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Abstract. An explicit expression of natural frequencies through crack parameters is de-
rived for multiple cracked beams with simply supported boundaries using the Rayleigh
quotient. The obtained expression provides not only a simple tool for calculating natu-
ral frequencies of multiple cracked beams, but also allows employing the so-called crack
scanning method for detecting multiple cracks in simply supported beams from measured
natural frequencies. A numerical example demonstrates that the crack scanning method,
in combination with the Rayleigh quotient, enables consistent identification of cracks with
1% relative depth.

Keywords: multiple cracked beam, Rayleigh quotient, crack identification, frequency-based
method.

1. INTRODUCTION

The detection of cracks in structures and machinery is a vital concern because cracks
may lead to catastrophic accidents if they are not recognized early. While conventional
nondestructive techniques (such as ultrasonic or radiography, etc.) are limited in appli-
cation for local damage detection, methods based on measurements of vibratory signals
are global and more efficient, especially, in use for large and complicated engineering
structures. Among the methods proposed to detect damage in structures using changes
in their dynamic characteristics [1–3], many techniques are based on measurements of
modal parameters such as natural frequencies and mode shapes. The mode shape, as a
spatial characteristic of a structure, has proven to be a useful indicator for damage local-
ization in structures [4–8], but it is more difficult to measure. Sometimes, measurement
errors may hide changes in mode shape induced by damages. Natural frequencies have
been used since early on [9–12] for damage assessment of structures and are still being
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used today [13, 14]. The practice of modal testing has confirmed that natural measured
in comparison with mode shape. The most significant drawback of the frequency-based
approach is that natural frequencies are only slightly sensitive to small damages, and the
same change in frequencies might be caused by different damages. This leads to difficulty
in detecting damage at its early stage (small extent) and non-uniqueness of the damage
identification problem when using only natural frequencies. Therefore, seeking ways to
overcome the shortcomings of using natural frequencies in damage detection problems,
from one point of view, is more promising than solving problems related to the difficulty
and erroneousness in mode shape measurements.

The theoretical basis of the frequency-based method for damage detection is the
so-called characteristic equation that relates natural frequencies to damage parameters.
Different forms of the characteristic equation were conducted in [15–18] for a beam-like
structure with a single crack. Then, the equation was established for beams with mul-
tiple cracks [19–22]. Although the characteristic equation has been obtained explicitly,
natural frequencies could only be computed numerically as implicit functions of damage
parameters. This implicit interpretation of natural frequencies determined numerically
from the characteristic equation makes it difficult to solve the problem of damage detec-
tion from natural frequencies. An explicit expression of natural frequencies in terms of
crack magnitude was derived approximately in [23] for the case of small cracks using the
perturbation method, and this expression has been used for crack detection in [24, 25].
A system of linear equations relating the shift of natural frequencies with variations of
both crack magnitudes and positions was conducted in [26], but again numerically using
the finite element model. By introducing the so-called element damage index, Liang et
al. [27] and Patil and Maiti [28] were able to express natural frequency shifts in terms of
damage indices in an explicit form of linear equations that provide a useful tool for dam-
age localization by measured natural frequencies. Although the conventional Rayleigh
method was employed early on for determining the fundamental frequency of a cracked
beam by Shen and Pierre [29], an explicit expression of the fundamental frequency of a
beam with a single crack in terms of both position and size of the crack was obtained
much later by Fernandez-Saez et al. [30]. Recently, an expansion of the Rayleigh quotient
for calculating natural frequencies of cracked beams has been developed in [31], but like
the former results, it has not been straightforward to use for the crack detection problem.

