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Abstract. This paper presents a unified approach to vibration analysis of functionally
graded beams with transverse open-edge cracks based on the so-called vibration shape
obtained as a general solution of vibration equations in the frequency domain. The crack
is modeled by a pair of translational and rotational springs of stiffness computed from the
crack depth in dependence upon functionally graded material parameters. The frequency-
dependent vibration shape functions allow one not only to obtain the closed-form solution
of both free and forced vibrations for multiple cracked FGM beams but also to develop the
well-known methods such as Transfer Matrix Method or Dynamic Stiffness Method for
analysis of FGM framed structures. The proposed theoretical developments have been il-
lustrated by their application for modal analysis and frequency response analysis of multi-
span and multistep beams.

Keywords: functionally graded materials, vibration shape functions, modal analysis,
frequency response, multiple cracked beams.

1. INTRODUCTION

The crack, which usually appears in many structural components, is a kind of dam-
age that may lead a structure to collapse if it is not early detected. Nevertheless, the
conventional (local) nondestructive techniques are difficult to apply for detecting cracks
in huge or complicated structures [1–3]. Therefore, a more global approach such as the
dynamic testing technique integrated with the system identification method is needed
for the crack detection problem [4]. Obviously, when the integrated approach has been
engaged, a model of a structure with cracks and dynamics of the cracked structure be-
comes essential [5, 6]. At the early stage, a crack was treated purely as a change in
the geometry of a structure [7], but then, researchers recognized that crack may also
change the stress and strain distributions in the vicinity of the cracked section. Based on
this idea, Christides and Barr proposed the so-called one-dimensional theory of cracked
beam [8] and then, Shen and Pierrie used the theory for free vibration analysis of cracked
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beam [9, 10]. On the other hand, numerous investigators, for example, Irwin [11], West-
mann and Yang [12], Dimarogonas and Paipetis [13], etc, revealed that a crack on a beam
element significantly increases the flexibility due to the strain energy concentration at the
crack tip under load. This concept of crack allows not only straightforward analysis of
cracked structures by the finite element method [14] but also developing various useful
models of a crack in beam elements. Namely, an equivalent spring model of a concen-
trated crack was adopted in [15–18] where stiffness of the springs is calculated from the
strain energy released by the crack. Another model of local crack on beam, that was
treated as a singularity of beam stiffness, has been adopted in [19, 20] and used for ob-
taining closed form solution of vibration modes for cracked beams. The spring model of
concentrated crack was successfully employed for solving numerous problems of vibra-
tion in cracked Euler-Bernoulli [21–26] and Timoshenko [27–31] beams. The closed-form
solutions for the vibration mode of multiple cracked homogeneous beams have been ob-
tained in [26, 31] respectively for Euler–Bernoulli and Timoshenko beams.

The present paper addresses establishing the closed-form solution of vibration mode
for cracked beams made of functionally graded material (FGM) and applying it for solv-
ing both free and forced vibration of the structures. Though many problems related
to cracked functionally graded beams have been solved [32–44], the equivalent spring
model of crack has been adequately constructed in dependence upon the material pa-
rameters only in Ref. [45]. The established model of crack in FGM has been employed
for vibration analysis of cracked functionally graded beams [46–48] and the beams with
piezoelectric layer [49,50]. Moreover, the obtained general solution for vibration mode of
cracked FGM beam allows one to develop the well-known transfer matrix method and
dynamic stiffness method for vibration analysis of cracked FGM beam-like structures.

2. GENERAL SOLUTION FOR VIBRATION SHAPE

The vibration shape of an elastic structure is acknowledged as solution of free vibra-
tion problem in the frequency domain and, therefore, it is frequency-dependent function
of spatial coordinates in the structure domain. Applying boundary conditions for the vi-
bration shape we obtain the so-called frequency equation, solution of which gives rise to
the natural frequencies of the structure under consideration. Substituting a specific natu-
ral frequency to the vibration shape yields the mode shape corresponding to the natural
frequency. Moreover, the vibration shapes are employed as frequency-dependent shape
functions for constructing the dynamic stiffness model of a structure that was proved to
be more exact than the well-known finite element model.

