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Abstract. Bioinspired structures are remarkable porous structures with great strength-
to-weight ratios. Hence, they have been applied in various fields including biomedical,
transportation, and aerospace materials, etc. Recent studies have shown the significant
impact of the plastic 3D printed triply periodic minimal surfaces (TPMS) structure on the
cement beam including increasing the peak load, reducing the deflection, and improving
the ductility. In this study, a machine learning (ML) surrogate model has been conducted
to predict the beam behavior under static bending load. At first, various combinations of
plastic volume fractions and numbers of core layers have been adopted to reinforce the
constituent beam. The finite element method (FEM) was implemented to investigate the
influences of these reinforcement strategies. Next, the above data were employed to cre-
ate the ML model. A three-process assessment was proposed to achieve the most suitable
model for the present problem, these processes were the model hyperparameter tuning,
the performance assessment, and the handling overfitting with deep learning (DL) tech-
niques. Consequently, both beam peak loads and maximum deflections were proportional
to the volume fraction. The increment in TPMS layers could lead to the enhancement in
both traits but with a nonlinear relationship. Furthermore, each trait may be a ceiling value
that could not be exceeded with a specific volume fraction despite any number of layers.
This conclusion was indicated by the surrogate model predictions. The final model in this
study could deal with noisy data from FEM and with the support of a new early stopping
condition, excellent performance could be found on both train and test data. The maxi-
mum deviations of 2.5% and 3.5% for peak loads and maximum midpoint displacements,
respectively, have verified the robustness of the present surrogate model.
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1. INTRODUCTION

Since first commercially developed in the 19th century, reinforced concrete materials
have been widely applied to most civil structures. The ductility of the concrete material
seemed to be increased by the reinforcement rebars. However, these rebars are com-
monly made of steel, probably known as a high-density and strongly corrosive material.
Difference types of materials have been studied to replace steel. Recently, recycled plas-
tic appeared to be a good solution to this problem. Many reinforcement methods have
been developed to apply plastic material to structures. Salazar et al. [1] studied the duc-
tility enhancement of the concrete beam behavior using lattice structures, and the result
indicated that the higher plastic ratio leads to better performance in flexure and less com-
pressive strength. The non-uniform lattice was reported to be an advanced method for
improving the ductility and energy absorption of the beam structure while using fewer
materials [2]. The mentioned lattice was noted as a typical crystal structure, which could
also be found in nature and so-called bioinspired structures. Several members of this
type could be listed as multi-cell tubes, helicoidal tubes, honeycomb, and hierarchical
foam, etc [3]. Among others, triply periodic minimal surface (TPMS) structures were
suggested as remarkable ones. The key characteristic of this structure group was that it is
formed by zero-self-intersecting surfaces. This indicated the efficiency in reducing stress
concentration on the structure surface. This complex geometry might not be fabricated
by traditional manufacturing methods, but with the advancement in additive manufac-
turing (AM), TPMS structures could be assembled by material printing [4–6].

Therefore, numerous publications have been conducted to investigate the mechani-
cal behaviors of various TPMS structures with different materials based on 3D printing
technology. A study by Lee et al. [7] has shown mechanical characteristics of the Prim-
itive TPMS structure, namely the elastic modulus E, bulk modulus K, shear modulus
G, anisotropy indexes, compression and shear strength, etc., with respect to its volume
fraction. The anisotropic material behaviors of these TPMSs were indicated in the previ-
ous work along with the thermal and electrical behavior of the structure [8]. Furthermore,
TPMS structures made of metallic material were suggested to have a great value of energy
absorption capacity. Different metal 3D printing methods such as selective laser melting
(SLM) and selective laser sintering (SLS) were adopted to verify this affirmation [9, 10].
Sheet-based TPMS structures were considered to have greater mechanical behavior than
the skeletal-based ones [11]. Yang et al. [12] conducted finite element analysis (FEA) sim-
ulations to compute the behavior of these metallic structures with good agreements with
experimental results. Consequently, the enhancement in energy absorption has been re-
ported to be valuable. This conclusion was verified by Tran et al. [13] with impact loads
and Peng et al. [14] with explosive loads. The sandwich plates with plastic TPMS cores
in these studies have great energy absorption capacity under dynamic load.

However, the above studies used either the finite element method (FEM) or experi-
ment to investigate the TPMS structures due to the lack of appropriate theoretical mod-
els. Recently, the authors have conducted a research on this issue [15]. A new curve-
fitting model for cellular material’s behaviors has been proposed which was a two-phase
piece-wise function. This approach has shown its efficiency in predicting the mechanical
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properties of metallic TPMS structures. Furthermore, a new functionally graded TPMS
(FG-TPMS) plate has also been revealed with various porosity distribution functions. The
results showed that with the gradation approach, the TPMS plates have been remarkably
improved with all free vibration, buckling, and static responses.

Moreover, recycled plastic material is possibly one of the most suitable materials for
the aquatic environment. Based on this affirmation, Dang et al. [16] have introduced a
breakwater solution using TPMS core reinforced cementitious block. An effective reduc-
tion of wave effects toward 50% has been indicated by the simulations. In addition, the
TPMS geometry has also been adopted to reinforce the beam structures. Nguyen-van et
al. [17] have revealed the comparison between two TPMS reinforced cement beams, the
plastic molds cement beam, and the plain cement beam. It is claimed that the reinforced
beams might provide excellent influences on the peak load and the flexural stiffness un-
der static bending load. As in the later investigation of the same authors, an increment
in energy absorption capacity of this beam subjected to dynamic load has been indicated
with the value of 33% [18]. On the other hand, previous studies chiefly investigate the
effectiveness of the plastic TPMS core in beam structures regardless of assessing the in-
fluence of various core parameters on the beam behaviors. As a reinforcement compo-
nent, the plastic TPMS core could increase the ductility of concrete materials. Therefore,
both ultimate load and maximum deflection of the cement beam could be improved.
Consequently, the influence of the TPMS core properties on the cement beam should be
achieved for further applications.

However, both experimental and simulation approaches to this structure might be
considered challenging, and the complex geometry was noted as the major reason. While
3D printing technology should be employed to manufacture the specimen, relevant fine
mesh and material nonlinearity responses were crucial for FEA simulation. For certain
TPMS parameters, both the FEA computation time and the experimental time might be
time-consuming and uneconomical. This could be a barrier to applying this type of beam
in real-world problems. In this work, the above data were used to create a surrogate
model based on machine learning (ML) was created. With the rapid development of deep
learning (DL) techniques, ML algorithms could be applied in many fields of mechanics
as presented in [19, 20]. Prediction application was considered a representation of ML
models. For instance, studies about reinforced concrete beam [21], steel-concrete con-
nections [22], high-performance concrete strength [23], reliability of truss structures [24],
etc. The typical research about the application of ML to optimization of the truss sys-
tem was the publication by Nguyen et al. [25]. In this study, the optimization speed was
significantly increased compared to other non-gradient optimization algorithms such as
metaheuristics. The impacts of the activation function and optimization algorithm on
training time have been investigated as well. Therefore, the hyperparameter choosing
should be considered attentively. This process is commonly named the hyperparame-
ter tuning process. In this study, a three-process assessment strategy was adopted that
both hyperparameter tuning and overfitting handling were included. The ML model can
provide an excellent surrogate model for the present problem. Furthermore, the predic-
tions of this model are adopted to generate a deeper analysis of the impact of these TPMS
parameters on the beam behaviors.
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This study is divided into seven sections as follows. Section 1 introduces the TPMS
structures, and their recent applications, and indicated the research contributions. Sec-
tion 2 provides detailed information about the TPMS geometry, while its main applica-
tion in this study is proposed in Section 3 which is the plastic TPMS reinforced cement
beam. The FEA and the ML models are presented in Sections 4 and 5 respectively. Sec-
tion 6 demonstrate the results of both FEA simulations and ML surrogate models along
with deep discussions on the influences of TPMS parameters on beam behaviors. A brief
conclusion can be found in the last section of this study, which is Section 7. In sum,
the contribution of this study can be expressed as two main processes that are the FEM
process and the ML process. The flowchart in Fig. 1 shows the workflow to solve the
proposed problems.