In the present paper, the Rayleigh quotient for multiple cracked simply supported
beams is conducted and employed to obtain an explicit expression of an arbitrary natural
frequency in terms of crack position and size. The obtained expression is then used for
crack identification in simply supported beams by natural frequencies.
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2. RAYLEIGH QUOTIENT FOR MULTIPLE CRACKED BEAM

Let’s consider a uniform Euler-Bernoulli beam with elasticity modulus E, mass den-
sity ρ, length L, cross-section area F = b× h, moment of inertia I, and arbitrarily given
boundary conditions at x = 0 and x = 1. For the beam, the k-th natural frequency and
mode shape, denoted by ωk, φk(x), satisfy equations

φ
(IV)
k (x)− λ4

kφk(x) = 0, x ∈ (0, 1), λ4 = L4ρFω2
k /EI. (1)

Suppose, moreover, that the beam has been damaged to crack at positions 0 < e1 <

. . . < en < 1 with the unknown depth (a1, . . . , an). If the spring model of the cracks
is adopted, the so-called crack magnitude (γ1, . . . , γn) can be used instead of the crack
depth as follows

γj = EI/LKj = (6πh/L)Ic(aj/h), (2)

where function [27, 29]

Ic(z) = 1.8624z2 − 3.95z3 + 16.375z4 − 37.226z5 + 76.81z6

−126.9z7 + 172z8 − 143.97z9 + 66.56z10.
(3)

In this case, the mode shape φk(x) should satisfy the following conditions at the
cracks

φk(e−j ) = φk(e+j ), φ′′k (e
−
j ) = φ′′k (e

+
j ), φ′′′k (e−j ) = φ′′′k (e+j ),

[φ′k(e
+
j )− φk(e−j )] = γjφ

′′
k (ej), j = 1, . . . , n.

(4)

Now, multiply both sides of Eq. (1) by φk(x) and integrate along the beam length to
obtain

1∫
0

φ
(IV)
k (x)φk(x)dx− λ4

k

1∫
0

φ2
k(x)dx = 0. (5)

Note that for the functions φ(x), φ′(x), φ′′(x), φ′′′(x) that are all continuous in the
segment (a, b) it can be easily obtained

b∫
a

φ(IV)(x)φ(x)dx =

b∫
a

φ′′2(x)dx + [B(b)− B(a)], (6)

where B(x) = φ′′′(x)φ(x)− φ′′(x)φ′(x).

Applying the equality (6) for the integral

ej∫
ej−1

φ
(IV)
k (x)φk(x)dx and then summing for

j = 1, . . . , n + 1 with notice that e0 = 0, en+1 = 1 give
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1∫
0

φ
(IV)
k (x)φk(x)dx =

n+1

∑
j=1

ej∫
ej−1

φ
(IV)
k (x)φk(x)dx

=

1∫
0

φ′′2k (x)dx + [Bk(1)− Bk(0)] +
n

∑
j=1

[Bk(e+j )− Bk(e−j )].

Using the conditions (4) the latter equation can be rewritten as
1∫

0

φ
(IV)
j (x)φk(x)dx =

1∫
0

φ′′2k (x)dx +
n

∑
j=1

γφ2′′
k (ej) + [Bk(1)− Bk(0)]. (7)

Therefore, Eq. (5) becomes

λ4
k =

 1∫
0

φ2′′
k (x)dx +

n

∑
j=1

γjφ
2′′
k (ej) + [Bk(1)− Bk(0)]

 /
1∫

0

φ2
k(x)dx, (8)

which is the Rayleigh quotient extended for multiple cracked uniform beams. The quo-
tient (8) is unable yet to use for either calculating natural frequencies or crack detection
from given natural frequencies because the mode shape of the beam is unknown. For
the case of undamaged beams, the well-known Rayleigh quotient was taken in use for
calculating natural frequency of beam by a proper choosing trial shape function, and this
is called the Rayleigh method. In this paper, the Rayleigh method is extended not only
for calculating the natural frequencies of multiple cracked beams but also for solving the
problem of crack detection from measured natural frequencies.