Thus, in the present section general vibration shape is conducted for cracked beams
of different types such as Euler-Bernoulli, Timoshenko, FGM and piezoelectric beams.
Cracks in all the above-mentioned beam-type structures are transversally edged and
modeled by equivalent springs of stiffness calculated from the crack depth in accordance
with the theory of fracture mechanics. The most advantage of the crack model is that
cracks are accounted-for in the form of conditions constraining the vibration shapes at
the cracked cross-section.
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2.1. Homogeneous beams
2.1.1. Euler-Bernoulli beams

It is well-known that the free bending vibration of Euler-Bernoulli beam in the fre-
quency domain is described by the equation

ϕ(IV)(x)− λ4ϕ(x) = 0, x ∈ (0, 1), λ = L4
√

ρFω2/EI, (1)

for determining vibration shape ϕ(x, ω).
Assume, furthermore, that the beam has been cracked at sections ej, j = 1, 2, 3, . . . , n

and cracks are represented by rotational springs of stifness Kj. So that, solution of Eq. (1)
must satisfy conditions

ϕ
(
ej + 0, ω

)
= ϕ

(
ej − 0, ω

)
,

ϕ′′ (ej + 0, ω
)
= ϕ′′ (ej − 0, ω

)
,

ϕ′′′ (ej + 0, ω
)
= ϕ′′′ (ej − 0, ω

)
,

ϕ′ (ej + 0, ω
)
= ϕ′ (ej − 0, ω

)
+ γjϕ

′′ (ej + 0, ω
)

,

(2)

where so-called crack magnitude γj are calculated as

γj = EI/LKj = 6π
(
1 − ν2

0
)
(h/L) fb

(
aj/h

)
,

fb (z) = z2
(

0.6272 − 1.04533z + 4.5948z2 − 9.9736z3 + 20.2948z4

−33.0351z5 + 47.1063z6 − 40.7556z7 + 19.6z8) .

Letting ϕ0 (x, ω) denote solution of Eq. (1) for uncracked beam and introducing the
function

K (x) = 0 for x < 0 and = S (x) for x ≥ 0 with S (x) = (1/2λ) (sinh λx + sin λx) , (3)

one can prove that solution of Eq. (1) is represented in the form

ϕ (x, ω) = ϕ0 (x, ω) +
n

∑
j=1

µjK
(
x − ej

)
, (4)

where so-called damage parameters µj, j = 1, 2, 3, . . . , n are determined by the reccurent
formula

µj = γj

[
ϕ′′

0

(
ej, ω

)
+

j−1

∑
k=1

µkS′′ (ej − ek
)]

, j = 1, . . . , n. (5)

On the other hand, it was well-known that general solution of Eq. (1) for uncracked
beam is expressed as

ϕ0 (x, ω) = C1 cosh λx + C2 sinh λx + C3 cos λx + C4 sin λx,

with constants C1, C2, C3, C4 determined by boundary conditions. So, if the damage pa-
rameters µj is represented in the form µj = C1µj1 + C2µj2 + C3µj3 + C4µj4, j = 1, 2, . . . , n,
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then parameters µjk, k = 1, 2, 3, 4 are calculated as

µj1 = γj

[
λ2 cosh λej +

j−1

∑
k=1

µk1S′′ (ej − ek
)]

, µj2 = γj

[
λ2 sinh λej +

j−1

∑
k=1

µk2S′′ (ej − ek
)]

,

µj3 = γj

[
−λ2 cos λej +

j−1

∑
k=1

µk3S′′ (ej − ek
)]

, µj4 = γj

[
−λ2 sin λej +

j−1

∑
k=1

4S′′ (ej − ek
)]

,

(6)
and solution (4) can be rewritten as

ϕ (x, ω) = C1Φ1 (λx) + C2Φ2 (λx) + C3Φ3 (λx) + C4Φ3 (λx) , (7)

where Φk (λx) , k = 1, 2, 3, 4 are

Φ1 (λx) = cosh λx +
n

∑
j=1

µj1K
(

x − ej
)

, Φ2 (λx) = sinh λx +
n

∑
j=1

µj2K
(
x − ej

)
,

Φ3 (λx) = cos λx +
n

∑
j=1

µj3K
(

x − ej
)

, Φ4 (λx) = sin λx +
n

∑
j=1

µj4K
(
x − ej

)
.