Fig. 1. Flowchart of this study problems

2. TRIPLY PERIODIC MINIMAL SURFACES (TPMS)

A TPMS is the cyclic-repetition combination of minimal surface units in all three
perpendicular dimensions. TPMSs are also known as a crystal structure with the basic
property of the minimal surface, which is the non-self-intersecting surface and therefore
reduces stress concentration affection [26]. Many new TPMS structures have been con-
tinuously published since its first discovery. The earliest structures were founded by
Herman Schwarz and his student namely Primitive (P), Diamond (D), Hexagonal (H),
and Neovius (N). In addition, the Gyroid structure (G) is well known as a bioinspired
structure which was revealed by Alan Schoen along with many other TPMS structures
based on skeleton graphs of crystal [27]. There are several methods to form the TPMS
geometry; however, the implicit function might be considered the most conventional ap-
proach [28]. A few common TPMS geometries can be described as follows

• Primitive (P):

ϕ(x, y, z) = cos ωxx + cos ωyy + cos ωzz, (1)

• Gyroid (G):

ϕ(x, y, z) = cos ωxx sin ωyy + cos ωyy sin ωzz + cos ωzz sin ωxx, (2)
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• Diamond (D):

ϕ(x, y, z) = sin ωxx sin ωyy sin ωzz + sin ωxx cos ωyy cos ωzz
+ cos ωxx sin ωyy cos ωzz + cos ωxx cos ωyy sin ωzz,

(3)

• I-graph and wrapped package-graph (IWP):

ϕ(x, y, z) = 2
(
cos ωxx cos ωyy + cos ωyy cos ωzz + cos ωzz cos ωxx

)
−
(
cos 2ωxx + cos 2ωyy + cos 2ωzz

)
,

(4)

with
ωi = 2π

ni

Li
|i = x, y, z, (5)

where x, y, z are the axes of the three-dimensional Cartesian coordinate system; ωi are the
periodicities of the TPMS function; Li are the unit cell lengths along the corresponding
axis; ni are the numbers of unit cells along the corresponding axis.

(a) Primitive (b) Gyroid

(c) Diamond (d) I-graph and wrapped package-graph

Fig. 2. Typical TPMS structures
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In this study, the uniform TPMSs were adopted where the properties of the surface
in all three spatial dimensions are the same (ωi = ω, ni = 1, Li = a). The geometries of
above mentioned TPMS types are shown in Fig. 2.

(a) Skeletal-based (b) Network-based (c) Sheet-based

Fig. 3. Several Primitive solid types

The majority of TPMS should divide its surrounding cube into two parts that are
even in volume. In other words, the volume fraction between a network-based TPMS
solid and its cube is equal to 50%. However, there are plenty of solid types that can be
created from a specific TPMS. For illustrations, three types of Primitive TPMS solids are
shown in Fig. 3 including skeletal-based, network-based, and sheet-based solids. These
solid types can be created by adopting different modification methods in the implicit
function. Furthermore, the volume fraction of the structure can be simply controlled by
the control parameter (t) in the modified implicit functions. In this study, the sheet-based
solid Primitive TPMS was utilized for further investigations. Eq. (6) describes the sheet-
based solid implicit function.

−t ≤ ϕ(x, y, z) ≤ t. (6)
Bioinspired structures continuously show their high performances in many applica-

tions because they have been subjected to numerous evolution factors as well as have
been gradually optimized through time. The TPMS structure is also denoted as a group
of bioinspired structures. In fact, they can be found in various natural aspects namely
butterfly wings, sea urchins, nano-porous gold, human bone, etc. A demonstration of
this natural origin can be found in Fig. 4.

One of the outstanding characteristics of these TPMSs is that both their area and
volume are well optimized and therefore minimizing the self-mass. Moreover, to ensure
the mobility of the organism, these structures have to provide incredible strength and
stiffness. Consequently, the high stiffness-to-weight or strength-to-weight ratio of these
structures was the most important feature that leads to their wide-range applications. For
instance, TPMS structures have been widely used in medical equipment and body im-
plants since the beginning. In addition to their high stiffness, the reducing-concentration-
stress property of these structures could attract a large number of researchers who mainly
focused on their mechanical behaviors. Many scientific reports on the responses of metal-
lic TPMS structures have been published [11,12, 30]. The results showed that this type of
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Fig. 4. TPMS structures in nature, a)-d) the Gyroid structure in butterfly wing, e) the Fischer-Koch
structure in nano-porous gold, and f) the Primitive structure in sea urchin microstructure [29]

structure can be used to replace the traditional lattice structure or crystal structure. Re-
cently, several articles on lightweight concrete beams and slabs reinforced by 3D printed
TPMS shell made of recycled plastic materials have been published with different load
types such as static loads [17, 31], dynamic load [18], impulsive load [13, 14], wave load
[16], etc. As a result, it is indicated that these structures show the great potential of using
recycled plastic to replace steel material in traditional reinforced concrete beams.

3. BEAM REINFORCED WITH 3D PRINTED TPMS STRUCTURES

3.1. 3D printing technology
With the mentioned excellent characteristics, scientists have been applying these

TPMSs in structural members to enhance their performances under various loading
schemes. Based on the advances of 3D printing technology, TPMS structures, despite
having complex geometry, can still be fabricated. Solid cement beams reinforced with the
recycled plastic TPMS core showed efficiency with great improvement in load-bearing
capacity and energy absorption compared to other reinforcement strategies.

Additive manufacturing (AM) technology has been being widely developed and ap-
plied in various research fields and industries. The more popular name for this technol-
ogy is 3D printing technology. The primary fabrication method of this technology is that
by using equivalent printing devices, a layer of material can be created with a specific
height. This layer is further superimposed on top of another layer. This process con-
tinues until the 3D built-up specimen is created. This technology is in contrast to the
traditional fabrication technology which is known as subtractive manufacturing. Object
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identification and layering for fabrication are the most important tasks in 3D printing
implementation. With the support of modern software and spatial-model-design for-
mats such as computer-aided design (CAD), standard triangle language (STL), etc., 3D
printing technology is being simpler for practical applications. Equipment for printing or
spraying materials should be considered attentively corresponding to the manufactured
object and its material [5,22]. The most popular 3D printing methods can be found in [32]
as follows

• Fused deposition modeling (FDM): Thermoplastic materials are melted and then
solidify to create layers;

• Inkjet printing: The ceramic powder is melted and formed into droplets that
latter be solidified into layers;

• Powder bed fusion (PDF): Each layer is created by fusing ultra-fine metallic
powder with a laser beam or a binder;

• Stereolithography (SLA): The technique that uses an ultraviolet laser to harden
the plastic materials which is in liquid form.

In addition, due to the ability of creating sophisticated geometries with high preci-
sion, AM technology has been used to fabricate numerous bioinspired structures [3]. It
is indicated that these structures bring enormous difficulties in traditional manufactur-
ing methods. Moreover, 3D printing technology allows the product to be created with
different materials including metal, plastic, ceramic, cement, etc. This material diversity
is also one of the reasons that promote studies on 3D printing technology. Recently, re-
cycled plastic materials have been adopted for investigations and implementations. Sev-
eral thermoplastics that can be adopted are polylactic acid (PLA), acrylonitrile butadiene
styrene (ABS), polycarbonate (PC), etc. More specifically, ABS plastic is employed in this
study along with the FDM printing method.

3.2. Effectiveness of plastic TPMS scaffold
Recent studies have shown that the TPMS core could create confinement in the ce-

ment beam, thereby increasing the ultimate strain and compressive strength of cement.
In addition, TPMS cores printed with ABS or PLA are much lighter than concrete, there-
fore reducing the overall weight of the structure. This reduction depends on the volume
that the TPMS core occupies in the member which is called the volume fraction. The re-
search [1] has shown that the percentage of ABS plastic material of at least 19.2% might
reduce the concrete compressive strength by 22%. Therefore, the volume fraction of the
TPMS core needs to be considered attentively. In the range of low volume fraction, the
sheet-based TPMS solid can be considered the thicken-based TPMS solid. This type of
solid is generated by adopting a thickness to the surface (where the control parameter
(t) is equal zero). In this study, the TPMS core in simulations is approximated by this
approach. The corrosion resistance of plastics is also an advantage compared with steel
rebar reinforced beams [16]. Furthermore, to investigate the ductility of the beam, a poly-
mer fiber-reinforced lightweight cement with a content of about 0.25% total volume of
the beam was employed [17]. In this study, the Primitive TPMS cores are used to rein-
force the cement beam. While the overall dimensions of the beam are constant during
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the investigation, the number of TPMS layers and the volume fraction of the core are var-
ied. From the results of these simulations, an excellent surrogate model which is able to
predict the beam behavior can be achieved.

In the previous study of Nguyen-van et al. [17], the impact of the TPMS core has been
validated with both experiment and Finite Element Analysis simulation. The standard
error between simulation and experimental results of one-layer and two-layer beams
ranged from 3% to 7%. Besides, the stress-strain curve of the beam shown in Fig. 5 again
displays the similarity between simulation and experiment. Consequently, the simula-
tion could capture the responses of the considering beams. In other words, the reliability
of the simulation was confirmed.