For this purpose, the beam length, L = 1, is divided into n segments (xj−1, xj), j =
1, . . . , n with xj−1 < ej < xj, x0 = 0, xn = 1 and mode shape functions are selected in the
form

φk(x) = φ0k(x) + φ̂k(x), x ∈ (xj−1, xj), j = 1, . . . , n, (9)

φ̂k(x) = Akjx3 + Bx2 + Ckjx + Dkj + γjφ
′′
k (ej)

{
(ej − x), xj−1 ≤ x ≤ ej
0, ej ≤ x ≤ xj

where φ0k(x) is k-th mode shapes of intact beam satisfying given boundary conditions.
Such chosen shape functions (9) satisfy the conditions (4) at crack positions and the con-
tinuity conditions at xj would be satisfied under conditions

Akj = Ak,j+1, Bkj = Bk,j+1, Ckj = Ck,j+1 − γj+1φ′′k (ej+1),

Dkj = Dk,j+1 + γj+1φ′′k (ej+1)ej+1, j = 1, . . . , n− 1.
(10)

Assuming that

Ak0 = Ak1, Bk0 = Bk1, Ck0 = Ck1 − γ1φ′′k (e1), Dk0 = Dk1 + e1γ1φ′′k (e1), (11)
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one obtains

Akj = Ak0, Bkj = Bk0, Ckj = Ck0 +
j

∑
i=1

γiφ
′′
k (ei), Dkj = Dk0 −

j

∑
i=1

eiγiφ
′′
k (ei), j = 1, . . . , n.

(12)

So, it remains unknown four constants Ak0, Bk0, Ck0, Dk0 that can be determined from
boundary conditions as follows. For simply supported beam, the boundary conditions

φk(0) = φ′′k (0) = φk(1) = φ′′k (1) = 0, (13)

give rise

Ak0 = Bk0 = Dk0 = 0, Ck0 = −
n

∑
j=1

γj(1− ej)φ
′′
k (ej). (14)

So that one gets finally

Akj = Bkj = 0, Ckj =
n

∑
i=1

(ei − 1)γiφ
′′
k (ei) +

j

∑
i=1

γiφ
′′
k (ei), Dkj = −

j

∑
i=1

γieiφ
′′
k (ei). (15)

The coefficients Ak0, Bk0, Ck0, Dk0 found above for different cases of boundary condi-
tions allow obtaining a more explicit expression of the right-hand side in Eq. (8).

First, it is easy to verify that for any homogeneous (traditional) boundary conditions
one has

Bk(0) = φ′′′(0)φ(0)− φ′′(0)φ′(0) = 0, Bk(1) = φ′′′(1)φ(1)− φ′′(1)φ′(1) = 0. (16)

So that the numerator and denominator of the quotient (8) can be calculated as

Numerator =
1∫

0

φ′′20k (x)dx +
n

∑
j=1

γjφ
′′2
0k (ej), (17)

Denominator =
1∫

0

φ2
0k(x)dx + 2λ−4

0k

n

∑
j=1

γjφ
′′2
0k (ej) +

n

∑
i,j=1

γiγjqijφ
′′
0k(ei)φ

′′
0k(ej), (18)

with functions qij(e1, . . . , en), i, j = 1, . . . , n calculated for the simple supports (SS) bound-
ary conditions respectively as

qji =
1
3


e2

j (1− ej)
2 : j = i

e3
j (ei − 1) + eiej : i � j

eiej(1− 3ej + e2
j ) : i ≺ j

(19)
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Hence, the quotient (8) can be written in the form

λ4
k =

1∫
0

φ′′20k (x)dx +
n

∑
j=1

γjφ
′′2
0k (ej)

1∫
0

φ2
0k(x)dx + 2λ−4

0k

n

∑
j=1

γjφ
′′2
0k (ej) +

n

∑
i,j=1

γiγjqijφ
′′
0k(ei)φ

′′
0k(ej)

. (20)

This is an expression of eigenvalues of multiple cracked beams through the crack
positions and magnitudes and modal parameters of undamaged beam.