(8)

So, an explicit expression of general vibration shape of multiple cracked Euler–
Bernuolli beam has been obtained in the form of Eq. (7) with functions Φk (λx) , k =
1, 2, 3, 4 determined by Eq. (8) and damage parameters µjk, j = 1, 2, 3, . . . , n; k = 1, 2, 3, 4
calculated by formulas (6).

Moreover, four equations in (6) can be rewritten in the matrix form

[B] {µk} = {bk} , k = 1, 2, 3, 4, (9)

where µk = {µ1k, . . . , µnk}T , B =
[
bij, i, j = 1, 2, 3, . . . , n

]
is n × n−matrix with elements

bij = {1 if i = j; 0 for i < j;−γiS′′ (ei − ej
)

for i > j}, (10)

and vectors bk, k = 1, 2, 3, 4 are

{b1} = λ2 {γ1 cosh λe1, . . . , γn cosh λen}T , {b2} = λ2 {γ1 sinh λe1, . . . , γn sinh λen}T ,

{b1} = −λ2 {γ1 cos λe1, . . . , γn cos λen}T , {b2} = −λ2 {γ1 sin λe1, . . . , γn sin λen}T .
(11)

So, in case if crack parameters such as positions and magnitudes are given the dam-
age parameters µjk are evaluated by solving equation (9)–(11).

2.1.2. Timoshenko beams
For Timoshenko beam, the frequency domain equations of motion are

ω2ρW (x) + κG
(
W ′′ − Θ′) = 0, ω2ρIΘ (x) + EIΘ′′ (x) + κGA

(
W ′ − Θ

)
= 0, (12)

and conditions at crack positions get the form

W
(
ej + 0

)
= W

(
ej − 0

)
= W

(
ej
)

, Θ′
x
(
ej + 0

)
= Θ′

x
(
ej − 0

)
= Θ′ (ej

)
,

Θ
(
ej + 0

)
= Θ

(
ej − 0

)
+ γjΘ′

x
(
ej
)

, W ′
x
(
ej + 0

)
= W ′

x
(
ej − 0

)
+ γΘ′

x
(
ej
)

, γj = EI/Kj.
(13)
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In this general solution of Eq. (12) for uncracked beam can be found in the form

W0 (x) = C1 cosh k1x + C2 sinh k1x + C3 cos k2x + C4 sin k2x,

Θ0 (x) = r1C1 sinh k1x + r1C2 cosh k1x + r2C3 sin k2x − r2C4 cos k2x,
(14)

r1 =
(
ρω2/κGk1 + k1

)
, r2 =

(
ρω2/κGk2 − k2

)
,

k1 =

√(√
b2 + 4c − b

)
/2, k2 =

√(√
b2 + 4c + b

)
/2,

b = α (1 + β) , c = α(τ − αβ), α = ρω2/E, β = E/κG, τ = A/I. (15)
Using the notations

Sw (x) = S1 sinh k1x + S2 sin k2x, Sθ (x) = r1S1 cosh k1x − r2S2 cos k2x,

S1 = (r2 + k2) / (r1k2 + r2k1) , S2 = (r1 − k1) / (r1k2 + r2k1) ,
(16)

it can be proved that general solution of Eq. (12) satisfying conditions (13) is

W (x, ω) = C1W1 (k1, x) + C2W2 (k1, x) + C3W3 (k2, x) + C4W4 (k2, x) , (17)

Θ (x, ω) = C1Θ1 (k1, x) + C2Θ2 (k1, x) + C3Θ3 (k2, x) + C4Θ4 (k2, x) , (18)

where

W1 (x) = cosh k1x +
n

∑
j=1

µ1jKw
(
x − ej

)
, W2 (x) = sinh k1x +

n

∑
j=1

µ2jKw
(
x − ej

)
,

W3 (x) = cos k2x +
n

∑
j=1

µ3jKw
(
x − ej

)
, W4 (x) = sin k2x +

n

∑
j=1

µ4jKw
(
x − ej

)
,

(19)