(a) One-layer beam (b) Two-layer beam

Fig. 5. Stress-strain curve of one and two-TPMS-layer reinforced beam [17]

Fig. 6. Stress-strain curve of cement beam, ABS-mold confined cement beam,
and TPMS shell-reinforced cement beam [17]

In addition, Fig. 6 shows the TPMS core contribution in reducing the brittleness
of the cement. This affirmation could be concluded by the beam’s plastic behavior and
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energy-absorption increment. It should be noted that the strain-softening regime of the
beam has appeared, which was similar to the polymer fiber reinforced beam [33]. Thus,
both the maximum load and maximum displacement of the beam have increased remark-
ably compared to the un-reinforced cement beam.

Another result could be found is that an increase in the number of TPMS units might
lead to higher improvement in the beam responses. However, as the unit size decreases,
the manufacturing process might be more difficult. Moreover, the arrangement of core
units could affect the beam behavior as shown in Fig. 7. For instance, the one-layer beam
had an incline crack path in the cement part between TPMS units instead of a straight
line in the center of the beams. In contrast, the two-layer beam’s crack path was similar
to the normal cement beam due to the fact that there were not any units at the center of
the beam.

(a) One-layer beam

(b) Two-layer beam

Fig. 7. Crack propagation in TPMS core reinforced beam with 25% and 100% bending load
of one and two-layer beam [17]

4. SIMULATION MODEL

4.1. Beam geometry properties
The beam configuration in the previous study is adopted for comparisons as shown

in Fig. 8. The 50 mm × 50 mm × 250 mm beam is filled with lightweight cement. The
plastic molds and TPMS core are simultaneously fabricated by 3D printing. While the
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thickness of the molds is equal to 2mm for all cases, the thickness of the core is varied
with the volume fraction of plastic material.

Fig. 8. The 3D printed molds and the cement filled beam [18]

Various reinforcement strategies are employed in this study to investigate the influ-
ence of both the number of TPMS layers and the volume fraction of the plastic core on the
beam performance. The one, two, and three-layer TPMS cores are included along with
the volume fraction range of 10% to 20%. Beam labels and their corresponding parame-
ters are shown in Table 1.

Table 1. The geometric description of TPMS beam’s reinforcement core

Volume fraction
Number of TPMS layers

1 2 3

10% PC1 PC2 PC3
15% PC4 PC5 PC6
20% PC7 PC8 PC9

Furthermore, by remaining the beam size and changing the number of layers, the
relationships between this value, the TPMS unit size, and the total number of TPMS units
can be described in Eq. (7)

a =
50 mm
nlayer

, nunit = 5 × n3
layer, (7)

where a is the TPMS unit size; nlayer is the number of TPMS layers; nunit is the total
number of TPMS units.

As mentioned in the previous section 3.2, the volume fraction of the TPMS core can
be calculated from the mean thickness of the sheet-based structures with the following
equation

tshell =
VF × a3

A0
=

VF × a
2.3526

, (8)
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where tshell is the TPMS shell thickness, VF is the volume fraction of the TPMS core;
A0 = 2.3526× a2 is the surface area of the Primitive TPMS surface with control parameter
equals to zero (t = 0) [34].

Table 2. The beam core parameters with various reinforcement strategies

Beam nlayer VF a (mm) nunit tshell (mm)

PC1 1 10% 50.0 005 2.125
PC2 2 10% 25.0 040 1.063
PC3 3 10% 16.7 135 0.710
PC4 1 15% 50.0 005 3.188
PC5 2 15% 25.0 040 1.594
PC6 3 15% 16.7 135 1.065
PC7 1 20% 50.0 005 4.251
PC8 2 20% 25.0 040 2.125
PC9 3 20% 16.7 135 1.420

The core parameters of the considering beams are provided in Table 2. The static
bending load is adopted in this work to assess the beam responses. The load is assigned
in the center of the beam according to the three-point bending test diagram with a span
of 200 mm. The printing direction behavior might be weaker than other directions due
to the effect of the FDM printing method. Therefore, the side face of the beam was used
as the load interaction surface. As the result, the test can provide the most precise re-
inforcement behavior of the TPMS core. The typical simulation model can be seen in
Fig. 9.

Fig. 9. The bending test simulation of the TPMS reinforced beam
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4.2. Materials
The lightweight cement considered in this study is a polymer fiber cement with the

mix proportion in Table 3. In the previous research, this cement mixture was utilized
to determine the cement mechanical properties with a cubical specimen of 50 mm ×
50 mm × 50 mm. This specimen was poured at the same time as the beam and vibrated
to ensure that there were not any air bubbles trapped inside. After 28 days of curing
in a humid environment, the result of the uniaxial compression test of this cementitious
specimen was conducted and is shown in Table 4.

Table 3. Mix proportion of cementitious mortar [17]

Material Mix design (kg/m3)

Cement CEM I 550
Fly ash Class F 650
Water 400
Sand 550
PCE admixture 8.45
PVA fiber 0.25% of the total volume

Table 4. Mechanical properties of cementitious material [17]

Young modulus, E (MPa) 2500

Mass density, ρ (kg/m3) 2200

Poisson’s ratio, ν 0.2

For brittle materials such as cement, failure occurs when the stress in the cement
reaches the yield state and then initializes cracks. The simplified concrete damage plas-
ticity (SCDP) model combines the plasticity theory and the damage theory of concrete.
This model is indicated as a suitable model to investigate this type of material [35]. The
nonlinear behavior of the material can be described by two factors that are compression
damage and tension damage. These damage factors are determined by Eq. (9). In this
study, the SCDP model parameters of the cement material are provided from the com-
pression test in the previous study [17] and given in Table 5.

dc = 1 − σc

σcu
,

dt = 1 − σt

σtu
,

(9)

where σc, σcu are nominal compressive stress and ultimate compressive strength of the
material, respectively. σt, σtu are nominal tensile stress and ultimate tensile strength of
the material, respectively.
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Table 5. SCDP model parameters of cementitious material [17]

Dilation Eccentricity Initial Biaxial/Uniaxial K Viscosity
Angle Ratio σc0/σb0 Parameter

31 0.1 1.16 0.67 0

Compressive behavior from experiment Tensile behavior (assumed)

Yield Inelastic Damage Yield Cracking Damage
stress (MPa) strain parameter, D stress (MPa) strain parameter, D

23.5 0 0 3.56 0 0
28.1 0.001782 0 0.36 0.017526 0.90
29.9 0.002546 0
31.0 0.003117 0
33.6 0.004586 0
34.6 0.005757 0
35.2 0.006089 0
35.6 0.007122 0
31.3 0.010542 0.12116
26.7 0.015248 0.25073
20.8 0.031101 0.41691

6.4 0.086961 0.82108
5.9 0.107773 0.83539

The plastic components of the beam are 3D printed with recycled ABS plastic ma-
terial. The mechanical characteristics of this common printing material are revealed in
Table 6.

Table 6. Mechanical properties of ABS material [17]

Young modulus, E (MPa) 2200

Mass density, ρ (g/mm3) 1.05

Poisson’s ratio, ν 0.2

Yield stress, σy (MPa) 56

4.3. Finite element analysis
To study the beam responses, the spatial bending simulation has been utilized along

with the nonlinear behavior of the materials. These simulations were conducted in the
commercial software using the finite element method (FEM) which was Abaqus/Explicit.
In this three-point bending test model, three rigid semi-cylindrical rollers are included to-
gether with the beam. These three rollers consist of two test supports and a load transmis-
sion device. Several beam models are given in Fig. 10 as an illustration. In addition, the
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interaction surface between the support and the beam can be considered a ‘hard’ contact
with a friction coefficient of 0.15 to ensure that the beam cannot have the sliding displace-
ment which is perpendicular to the loading plane. The contact of the beam molds and the
cement core is defined as a general contact with the ‘hard’ normal contact and the tan-
gential contact with a friction coefficient of 1. This friction coefficient value can help the
shear stress on this surface vanish. Since then, the failure state of the beam may appear
when the stress in the component reaches the yield stress instead of sliding on each other
of these two components. Moreover, the similarity in the elastic moduli of both materi-
als, that are 2500 MPa and 2000 MPa for the cement and the plastic, respectively, should
also be noted. As the result, the bond-slip effect between these two components can be
ignored and considered as a perfect bond [36]. For this reason, the TPMS cores are con-
sidered as an embedded member in the beam cementitious part in simulations. Besides,
due to the zero-intersecting-surface characteristics of the TPMS shell, the cementitious
core might be confined. This behavior is indicated to cause reducing the deviatoric stress
and lessening the sliding on the contact surface of the cement core and the TPMS core.