In the case of undamaged beam, when γj = 0, j = 1, . . . , n, the latter equation is
reduced to the well-known classical Rayleigh quotient

λ4
k = λ4

0k =

1∫
0

φ′′20k (x)dx/
1∫

0

φ2
0k(x)dx . (21)

Furthermore, since the mode shape contains an arbitrary constant one can without

loss of generality assume that φ0k(x) = Nkφ̄0k(x) with
1∫

0

φ̄2
0k(x)dx = 1. Therefore, λ4

0k =

1∫
0

φ̄′′20k (x)dx and Eq. (21) becomes

λ4
k

λ4
0k

=

1 + λ−4
0k

n

∑
j=1

γjφ̄
′′2
0k (ej)

1 + 2λ−4
0k

n

∑
j=1

γjφ̄
′′2
0k (ej) +

n

∑
i,j=1

γiγjqijφ̄
′′
0k(ei)φ̄

′′
0k(ej)

. (22)

Furthermore, expanding the right-hand side of Eq. (22) in the Taylor series and using
the notations φ̂′′0k(x) = λ−4

0k φ̄′′0k(x) for modal curvature of the normalized mode shape
φ̄0k(x) one obtains

λ∗4k

λ4
0k

= 1− λ−4
0k

n

∑
j=1

γjφ̂
′′2
0k − ϑk

n

∑
j,i=1

qjiγjγiφ̂
′′
0k(ej)φ̂

′′
0k(ei), (23)

where ϑk stands for a factor introduced to minimize the truncated error in the Taylor
series. The obtained expression (23) is a novel explicit representation of eigenvalues in
terms of crack parameters for cracked beam that provides a simple tool not only for calcu-
lating natural frequencies beam with given crack parameters but also is straightforward
to develop a procedure for crack evaluation from given natural frequencies.
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3. THE CRACK SCANNING TECHNIQUE

Supposing that m natural frequencies ω∗1 , . . . , ω∗m of a uniform beam with given end
conditions are known, the problem is to evaluate the number, location, and depth of
cracks possibly occurred in the beam. This problem is distinguished from the conven-
tional model-based crack detection problem by the fact that the number of potential
cracks in beam is unknown. This problem is solved by using a method that could be
so-called crack scanning method. The essential content of the crack scanning method
consists of following tasks:

(1) Introducing a mesh of positions (e1, . . . , en) of cracks with unknown magnitude
(γ1, . . . , γn).

(2) Constructing a model of beam with the assumed crack grid that enables to relate
the unknown crack magnitudes to natural frequencies of the beam.

(3) Estimating the unknown crack magnitudes based on the constructed model and
given measured frequencies.

(4) Using the points e1, . . . , enc from the mesh where the crack magnitudes have been
positive-definitely estimated as a new mesh and returning to step 2 until the mesh is
unchanged.

(5) The desired crack magnitudes and positions would be detected as result of step 4
and depth of the detected cracks is calculated from the estimated magnitudes.

Obviously, the crucial point of the crack scanning method is deriving the diagnostic
equations, that is accomplished as follows:

For the measured natural frequencies ω∗1 , . . . , ω∗m, associated eigenvalues can be eas-
ily calculated as

λ∗k = (L4ρFω∗2k /EI)1/4, k = 1, . . . , m. (24)

The modal parameters of intact beam {λ0k, φ̄0k(x), k = 1, . . . , m} are given in any
textbook on the Dynamics of Structures, for instance, the reference [32]. Now we can
rewrite Eq. (23) as

[A + B(γ)]γ = b, (25)

A = [akj = φ̄′′2k0 (ej)], B(γ) = [bkj = αkφ̂′′0k(ej)
n

∑
i=1

qjiγiφ̂
′′
0k(ei)],

b = {b1, . . . , bm}T, bk = (1− δk), (26)

