using the asymptotic method, we can solve the oscillation equation (92). The amplitude-
frequency curve is plotted in Fig. 6. In it, we choose the following parameters

δp = 0.1, p = 0.5, E = 1, α = 1, δ = 0.2, k = 0.1, ω0 = 1, Ω ≈ ω0.

Where  is the small parameter. To simplify mathematical expressions we denote 

 Ignoring the effect of higher order infinity , equation (91) is rewritten as

                       (92) 

Inside 

  (93) 

Using the asymptotic method, we can solve the oscillation equation (92). The amplitude-

frequency curve  is  plotted in the figure 6. In it, we choose the following parameters: 

                                 
 

 
  

Fig. 6. The amplitude-frequency curve (dotted lines represent stable conditions) 

 

4. Conclusion 

           In this paper, we present the establishment of a relatively general nonlinear beam 
vibration equation for the study of nonlinear beam effects. Equation (46) allows us to 
derive equations or use nonlinear vibration calculations of beams. 
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4. CONCLUSION

In this paper, we present the establishment of a relatively general nonlinear beam
vibration equation for the study of nonlinear beam effects. Eq. (46) allows us to derive
equations or use nonlinear vibration calculations of beams.
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A relatively brief illustrative example is presented at the end of the article. Readers
who are interested in calculating the nonlinear vibrations of elastic beams can find them
in the literature [9, 10].
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