(a) Beam PC4 (b) Beam PC5

(c) Beam PC6

Fig. 10. The three-point bending test simulations of beam (a) PC4, (b) PC5, and (c) PC6
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To reduce both computational time and complicated interaction between the load
transmission area and the beam, the load of the beam is replaced by the vertical displace-
ment of the load roller. The magnitude of the load is calculated during the simulation pro-
cess based on the reactions of supports. In this study, the four-node tetrahedral (C3D4)
element is adopted to simulate the beam cementitious core. Both the TPMS shell and the
molds are modeled by three-node triangular (S3/S3R) elements. The convergence stud-
ies on meshing size in previous publications [17, 37] have shown that a 4mm mesh grid
could provide acceptable solutions with an optimal computational time. However, this
meshing size might not be appropriate for the more-layer beams. For instance, the TPMS
unit size is 50mm, 25mm, and 16.7mm for one, two, and three-layer beams, respectively.
With the above mesh grid of 4mm for the TPMS shell, the TPMS unit in the three-layer
beam is only described by 5 elements which are lesser than other beams. Consequently,
the finer meshes should be adopted to produce reliable results for smaller TPMS unit
sizes. Another mesh strategy has been proposed in this work to deal with this problem,
which is verified in the next section.

5. MACHINE LEARNING APPROACH

Machine learning (ML) is a term used to define computer programs that can produce
predictions by using input data. The process to generate the output is called the train-test
progress. ML is also known as a subgroup of artificial intelligence (AI). Since the start of
the 21st century, applications of AI can be found in almost every aspect of life. Smart
devices such as cell phones and computers are typical examples. In addition, with the
rapid development of the internet, more and more data are generated all over the world.
With these enormous data, ML can be adopted in a wider range. To exploit that huge
amount of data more efficiently, the deep learning (DL) technique has been developed to
be an effective tool for ML models.

Furthermore, an artificial neural network (ANN) model is a representative of ML al-
gorithms with a multi-layer structure (multi-perceptron), each layer has multiple nodes
which can simulate the human nervous system [38] This structure is indicated to lead the
ML model to achieved its prediction more accurately and quickly than other traditional
approaches namely linear regression, decision tree, etc. With the ability to handle com-
plex problems, the ANN algorithm has grown rapidly and globally. For instance, ANN
or ML is commonly used as a surrogate model to reduce computational time in numer-
ous mechanical fields. Besides, these models are further used to predict the mechanical
behavior of structures instead of FEA simulations [20]. With a well-trained model, the
calculation time can be reduced dramatically from dozens of hours to only a few mil-
liseconds. An ANN model consists of two main progresses, which are the train and the
test progress. The results are calculated according to the feed-forward process based on
the model parameters (weights and bias) and adjusted through the backpropagation by
optimization algorithms. Therefore, the well-trained model is considered an optimal ap-
proximation model for the input data. The results are evaluated at the next stage which
is the test progress. By assessing these values, the performance of the model can be con-
ducted. As the result, the DL techniques can be adopted to minimize the error and the
training time of the model.
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5.1. Artificial neural networks
5.1.1. Architecture

ANN architecture is configured by three main components: Input data (input layer),
computation layers (hidden layer), and output data (output layer). The ANN model is
established based on the following definitions and formulas. This architecture can be pre-
sented in the diagram as shown in Fig. 11 with nodes denoted as circles and parameters
(weights and bias) in form of lines.

Fig. 11. Typical ANN architecture

• Input data is interpreted as a vector of the model variables and is considered as
the 0th computational layer of the network, x = h(0);

• An ANN model can have many layers where n is the number of layers, and each
computation layer can include many nodes, the number of nodes (excluding the
0th node) of the lth layer is denoted by d(l);

• The connection parameters of nodes (excluding the 0th node) of the (l − 1)th

layer and the lth layer are denoted by w(l) ∈ Rd(l)×d(l−1)
;

• The connection parameters of the 0th node (if any) of the (l − 1)th layer and the
lth layer is denoted by b(l) ∈ Rd(l)1;

• The value of the node in the lth layer is the result of the activation function
f (h(l−1), ω(l), b(l) calculated from the node values in the previous (l − 1)th layer
and the parameter of this layer, defined as Eq. (10);

h(l) = f
(

w(l)h(l−1) + b(l)
)

(10)
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• For instance, for node j of the lth layer presented as Eq. (11);

h(l)
j = f

(
d(l−1)

∑
i=1

w(l)
ji h(l−1)

i + b(l)j

)
(11)

• Output data are the results of the model which is the last layer of the network,
y = h(n+1);

Defining the model architecture is to determine the number of input variables, out-
put variables, and the number of computational layers as well as the number of nodes
in each layer. The total parameters of an ANN network can be calculated based on this
structure. In addition, as this number increases, the model may become more compli-
cated. The complexity of the model can bring difficulties in updating the parameters and
higher computational costs. The advantage of this heavy model is its significant training
accuracy compared to the lighter model. Nevertheless, the higher accuracy on train data
may lead to overfitting performance and losing the accuracy on the test data as shown in
Fig. 12. Consequently, the model architecture should be decided attentively.

Fig. 12. The influence of architecture complexity on the ANN model performance

5.1.2. Activation function
The activation function is used to determine how a node in the network can con-

tribute to a node value in the next layer. The sum products of the node values and the
previous layer’s parameters can reach a large number (please see Eq. (11) for more detail)
which increases the computational time and reduce the reliability of the model. There-
fore, the activation function is adopted to improve these problems. Some common acti-
vation functions can be used as below and their demonstrations are given in Fig. 13.

• Sigmoid function:

f (z) =
1

1 + e−z (12)

• Tanh function:

f (z) =
ez − e−z

ez + e−z (13)
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• ReLU function:

f (z) =

{
α(ez − 1), z < 0
z. z ≥ 0

(14)

• SoftPlus function:

f (z) = log(1 + ez) (15)

• 2nd-order Chebyshev polynomial function [25]:

f (z) = 2z2 − 1 (16)

• 3rd-order Chebyshev polynomial function [25]:

f (z) = 4z3 − 3z (17)

Fig. 13. Several common activation functions

In addition, the use of the activation function also helps to create higher-order non-
linearities for the network with fewer computational layers and improve reliability with-
out using more parameters. When using the gradient optimization algorithms, inap-
propriate activation function may lead to vanishing gradient or exploding gradient at
some arbitrary nodes. With a specific problem, the suitable activation function should be
adopted through the hyperparameter tuning process. In this study, both model architec-
ture and activation function are achieved simultaneously through the above process.
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5.1.3. Loss function
The loss function is established based on the deviations between the prediction re-

sults from the model and the training dataset. The loss values are employed to verify the
model prediction and then to propose solutions to increase that reliability. In this study,
the mean square error (MSE) value is adopted as the loss function, where other values
including the root mean square error (RMSE) and mean absolute error (MAE) are used
as reference metrics. These values are defined by the following functions

MSE =
∑(y − ȳ)2

2m
,

RMSE =

√
∑(y − ȳ)2

2m
,

MAE =
∑(|y − ȳ|)

m
,

(18)

where y, ȳ are model predictions and input data, respectively; m is the number of input
samples.

5.1.4. Optimization algorithms
To minimize the loss function, various optimization algorithms (or optimizer) in-

cluding non-gradient and gradient algorithms can be used to search for the solution and
to increase the convergence speed. Since the predicted value y can be calculated based on
backpropagation, it can be expressed as a mathematical function in terms of input values
x. Therefore, the gradient-based optimizers is noted to be better than others. The basic
of gradient optimization algorithms is that the gradient vector represents the direction
of decreasing the function value which is also known as the gradient descent. The most
important parameter of this theory is the learning rate. With the higher learning rate, the
convergence solution may be found faster yet this solution may not be the minimum one
as illustrated in Fig. 14.

Fig. 14. Illustration for the impact of the learning rate on the solution
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Furthermore, numerous gradient optimization algorithms have been created namely
mini-batch gradient descent (GD), stochastic gradient descent (SGD), root mean squared
propagation (RMSprop), adaptive moment estimation (Adam), adaptive gradient algo-
rithm (AdaGrad), adaptive learning rate method (AdaDelta), etc. In these optimizers,
the prefix ‘Ada’ in several optimizers stands for the adaptive algorithms group where
the learning rate can be modified during the train process. In addition, to prevent being
trapped at the local minimum, the momentum factor has been employed in almost all
algorithms. In the ANN model, each time the model uses all the train data is called an
epoch. Generally, the train process stops when the epoch reaches the pre-defined max-
imum epoch. The higher value of this hyperparameter may help the model to find the
better solution, however, increase the train time. Along with the maximum epoch, the
batch size is also a crucial factor of the train process. The batch size number defines the
number of data samples that is used to update the model parameters. The large batch size
can cost the longer time for each epoch but shorten the convergence time. However, it is
denoted that as the batch size increase, the generality of the model may be reduced. With
the small batch size, the model can be updated more frequently but take more epochs
to produce the best solution. Several optimizers with different learning rate, batch size
and epochs are applied in this study to achieved the most appropriate optimizer hyper-
parameters for the TPMS beam dataset.