αk = ϑkλ4
0k, δk = λ4

0k − λ∗4k , k = 1, . . . , m, j = 1, . . . , n. (27)
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This provides a nonlinear equation for estimating crack magnitude vector γ =

(γ1, . . . , γn) that can be solved by using the iteration method

[Ai−1]γ
(i) = b, (28)

Ai−1 = A + B(γ(i−1)), γ(0) = 0, i = 1, 2, 3, . . . (29)

The iteration process is stopped when
∥∥∥γ(N) − γ(N−1)

∥∥∥ ≤ tolerance. The obtained so-
lution γ̂ gives the first estimation (γ̂1, . . . , γ̂n) of the crack magnitudes that are employed
for performing steps 4. As result of step 4, crack positions (e1, . . . , en̄c) and magnitude
(γ̄1, . . . , γ̄n̄c) are finally determined together with desired number of cracks n̄c. The crack
depths are estimated as required in step 5 by solving Eq. (2) with respect to aj for the
given crack magnitude γ̄j.

It could be noted that the length of the crack scanning mesh (n) must be very large
compared to the limited number (m) of measured natural frequencies. Therefore, the
system of equations (30) is in fact under-determinate so the problem is ill-conditioned. To
avoid this trouble it can be used the well-developed regularization method that suggests
replacing the equation system (30) by

[AT
i−1Ai−1 + βI]γ(i) = b, (30)

with β is a positive parameter termed by the regularization factor and I is the unique
n× n-matrix. Hence, during solution of the problem one has two parameters ϑ and β that
can be selected to improve the results. The first one can be chosen according to sensitivity,
and the other - to measurement noise level of the measured natural frequency.

4. NUMERICAL EXAMPLES

For comparison with the earlier results, firstly, the natural frequencies of simply sup-
ported beam with two cracks given in [28] are taken in use for crack detection by using
the scanning method. Results of the initial evaluation are presented in Fig. 1(a) which
shows four peaks 0.25; 0.45; 0.6 and 0.8. Using the later positions as a new mesh for the
crack scanning procedure yields the desired crack positions and magnitudes, as shown
in Fig. 1(b).

Obviously, the actual cracks are exactly localized by using only four frequencies.
Graphics in the lower boxes of Fig. 1 illustrate the similar results of crack detection by
using natural frequencies calculated from Eq. (25), the Rayleigh quotient for multiple
cracked beams. Furthermore, results of crack detection for the beam with two and three
cracks of the identical depth 1% by the natural frequencies computed from the Rayleigh
quotient are shown in Figs. 2 and 3. The depth of the detected cracks is calculated and
given in Table 1 in comparison with the actual one. Apparently, the scanning method
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Figure 1. Results of crack detection for simply supported beam with two cracks at positions (0.25; 0.45) 

of the depth (0.0797;0.0986) by using the natural frequencies given in [30](a,b) and Rayleigh quotient 

(c,d). 
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Fig. 1. Results of crack detection for simply supported beam with two cracks at positions
(0.25; 0.45) of the depth (0.0797; 0.0986) by using the natural frequencies given in [28] (a, b)

and Rayleigh quotient (c, d)

gives more accurate results in crack detection in comparison with the damage index
method developed by Patil and Maiti [28] which could complete the crack localization
in a beam segment by using the graphical method. Moreover, if natural frequencies cal-
culated by the Rayleigh quotient are used for the crack scanning procedure, both the
crack position and depth were exactly predicted even for the crack depth of 1%. These
results demonstrate not only the acceptability of the Rayleigh quotient established herein
for calculating natural frequencies but also the usefulness of the crack scanning method
for multi-crack evaluation in simply supported beam.
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Figure 3. Results of crack detection for simply supported beam with three cracks at positions (0.2; 

0.65;0.85) of the same depth 1% by the natural frequencies computed from the Rayleigh quotient. 