Θ1 (x) = r1 sinh k1x +
n

∑
j=1

µ1jKθ

(
x − ej

)
, Θ3 (x) = r2 sin k2x +

n

∑
j=1

µ3jKθ

(
x − ej

)
,

Θ2 (x) = r1coshk1x +
n

∑
j=1

µ2jKθ

(
x − ej

)
, Θ4 (x) = −r2cosk2x +

n

∑
j=1

µ4jKθ

(
x − ej

)
,

(20)

Kw (x) = {0 : x < 0; Sw (x) : x ≥ 0} , K′
w (x) =

{
0 : x < 0; S′

w (x) : x ≥ 0
}

,

Kθ (x) = {0 : x < 0; Sθ (x) : x ≥ 0} , K′
θ (x) =

{
0 : x < 0; S′

θ (x) : x ≥ 0
}

,

µkj = γj

{
Lk

(
ej
)
+

j−1

∑
i=1

µkiS′
θ

(
ej − ei

)}
; k = 1, 2, 3, 4; j = 1, 2, . . . , n.

L1(x) = k1r1 cosh k1x, L2(x) = k1r1 sinh k1x, L3(x) = k2r2 cos k2x, L4(x) = k2r2 sin k2x.
(21)
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2.2. Functionally graded Timoshenko beams
2.2.1. Governing equations
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Fig. 1. Multiple cracked FGM beam model

Let’s consider a Timoshenko beam made of functionally graded material as shown in
Fig. 1 with mechanical properties varying accordingly to the power law along the beam
thickness

I(z) = Ib + (It − Ib)V(z), V(z) = (z/h + 1/2)n, −h/2 ≤ z ≤ h/2, (22)

where I stands for elasticity (E), shear (G) modulus and material density (ρ) and indexes
t and b denote the top and bottom materials; z is ordinate of the point from the central
axis and h is the beam thickness.

Accordingly, the Timoshenko beam theory represented by the relationships

u(x, z, t) = u0(x, t)− (z − h0)θ(x, t), w(x, z, t) = w0(x, t), (23)

with u0(x, t), w0(x, t) being the displacements on neutral axis located at the high h0 from
the central axis; θ is slope of the cross-section, allows the constituting equations be estab-
lished in the form

εx = ∂u0/∂x − (z − h0)∂θ/∂x, γxz = ∂w0/∂x − θ,

σx = E(z)εx, τxz = ψG(z)γxz.
(24)

Using Hamilton principle, equations for free vibration of a uniform beam segment
can be established in the form

I11ü− A11u′′ − I12θ̈ = 0, I12ü− I22θ̈ + A22θ′′ + A33(w′ − θ) = 0, I11ẅ− A33(w′′ − θ′) = 0,
(25)

where

A11 = bhEb (RE + n)/(1 + n) , A33 = bhψGb (RG + n)/(1 + n) , RE = Et/Eb, RG = Gt/Gb,

A22 = bh3Eb
[
(3RE + n) /3 (3 + n)− (2RE + n) / (2 + n) α + (RE + n) / (1 + n) α2] ,

α = 1/2 + h0/h, I11 = bhρb
(

Rρ + n
)

/ (1 + n) ,

I12 = bh2ρb
[(

2Rρ + n
)

/2 (2 + n)−
(

Rρ + n
)

/ (1 + n) α
]

, Rρ = ρt/ρb,

I22 = bh3ρb
[(

3Rρ + n
)

/3 (3 + n)− (2R2 + n) / (2 + n) α + (R2 + n) / (1 + n) α2] ,

h0 = [n(RE − 1)/2(n + 2)(n + RE)]h.
(26)
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Seeking solution of (25) in the form u(x, t) = U(x, ω)eiωt, w(x, t) = W(x, ω)eiωt,
θ(x, t) = Θ(x, ω)eiωt one gets

(ω2 I11U + A11U′′)− ω2 I12Θ = 0, (ω2 I22Θ + A22Θ′′)− ω2 I12U + A33(W ′ − Θ) = 0,

ω2 I11W + A33(W ′′ − Θ′) = 0,

or
[A2]

{
Z′′}+ [A1]

{
Z′}+ [A0] {Z} = 0, (27)

with {Z (x, ω)} = {U (x, ω) , Θ (x, ω) , W (x, ω)}T and

[A2] =

 A11 0 0
0 −A22 0
0 0 A33

 , [A1] =

 0 0 0
0 0 −A33
0 −A33 0

 ,

[A0] =

 ω2 I11 −ω2 I12 0
ω2 I12 A33 − ω2 I22 0

0 0 ω2 I11

 .