5.1.5. Data
As denoted above, data is the key factors of every ML model. A data sample consists

of input data and output data. Dataset is the entire samples used in the model which may
be divided into three subsets including train dataset, validation dataset, and test dataset.
The complexity of the problem is the main aspect that affect the size of the dataset. It is
suggested that increasing the dataset could solve the underfit problems. In most cases,
the model requires thousands of samples to produce the good results. Furthermore, re-
searchers recently have focused on the noisy data problem where the data may have a
large number of incorrect samples. These data are meaningless in the final prediction,
however, inhibit the model to find the best solution. Therefore, many DL techniques
have been applied to prevent both train loss value and training time to increase in these
models. Another technique that is usually used on the dataset is the data scaling. With
arbitrary range, the data type can be rescaled into the range of [a, b], normalized into the
range of [0, 1], or standardized into the range of [σ − µ, σ + µ]. This technique is adopted
when the differences in data values are large. For example, with data A ∈ [1, 10] and
B ∈ [103, 104], the model tends to optimize the parameters related to data B because the
parameters related to data A almost have no effect on the calculation results. By using
the data normalization method, or min-max normalize, with the formula in Eq. (19), data
are scaled into the range of [0, 1] and the parameters are trained equally when optimizing
the model.

xscale
i =

xi − min (x)
max (x)− min (x)

. (19)

In contrast, this study dataset is the combinations of the midpoint displacement, the
volume fraction, the number of TPMS layers, and the applied load of the beam. Despite
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the volume fraction range of 0 to 1, other data are range of 0 to 10 with 10 is the maxi-
mum value of both maximum displacement and peak load. Therefore, the data scaling
technique is not applied in this study.

5.2. Model accuracy assessment
The accuracy or the reliability of the model is assessed through the value of the loss

function and the correlation graph of this value and the number of epochs which is the
convergence history. Three types of model results are shown in Fig. 15 that can be de-
scribed as follows

• Underfitting: the train or test set provides large errors in results, which cannot
be applied to prediction;

• Good fitting: the train and test sets provide small and similar errors; the model
is suitable for prediction;

• Overfitting: the train set provides small errors, but the test set offers much larger
errors. This result shows that the model prediction is too close to the train data
and is difficult in predicting new data.

Fig. 15. The typical performances of the ANN model

Both underfitting and overfitting models should be modified and re-trained. There
are numerous techniques to overcome these problems such as changing the architecture
and optimizer hyperparameter, adopting the DL techniques, changing the type of the ML
model, etc. In this study, the model performance was evaluated after the hyperparame-
ter tuning process. For underfit problem, increasing the total parameter may be a good
solution while several DL techniques can be adopted to prevent the overfitting problem.

5.3. Deep Learning techniques
As mentioned in the previous subsections, there are various of DL techniques that

prevent the overfitting problem. Due to the high computational cost of FEM simulations,
the dataset in this study consists of approximately 1800 samples of nine beam response.
However, the dataset also includes noise data which is presented in the next section.
Therefore, the model that trains on these data may not perform well on the test data.
In this work, three techniques are adopted with different hyperparameter to solve this
problem. These methods are the kfolds cross validation, the dropout technique, and the
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early stopping conditions. The k-folds cross-validation is the data splitting technique
where the dataset may be divided into k group and applied to k model. In each model,
one of the data groups is used as the validation set while others are used in the train
process.

Both dropout and early stopping techniques, however, do not affect the dataset.
Dropout neural network is a neural network with several random nodes are deactivated
in the train phase, this number of nodes is defined by the dropout rate. In contrast, all
nodes are included in test phase but with a reduced loss value. The reduced rate is also
equal to the dropout rate. This type of model is indicated to lessen the test loss value. On
another hand, the early stopping technique only modified the stop condition of the train
process. For instance, the stop may occur when the pre-defined minimum validation loss
value is reached. The motivation of this technique is that with a longer training time, the
model tends to fit the train dataset excessively (please see Fig. 16).

In this study, due to the small and noisy dataset, the typical ANN model may not
produce good approximations for entire dataset. Consequently, the above techniques for
handling overfitting were adopted. At first, the model is established with the kfolds cross
validation of four along with the early stopping condition of minimum validation loss in
several epochs. The trained model is assessed by six performance metrics. From this
evaluation, methods to enhance the model performance are adopted. The final model is
then conducted for further applications.

Fig. 16. The performance of the ANN model based on training epochs

6. RESULTS AND DISCUSSIONS

6.1. Finite element analysis results
6.1.1. Convergence study

The mesh size of 4 mm might be indicated as the relevant mesh for TPMS reinforced
structures in previous studies [17]. However, due to the increment in number of layers,
the unit size of the TPMS structure is reduced and the mesh size should be re-considered.
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Therefore, another meshing strategy is implemented in this study that the TPMS unit is
meshed with a certain number of elements to remain its smoothness which is illustrated
in Fig 17. The molds and the cementitious core mesh size are constantly 4 mm. The
meshing grid of the one-layer beam are given in Fig. 18.

(a) 500 elements (b) 1000 elements (c) 1500 elements

Fig. 17. TPMS unit with different triangular mesh grids

(a) Plastic scaffolds

(b) Cement core

Fig. 18. The mesh grid of the one-layer beam with 1000 meshing elements for each TPMS unit

To conduct the most suitable number of mesh elements for each TPMS unit, all three
mesh grids are adopted in the simulations. The convergence study of this mesh strategy
is provided in Fig. 19 for beam PC1. As the result, the mesh grid of at least 1000 elements
could produce a good solution. For reducing the computational time, this minimum-
value element mesh is further used in this study. In addition, the FEM results conducted
from this meshing grid are comparable with the experiments in the previous study [17].
The deviations of these results for beam PC1 and PC2 are 9.6%, and 10.7%, respectively.
The force-displacement curves of these beams can be seen in Fig. 20.
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Fig. 19. The convergence study of PC1 beam for various numbers of meshing element
for TPMS core

Fig. 20. Comparisons between FEM results in the present study and the experimental results in
publication [17] of PC1 and PC2 beams

6.1.2. Influences of TPMS properties
By applying the proposed meshing method, the simulations of other beams are im-

plemented. The stress distribution of the plastic components and the cement components
of several beams are described in Fig. 21 and Fig. 22, respectively. These results well agree
with the previous study with the view of stress distribution in the TPMS core. The higher
value of TPMS layers may help the stress be more evenly distributed, especially at the
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middle of the beam. The increment in the shell thickness may provide the similar result
but with a smaller effect. It is suggested that in the odd-layer beam, the stress tends to
concentrate at the gap between TPMS units, where the confinement is less than that at
the center of the beam.

(a) Beam PC4

(b) Beam PC2

(c) Beam PC5

(d) Beam PC8

(e) Beam PC6

Fig. 21. The von Mises stress of plastic components
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(a) Beam PC4

(b) Beam PC2

(c) Beam PC5

(d) Beam PC8

(e) Beam PC6

Fig. 22. The von Mises stress of cement components

In addition, both maximum and average von Mises stress at the load interaction lines
of beam PC2 are comparable to the simulation in the previous study [17]. For instance,
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the maximum stress in the previous study is about 82 MPa, while this value equals to
76 MPa in this study. Similarly, the average stress of the previous and the present stud-
ies are 45 MPa and 44 MPa, respectively. This slight disparity can be the result of the
meshing strategy. Both the increments in TPMS layers and volume fraction lead to the
improvement in the von Mises stress of the cement parts. On another hand, the effect of
one-layer increment on the maximum cement stress may not outperform the contribution
of 5% volume fraction in the two-layer beam. It is considered that as the thickness of the
TPMS shell increase, the cement may be more confined.