 

Table 1. Results of multiple crack evaluation in a simply supported beam  

Crack scenarios Crack position (e/L) Crack depth (a/h) 

 

 

2 

crack

s 

Actual  0.25 0.45 0.0797 0.0986 

Detected ([30]) 0.25 0.45 0.0716 0.089 

Detected (Present) 0.25 0.45 0.0795 0.0986 

Actual 0.25 0.45 0,01 (1%) 

Detected (Present) 0.25 0.45 0.01 

3 

crack

s 

Actual  0.2 0.65 0.85 0.01 (1%) 

Detected (Present) 0.25 0.65 0.85 0.01 

5. CONCLUSION 

 In this paper, the Rayleigh quotient for a simply supported beam with arbitrary number of cracks has 

been derived and used for obtaining an explicit expression of natural frequencies through the crack 

parameter. The obtained interpretation of natural frequencies provides not only a simple tool for calculating 

natural frequencies with given crack parameters but also is straightforward to apply the so-called crack 

scanning technique for crack identification from measured natural frequencies. The numerical results 

obtained in this paper demonstrated that the crack scanning method can consistently evaluate multiple 

cracks of depth within 1% beam thickness by using a limited number of measured natural frequencies. 
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Table 1. Results of multiple crack evaluation in a simply supported beam

Crack scenarios Crack position (e/L) Crack depth (a/h)

2 cracks

Actual 0.25 0.45 0.0797 0.0986
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Detected (Present) 0.25 0.45 0.0795 0.0986
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5. CONCLUSION

In this paper, the Rayleigh quotient for a simply supported beam with arbitrary num-
ber of cracks has been derived and used for obtaining an explicit expression of natural
frequencies through the crack parameter. The obtained interpretation of natural frequen-
cies provides not only a simple tool for calculating natural frequencies with given crack
parameters but also is straightforward to apply the so-called crack scanning technique
for crack identification from measured natural frequencies. The numerical results ob-
tained in this paper demonstrated that the crack scanning method can consistently eval-
uate multiple cracks of depth within 1% beam thickness by using a limited number of
measured natural frequencies.

ACKNOWLEDGEMENT

This study was funded by Vietnam National Foundation of Science and Technology
(NAFOSTED) under grant number 107.01-2018.304.

DECLARATION OF COMPETING INTEREST

The author declares that they have no known competing financial interests or per-
sonal relationships that could have appeared to influence the work reported in this paper.

REFERENCES

[1] S. W. Doebling, C. R. Farrar, M. B. Prime, and D. W. Shevitz. Damage identification and
health monitoring of structural and mechanical systems from changes in their vibration charac-
teristics: A literature review. Los Alamos National Laboratory Report, LA-13070-MS, (1996).
https://doi.org/10.2172/249299.

[2] H. Sohn, C. R. Farrar, F. M. Hemez, D. D. Shunk, D. W. Stinemates, B. R. Nadler, and J. J.
Czarnecki. A review of structural health monitoring literature: 1996-2001. Los Alamos National
Laboratory Report, LA-1396-MS, (2004).

[3] W. Fan and P. Qiao. Vibration-based damage identification methods: A re-
view and comparative study. Structural Health Monitoring, 10, (2010), pp. 83–111.
https://doi.org/10.1177/1475921710365419.

[4] Y. K. Ho and D. J. Ewins. On the structural damage identification with mode shapes. In
Proceedings of the European COST F3 Conference on System Identification & Structural Health
Monitoring, Universidad Politecnica de Madrid, (2000), pp. 677–684.

[5] A. K. Pandey, M. Biswas, and M. M. Samman. Damage detection from changes
in curvature mode shapes. Journal of Sound and Vibration, 145, (1991), pp. 321–332.
https://doi.org/10.1016/0022-460x(91)90595-b.