(a) One-layer beam (b) Two-layer beam

(c) Three-layer beam

Fig. 23. The force – displacement curves of TPMS reinforced beams

In view of the force-displacement relationship, the simulation results are presented
in Fig. 23. The peak loads and the maximum deflection of the investigating beams are
provided in Table 7 where the values in the parentheses are the mean values of the os-
cillating curves. The maximum peak load of all nine cases is generated from beam PC9
with a value of 8.295 kN. It is observed that a higher volume fraction could provide more
ductility and bending stiffness which is similar to the report [16]. For instance, the peak
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loads of 15% and 20% volume fraction for one-layer beam has raised about 21% and 45%,
14% and 29% for two-layer beam, and 13% and 28% for three-layer beam, respectively.
From this result, the higher-layer beam may provide a more stable peak load value. In
another word, the increment in the volume fraction may be less effective when the num-
ber of TPMS layers reaches a certain value. The unique geometry of the TPMS can be
considered the reason. The true mechanical properties of the TPMS structure can only
be achieved with a specific number of layers. This theory was verified by numerous
studies with both simulations and experiments. In fact, with at least 4 layers, the Primi-
tive structure could receive its micromechanics properties including strength and elastic
modulus [39]. A similar tendency can be found in the maximum midpoint displacement
responses. Even with the double thickness, the three-layer beam can only increase about
7% in the maximum displacement.

Table 7. The peak load and the maximum deflection of nine TPMS reinforced beams
based on FEA simulations

Volume fraction
Number of TPMS layers

1 2 3

Peak Load (kN)
10% 4.555 6.230 7.127 (6.623)
15% 5.546 7.448 (7.095) 8.356 (7.536)
20% 6.628 8.319 (8.013) 9.216 (8.580)

Maximum displacement (mm)
10% 2.531 4.982 5.986
15% 3.224 5.435 6.280
20% 3.973 5.724 6.406

On the other hand, as the number of TPMS layers increased, both the peak load and
maximum deflection of the beam are improved. The amount of 37% is the average in-
crement of the three-layer beam’s peak load for all three volume fractions. The midpoint
displacement, however, is improved with a greater average value of 98%. Consequently,
it could be noted that the impact of TPMS layers on the deflection is greater than on the
maximum load. Further discussions on this tendency are included in the next section
with various non-computed schemes. Moreover, due to the nonlinearity behavior of the
material, the force-displacement curves of three-layer beams are confusing and are not
smooth. To specify the correct value of the fit curve might need to be included. In this
case, the ML surrogate model is possibly a good approximation model not only for one
specific case but also for all train cases. The final result of the next section can verify this
presumption.

6.2. Machine learning surrogate model results
In this subsection, the most suitable surrogate model is conducted based on the ANN

model with the support of DL techniques. It is suggested in Section 5 that the small FEA
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dataset of TPMS beams may cause the model to be overfitting. Therefore, a three-phase
process is implemented to search for the best model. This process consists of the ini-
tial model hyperparameter tuning, the model assessment, and the handling overfitting
phase. A sequential diagram of this process is given in Fig. 24 where the data and tech-
niques used in each process are listed in the following Table 8 and Table 9, respectively.

Fig. 24. The process of finding the most suitable surrogate model

Table 8. The dataset used in the process of finding the final surrogate model

Volume fraction
Dataset

Train Validation Test

Model hyperparameter tuning PC1 ÷ PC5 PC1 ÷ PC5
Model assessment PC1 ÷ PC8 PC9 PC9
kfolds cross validation tuning PC1 ÷ PC8 PC9 PC9
Dropout tuning PC1 ÷ PC8 PC9 PC9
Modified early stopping condition tuning PC1 ÷ PC8 PC9 PC9

It should be noted that all the ANN model are conducted with a personal com-
puter in Python 3.8 languages with the support from TensorFlow and scikit-learn open-
soured libraries. The configuration of this computer is 4 processors of Intel Core i7U, CPU
2.7GHz, 16GB memory, and WindowOS.
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Table 9. The modified properties of the model used in the process of finding
the final surrogate model

Volume fraction
The modified properties

Stop condition Number of kfolds Dropout rate

Model hyperparameter tuning min (MSEval) 4
Model assessment min (MSEval) 4
kfolds cross validation tuning min (MSEval) 2; 3; ...; 10
Dropout tuning min (MSEval) 0; 0.1; ...; 0.8
Modified early stopping min (MSEval);

condition tuning min
(∣∣∣∣1 − MSEtest

MSEtrain

∣∣∣∣)

6.2.1. Model hyperparameter tuning
In this process, the ANN model hyperparameters is noted to strongly affect the over-

all performance of the model. These hyperparameters might be split into two main group
that are the architecture group and the optimizer group. At first, the impact of model
architecture is investigated with various combinations of number of layers, number of
nodes, and activation function. These combinations are presented in Table 10 along with
two optimizers and three different stop patience values. In addition, it is noteworthy
that the output layer’s activation function is the ‘SoftPlus’ function for all cases due to
the necessity of the smooth output range being [0,+∞).

Table 10. Hyperparameters sets adopted in the architecture tuning process

Hyperparameter Values

Number of hidden layers 2; 3
Number of nodes-per-layer 50; 100; 150
Hidden layers activation function ’ReLU’; ’SoftPlus’; ’Sigmoid’
Optimizer ’Adam’; ’SGD’
Learning rate 0.005
Batch size 32
Stop patience 10; 20; 30

Furthermore, it should be noted that the optimizer parameters are crucial factors in
the training process of an ANN model, especially the learning rate. This hyperparam-
eter is later investigated along with the batch size and the stop condition value. In this
study, other hyperparameters of the optimizer are adopted as the default value in the
Keras library. The only exception is the momentum value of the ‘SGD’ optimizer, which
is changed into the value of 0.9. As mentioned above, the data samples from PC1 to PC5
are used to train the model in this process. In this process, the kfolds cross validation of
four divided the data into 4 train-validate sets and the model metrics are calculated by
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the average values of all folds. Additionally, the stop condition is based on the minimum
value of the validation loss function. The train process stops when the loss value cannot
decrease for the last several epochs, which is called the stop patience value. The model
weights and bias are collected at the stop epoch which provide the smallest loss value.
By employing the above training strategy for hyperparameter tuning, approximately 650
models have been conducted. The evaluation metrics for these models consist of the total
parameters, the validation loss (MSEval), and the training time. Moreover, for a com-
prehensive evaluation, the average value of three times training is adopted. It should
be noted that due to the random initialization of model weights and bias, the perfor-
mance of a model can be varied. In other words, the model with a higher number of
total parameters may produce a less efficient result compared with other models being
less complexity. However, by conducting the assessment through the average metric of
several run times, the influence tendency of a hyperparameter can be obtained.

Table 11. The first three best models for loss value with ‘Adam’ optimizer

ID Architecture Total Activation Stop MSEval RMSEval MAEval Training
parameters function patience (kN2) (kN) (kN) time (s)

#643 (150,150,150) 46051 ‘ReLU’ 30 0.0066 0.0870 0.0595 41.7
#511 (050,100,100) 15501 ‘ReLU’ 30 0.0067 0.0795 0.0547 67.1
#619 (150,100,100) 25901 ‘ReLU’ 30 0.0069 0.0827 0.0557 54.3

Table 12. The first three best models for computational time with loss value less than 0.01
and ‘Adam’ optimizer

ID Architecture Total Activation Stop MSEval RMSEval MAEval Training
parameters function patience (kN2) (kN) (kN) time (s)

#367 (100,150,100) 30751 ‘ReLU’ 20 0.0093 0.0960 0.0652 35.3
#421 (150,150,100) 38451 ‘ReLU’ 20 0.0099 0.0987 0.0680 39.6
#496 (100,100,050) 15601 ‘ReLU’ 30 0.0085 0.0921 0.0644 40.5

The results indicate that the ‘Adam’ optimizer is more effective than the ‘SGD’ one,
which has been reported in numerous studies. Therefore, the three best models for loss
value and computation time with a minimum loss value of 0.01 are shown in Table 11
and Table 12, respectively. These results are generated by the ‘Adam’ optimizer. More-
over, the stop patience value of 30 can help the model find a better solution. Both impacts
of different optimizers and stop patience values on the model performance are revealed
in the next step. The validation loss and the training time of the proposed architectures
with ‘Adam’ optimizer and stop patience of 30 epochs are described in Fig. 25 along with
a linear fit curve for each activation function data. In Fig. 25, the ’ReLU’ function might
be noted as the dominant activation in this model. It is probable that the output range
of (0,+∞) and the step point at 0 can reduce the objective function value in gradient
descent optimization algorithms even with lower epochs. Moreover, the metrics of the
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three first best models in Table 11 have shown that as the complexity of the model in-
crease, higher accuracy may be achieved during the train process. This affirmation has
also been proven with the linear fit curves in the above figure. The model with a higher
number of total parameters can provide better results with less computational time due
to the early stopping condition. Consequently, the final model for further investigation is
model number #643 which might give the minimum loss value in this architecture tuning
process along with an acceptable training time of 41.7 s.

Fig. 25. Loss values and computation times of various architectures and activation functions
(‘Adam’ optimizer and stop patience value of 30)

Next, the optimization hyperparameter tuning process is conducted, where the best
architecture concluded above is adopted with various optimizers. Similar to the previous
tuning process, the average values of 10 train times are used to evaluate the results. In
this process, the tunable parameters are the optimizer, the learning rate, the batch size,
and the stop patience with different values from the previous tuning process. The values
of these parameters are given in Table 13.

At first, the influence of the stop patience is demonstrated in Table 14 and Table 15
for validation loss and training time, respectively. The results show that a lower loss can
be obtained with the higher stop patience, but it may cost a longer training time. For
instance, the loss value of the ‘Adam’ optimizer reduces only 20% for both learning rates
but its training time increases by 50% and 37% for the learning rate of 0.005 and 0.01,
respectively. In addition, the stop patience value of at least 30 epochs should be used due
to the fact that the lost values of the 10-epoch stop patience are much higher than others.
With the 30-epoch stop patience, the loss values have decreased by 73%, 66%, and 81%
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Table 13. Hyperparameter sets adopted in the optimization tuning process

Hyperparameter Values

Model architecture (150,150,150)
Hidden layers activation function ’ReLU’; ’SoftPlus’; ’Sigmoid’
Optimizer ’Adam’; ’SGD’; ’RMSprop’
Learning rate 0.005; 0.01
Batch size 16; 32; 64; 128
Stop patience 10; 30; 50

Table 14. The validation loss MSEval (kN2) of various optimizers and stop patience values

Volume
fraction

Optimizer

’Adam’ ’SGD’ ’RMSprop’

0.005 0.010 0.005 0.010 0.005 0.010

10 0.0335 0.0402 0.5871 0.5933 0.0875 0.1473
30 0.0088 0.0109 0.1732 0.2308 0.0181 0.0260
50 0.0069 0.0087 0.0542 0.0719 0.0122 0.0184

Table 15. The training time (s) of various optimizers and stop patience values

Volume
fraction

Optimizer

’Adam’ ’SGD’ ’RMSprop’

0.005 0.010 0.005 0.010 0.005 0.010

10 32.1 26.1 024.2 020.0 34.2 28.6
30 48.2 47.9 073.7 062.1 62.3 55.2
50 72.4 65.5 105.8 114.9 84.4 78.7

for the ‘Adam’, ‘SGD’, and ‘RMSprop’, respectively. Besides, the impact of this parameter
on the ‘SGD’ loss value might be greater than that of other optimizers. This feature can
be explained by the non-adaptive learning rate of the ‘SGD’ optimizer which is constant
during the train process. This optimizer may also need more time to provide comparable
results to ‘Adam’ and ‘RMSprop’ optimizers.

in the next step, the batch size of the model is revealed with different optimizers and
learning rates as shown in Fig. 26. The ‘Adam’ optimizer with a learning rate of 0.005
might be the most suitable solution for the present problem. By increasing the batch size,
the model can achieve higher accuracy yet have greater training time for adaptive opti-
mizers namely ‘Adam’ and ‘RMSprop’. Each epoch may be accomplished faster with the
high value of batch size but the model may need more epochs to receive the convergence
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result. In addition, the learning rate of 0.005 could outperform the learning rate of 0.01
for all three optimizers in view of loss value. In contrast, the computational times of the
higher learning rate are almost always shorter. Due to the purpose of finding the appro-
priate optimizer hyperparameters that have the ability to produce both good results and
short training time, the ‘Adam’ optimization algorithm with a learning rate of 0.005 and
batch size of 32 is utilized for further investigations.

(a) Validation loss MSEval (kN2) (b) Training time (s)

Fig. 26. The validation loss and training time of various optimizers and batch size values

6.2.2. Model assessment
In this process, the most effective hyperparameters conducted from the previous

subsection are adopted to establish a new model. This model had the architecture of
model number #643 and is computed by the ‘Adam’ optimizer with the setup conducted
in the previous subsection. To assess this model, six performance metrics are provided
that are focused on the results of the test process. In these metrics, the correlation loss
of train and test data is introduced to determine the overfitting effect. The higher value
of these metrics may indicate the more overfitting model is. The metrics of the new
model are shown in Table 16. The value of test loss is five-time higher than the train loss,
which is given in the correlation metrics of 4.8553. The convergence history of a typical
fold shown in Fig. 27 indicates a similar result. From these evidences, this model can be
considered as overfitting.

Table 16. Performance metrics of the hyperparameter tuned model

MSEtrain MSEtest
(∣∣∣∣1 − MSEtest

MSEtrain

∣∣∣∣) RMSEtest MAEtest Training
(kN2) (kN2) (kN) (kN) time (s)

0.0152 0.0738 4.8553 0.2656 0.1963 50.8
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Fig. 27. Convergence history of the hyperparameter tuned model.

6.2.3. Handling overfitting
In this study, three types of techniques are employed to handle the overfitting prob-

lem. The impact of the key hyperparameter of each technique is investigated on the
model performance. It is noted that the model architecture and optimizer are adopted
from the previous hyperparameter tuning process. The mean results of ten technique
tuning processes are provided in Fig. 28. Since the number of folds reaches 5, the test loss
values are steady at 0.05 and cannot have an obvious decrease. However, the training
time increases proportionally with the number of folds. Another linear relationship that
can be noted is the impact of the stop patience value on the training time of the modified
stopping condition models. In contrast, the dropout rate may create a smaller effect on
the training time. By applying the dropout rate of 0.1 to 0.3, the loss value of the test set
may have a slight reduction. The results in Fig. 28(c) show that the performance of the
model is slowly enhanced with the increase of stop patience.

For comparisons of different methods, the model that has the best result in the loss
value of each method is adopted. These models are the 8-kfolds model, the dropout
model with the dropout rate of 0.1, and the modified early stopping condition with 300
patients. The assessment metrics consist of the six performance metrics proposed in sub-
section 6.2.2. In this subsection, however, these metrics are normalized with the smallest
value of three techniques as follows

Ai =
metrici

min (metrici)
(20)
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where Ai are the normalized performance values; metrici are the performance values; i

are the metric types, i = MSEtrain; MSEtest;
(∣∣∣∣1 − MSEtest

MSEtrain

∣∣∣∣) ; RMSEtest; MAEtest; train-

ing time.

(a) kfolds cross validation (b) Dropout technique

(c) Modified early stopping condition

Fig. 28. The impacts of various Deep Learning techniques on the on the test loss MSEtest
and the training time.

For average results in Fig. 29, the modified early stopping model has the best per-
formance on the test loss and metrics. This technique also has a comparable train-test
loss correlation to the dropout technique. Although the dropout model shows great per-
formances in both time and test loss aspects, the train loss value of this model is much
smaller than other models. Similarly, the kfolds model can produce the best result in train
loss yet failed to predict new data on the test set. In contrast, the train loss performance
value AMSEtrain of the early stopping model could reach 79% the maximum value of all
three models. This rate is about 94% for the case of best-test-loss models. It should be
noted that there might be an epoch result that had good loss values of both train and test
data in Fig. 27. This affirmation could be seen as the reason for employing the correlation
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of the losses as a stop condition. In brief, the above tuning results and comparison results
indicate that the modified early stopping model with stop patience of 300 epochs is the
most efficient model for this study problem.

(a) Average results (b) Best results for test loss

Fig. 29. The influence of different DL techniques on handling overfitting.

Fig. 30. Convergence history of the final model

The convergence history of this model is presented in Fig. 30. At epoch number
99, both loss values of train and test data are minimized. It is noted that during the
training process, a smaller value of train loss could be obtained but the test loss may be
slightly higher. For deeper analysis, the performance metrics of this model are provided
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in Table 17. The results show that the correlation index of the present model is 10.3 times
smaller than the previous one. The test loss has also been remarkably reduced to 1/3
the earlier value. Besides, the train loss is slightly lessened due to the high value of stop
patience. Another impact of the high stop patience is the greater training time. Although
the response of beam PC9 was not included in training the model, good approximations
can be generated from the final model with the average absolute error of the applied load
at all points being only about 0.1 kN along with the average root mean square error of
0.15 kN.

Table 17. Performance metrics of the final model.