[6] C. P. Ratcliffe. Damage detection using a modified laplacian operator on
mode shape data. Journal of Sound and Vibration, 204, (1997), pp. 505–517.
https://doi.org/10.1006/jsvi.1997.0961.

https://doi.org/10.2172/249299
https://doi.org/10.1177/1475921710365419
https://doi.org/10.1016/0022-460x(91)90595-b
https://doi.org/10.1006/jsvi.1997.0961


102 Duong The Hung

[7] M.-K. Yoon, D. Heider, J. W. Gillespie, C. P. Ratcliffe, and R. M. Crane. Local damage de-
tection with the global fitting method using mode shape data in notched beams. Journal of
Nondestructive Evaluation, 28, (2009), pp. 63–74. https://doi.org/10.1007/s10921-009-0048-6.

[8] J.-B. Kim, E.-T. Lee, S. Rahmatalla, and H.-C. Eun. Non-baseline damage detection based
on the deviation of displacement mode shape data. Journal of Nondestructive Evaluation, 32,
(2012), pp. 14–24. https://doi.org/10.1007/s10921-012-0154-8.

[9] P. Cawley and R. D. Adams. The location of defects in structures from measurements of
natural frequencies. The Journal of Strain Analysis for Engineering Design, 14, (1979), pp. 49–57.
https://doi.org/10.1243/03093247v142049.

[10] O. S. Salawu. Detection of structural damage through changes in frequency: a review. Engi-
neering Structures, 19, (1997), pp. 718–723. https://doi.org/10.1016/s0141-0296(96)00149-6.

[11] N. T. Khiem and T. V. Lien. Multi-crack detection for beam by the natural frequencies. Journal
of Sound and Vibration, 273, (2004), pp. 175–184. https://doi.org/10.1016/s0022-460x(03)00424-
3.

[12] G. Y. Xu, W. D. Zhu, and B. H. Emory. experimental and numerical investigation of structural
damage detection using changes in natural frequencies. Journal of Vibration and Acoustics, 129,
(2007), pp. 686–700. https://doi.org/10.1115/1.2731409.

[13] Z. Xiaoqing, H. Qiang, and L. Feng. Analytical approach for detection of multi-
ple cracks in a beam. Journal of Engineering Mechanics, 136, (2010), pp. 345–357.
https://doi.org/10.1061/(asce)0733-9399(2010)136:3(345).

[14] F. B. Sayyad and B. Kumar. Identification of crack location and crack size in a simply sup-
ported beam by measurement of natural frequencies. Journal of Vibration and Control, 18,
(2011), pp. 183–190. https://doi.org/10.1177/1077546310395979.

[15] R. D. Adams, P. Cawley, C. J. Pye, and B. J. Stone. A vibration technique for non-destructively
assessing the integrity of structures. Journal of Mechanical Engineering Science, 20, (1978),
pp. 93–100. https://doi.org/10.1243/jmes jour 1978 020 016 02.

[16] W. M. Ostachowicz and M. Krawczuk. Analysis of the effect of cracks on the natural fre-
quencies of a cantilever beam. Journal of Sound and Vibration, 150, (1991), pp. 191–201.
https://doi.org/10.1016/0022-460x(91)90615-q.

[17] R. Y. Liang, J. Hu, and F. Choy. Theoretical study of crack-induced eigenfrequency
changes on beam structures. Journal of Engineering Mechanics, 118, (1992), pp. 384–396.
https://doi.org/10.1061/(asce)0733-9399(1992)118:2(384).

[18] Y. Narkis. Identification of crack location in vibrating simply supported beams. Journal of
Sound and Vibration, 172, (1994), pp. 549–558. https://doi.org/10.1006/jsvi.1994.1195.

[19] Q. S. Li. Vibratory characteristics of multi-step beams with an arbitrary num-
ber of cracks and concentrated masses. Applied Acoustics, 62, (2001), pp. 691–706.
https://doi.org/10.1016/s0003-682x(00)00066-9.
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