MSEtrain MSEtest
(∣∣∣∣1 − MSEtest

MSEtrain

∣∣∣∣) RMSEtest MAEtest Training
(kN2) (kN2) (kN) (kN) time (s)

0.0151 0.0222 0.4698 0.1491 0.0953 89.1

6.2.4. Final model predictions
Applying the above well-trained model, the force-displacement curves of nine inves-

tigating beams could be generated without FEA simulations as shown in Fig. 31. Further-
more, the computational time for all nine beams was only about 0.806s. The simulation
calculation time of each beam varied from 266s for beam PC1 to 7600s for beam PC9. The
ML model should be considered an excellent approximation for this study problem. The
results of this model can work as valuable fit curves for the beams’ responses, especially
for the beam with noisy data. In addition, the smoothness of these fit curves is the re-
sult of the ‘SoftPlus’ activation function at the output layer. Moreover, this model can be
used to predict the behaviors of different TPMS reinforced beams. The peak loads and
the maximum midpoint displacements of these new beams are adopted to formulate the
peak load surface and the maximum displacement surface. The word ‘surface’ indicates
the impact of both volume fraction and number of TPMS layers on the corresponding
feature. These surfaces are demonstrated in Fig. 32 and Fig. 33 for peak load and maxi-
mum deflection values, respectively. In these graphs, the FEA results are denoted as the
black points. The peak load and deflection of the non-reinforced beam are adopted from
the previous study [17], which were 2.88kN and 1.35mm, respectively.

It could be noted that there are well agreements between the peak loads from both
approaches with the largest deviation being 2.5%. The impact of volume fraction on
the beam peak load in each number of reinforcement layers can be described as a linear
relationship. From the peak load surface projection, these lines are possibly parallel to
each other but with different distances. While the step of about 1.5 kN is the variance
between the one and two-layer beam peak load, the value of two and three-layer beams
is only about 1 kN and reduce with the increment in the volume fraction. However, the
predicted results of four-layer beams show the increase of peak load is strongly lessened
at high values of volume fraction. In fact, the increment in peak load from three-layer to
four-layer beams is only about 0.5 kN when the volume fraction is 20%. Consequently,
the peak load curves of different numbers of layers with a certain volume fraction are
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(a) 10% volume fraction reinforcement (b) 15% volume fraction reinforcement

(c) 20% volume fraction reinforcement

Fig. 31. The force-displacement curves of various beams from FEA simulations
and ML surrogate model

nonlinear. As the volume fraction increase, the corresponding curve tends to reach its
maximum value only with a lower number of TPMS layers. In contrast, the 5% volume
fraction TPMS reinforced beam has a relatively linear relationship between the peak load
and the number of TPMS layers in the range of one-layer to four-layer reinforcement
strategies. Generally, by increasing the number of layers, the peak load of the considering
beams tends to attain a specific value. This value may be achieved with at least 4 layers
of Primitive TPMS in case of 20% volume fraction, which is similar to the plastic TPMS
beam in the research [39].

In the view of maximum deflection, the agreement between FEA and ML model can
be again verified. The results show that the greatest deviation belongs to beam PC9 data
with a value of 3.5%. Besides, the influence’s tendencies on the deflection are also similar
to peak load ones. However, the linear relationships between the volume fraction and
the deflection of different TPMS beams are not parallel. For instance, the increasing pace
in maximum displacement of one-layer beam to two-layer beam is greater at a lower
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(a) Overall view

(b) Influence of the volume fraction (c) Influence of the number of TPMS layers

Fig. 32. The predicted peak loads of the final surrogate model

volume fraction. This pace of a two to three-layer beam may be constant despite any
value of the volume fraction which is also similar to the pace of a three to four-layer beam.
Another similarity is the shape of relationship curves between considering property and
the number of TPMS layers. It is observed that these correlations are nonlinear curves.

Due to the tiny deviations between the maximum displacements of two-layer and
three-layer beams, the surrogate model might not generate the best predictions for this
type of beam’s response index. The deflections obtained from FEA simulations show
similar tendencies as the peak load. It could be noted that there might be a displacement
value that may not be exceeded only by increasing the number of core layers. In other
words, by increasing the TPMS layers, the maximum displacement of the beam tends to
reach a ceiling value. However, with a small value of volume fraction, increasing the
number of layers might be more effective. The TPMS core shell may be too thin in the
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(a) Overall view

(b) Influence of the volume fraction (c) Influence of the number of TPMS layers

Fig. 33. The predicted maximum displacement of the final surrogate model

low-volume-fraction beams, and the strength of the beam might mainly depend on the
strength of the cement core. With a greater number of layers in the beam, more cement
confinement area could be produced and therefore increase the strength of the cement.
This relationship was straightforward and could be described as linear function as in
Fig. 32(c) and Fig. 33(c).

In sum, a higher number of TPMS layers could produce improved load-bearing re-
sponses for beam structures with both peak load and maximum deflection. However,
fabrication difficulties should be noticed attentively. In fact, the core shell with n layers
is n-times thinner than the single-layer one which is indicated in Eq. (8). Furthermore,
one-layer beams can provide a comparable peak load with a higher value of the volume
fraction. Nonetheless, it is suggested from Fig. 31 that a one-layer beam may have larger
deflection than multiple-layer beams at the same load. This behavior can be reduced by
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increasing the number of TPMS layers. For example, the force-displacement curves of
both two and three-layer beams are close to each other. The complex geometry of the
TPMS structure should be indicated as the key reason.

7. CONCLUSIONS

In this study, several Primitive TPMS reinforced beams including one, two and three
core layers with three values of volume fraction have been investigated numerically. The
response data of these beams were adopted to create an ML-based surrogate model with
the support of ANN and DL features. Several remarks can be listed as follows

• New meshing strategy for the complex geometry of TPMS structures was pro-
posed. This mesh based on the number of mesh elements was validated by
experimental results in the previous study;

• Linear relationships between the volume fraction and the peak load of the beams
could be denoted. The influence tendency of this aspect on the maximum de-
flection is similar but with a different slope for each number of TPMS layers;

• The impacts on both peak load and maximum displacement of the number of
layers are nonlinear curves. With the increase of this number, the beam mechan-
ical properties tend to reach ceiling values;

• Despite the noisy dataset, an ANN model with three 150-node layers, ‘ReLU’ ac-
tivation function, ‘Adam’ optimizer, and early stopping condition of minimum
validation loss could generate good results on the train dataset;

• Three DL techniques including the kfolds cross-validation, dropout, and modi-
fied early stopping conditions were employed to solve the overfitting problem
in this study;

• Among all, the model with stopping condition of loss correlation should be
noticed as the most suitable model for the present problem;

• The surfaces of peak load and maximum deflection were produced by the sur-
rogate model to demonstrate the impact of both aspects of the TPMS core.

In sum, a well-trained surrogate model has been achieved. This model could pro-
duce excellent predictions for various reinforcement cases without inefficient FEA simu-
lations. From this finding, the plastic TPMS reinforced beam can be directly modified to
adapt to the requirements of numerous practical applications.

It should be noted that this study target is the Primitive TPMS which is only one of
numerous TPMS structures that could be found. In fact, previous studies have investi-
gated other types of TPMS structures including Gyroid, Diamond, IWP, Fischer-Koch,
etc. Therefore, adopting these geometries in various concrete structures could be in-
dicated as an interesting future direction. Besides, crack patterns, dynamic responses,
and responses under various boundary conditions, etc, might also need to be revealed.
Dominantly, the latest research of theoretical solutions for these TPMSs [15] is consid-
ered a promising approach to study on these complex structures. In fact, by combining
the proposed theory from the mentioned work and the composite behavior theory, a full
investigation of the considering beam responses can be conducted more efficiently.
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In the view of creating surrogate models, there are various parameters of this beam
that were not included in the present study. These parameters consist of beam size, bend-
ing test span, TPMS type, unit arrangement, etc. By adopting entirely tunable parame-
ters of the beam, a completely general surrogate model can be created. However, the
dataset used for this model could be extremely large. The proposed deep learning tech-
niques in this study might not be suitable. To conduct good approximations, different
techniques should be implemented. One of the remarkable solutions is enhancing the
gradient descent algorithm with Sequential Motion Optimization as in the study of Le-
duc et al. [40]. By employing the sequential motion chain, the effectiveness of this model
on the large data optimization problem has been verified. Different types of ML models
should also be noted as alternatives including support vector machine (SVM), random
forest regression, extreme gradient boosting (XGBoost), and unsupervised or reinforce-
ment learning algorithms. Furthermore, the emerging physics-informed neural networks
(PINN) model might be a potential approach to solve the present problem without the
need of simulation results [41].

DECLARATION OF COMPETING INTEREST

The authors declare that they have no known competing financial interests or per-
sonal relationships that could have appeared to influence the work reported in this paper.

ACKNOWLEDGMENTS

This research is supported by Vingroup Innovation Foundation (VINIF) in project
code VINIF.2019.DA04. The authors would like to thank Vuong Nguyen-Van for his as-
sistance for this work.

REFERENCES

[1] B. Salazar, P. Aghdasi, I. D. Williams, C. P. Ostertag, and H. K. Taylor. Polymer
lattice-reinforcement for enhancing ductility of concrete. Materials & Design, 196, (2020).
https://doi.org/10.1016/j.matdes.2020.109184.
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