Obviously, due to functionally graded properties of the beam material the axial (lon-
gitudinal) and flexural (bending) vibration modes in FGM beams are coupled and their
coupling is characterized by the coefficient I12 that equals to zero if Et = Eb or n = 0 cor-
responding to the case of homogeneous beams. Additionally, the neutral plane position
in FGM beams has deviated from the central one at a distance calculated by expression
(26) that also becomes zero for homogeneous beams.

2.2.2. Crack model in functionally graded beams
Assume furthermore that the functionally graded beam is damaged to edge-open

cracks of depth a1, . . . , an at positions e1, . . . , en. Because of coupling of axial and trans-
verse vibrations in the functionally graded beam, see Eq. (25), crack at position ej should
be represented by a pair of equivalent springs, one is a translational spring of stiffness Tj
and other is a rotational one of stiffness Rj (Fig. 2).
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Additionally, the neutral plane position in FGM beams has deviated from the central one at a distance 
calculated by expression (2.26) that also becomes zero for homogeneous beams. 

2.2.2. Crack model in functionally graded beams 

Assume furthermore that the functionally graded beam is damaged to edge-open cracks of depth 
𝑎3, … , 𝑎1 at positions 𝑒3, … , 𝑒1. Because of coupling of axial and transverse vibrations in the functionally 
graded beam, see Eq. (2.25), crack at position 𝑒' should be represented by a pair of equivalent springs, one 
is a translational spring of stiffness 𝑇' and other is a rotational one of stiffness 𝑅' (Fig. 2.2). 

 
Fig. 2.2. Model of open edge crack in functionally graded beam 

Thus, conditions should be satisfied at the crack position are [46] 

𝑈;𝑒' + 0= = 𝑈;𝑒' − 0= + 𝛾@'𝑈9′ ;𝑒'= ;  𝛩;𝑒' + 0= = 𝛩;𝑒' − 0= + 𝛾+'𝛩9′ ;𝑒'= ; 
𝛩9′ ;𝑒' + 0= = 𝛩9′ ;𝑒' − 0= ;𝑊9′;𝑒' + 0= = 𝑊9′;𝑒' − 0= + 𝛾+'𝛩9′ ;𝑒'=.                     (2.28) 

where 𝛾@' = 𝐴33/𝑇'; 𝛾& = 𝐴&&/𝑅' are so-called crack magnitudes determined as follow 

𝛾@' = 𝐴33/𝑇' = 𝛾3'𝜗3(𝑅< , 𝑛); 𝛾+' = 𝐴&&/𝑅' = 𝛾&'𝜗&(𝑅< , 𝑛),                            (2.29) 
where   

𝜗3(𝑅< , 𝑛) = (𝑅< + 𝑛)/(1 + 𝑛); 
𝜗&(𝑅< , 𝑛) = 	 [(3𝑅< + 𝑛)/3(3 + 𝑛) − (2𝑅< + 𝑛)/(2 + 𝑛)𝛼 + (𝑅< + 𝑛)/(1 + 𝑛)𝛼&] 

and [Chondros et. al., 1998] 

𝛾3' = 𝐸+𝑏ℎ/𝑇' = 2𝜋(1 − 𝜈*&)ℎ𝑓3(𝑎'/ℎ+); 𝛾&' = 𝐸+𝑏ℎ,/𝑅' = 6𝜋(1 − 𝜈*&)ℎ𝑓&;𝑎'/ℎ+=;      (2.30) 
𝑓3(𝑧) = 𝑧&(0.6272 − 0.17248𝑧 + 5.92134𝑧& − 10.7054𝑧, + 31.5685𝑧% − 67.47𝑧- +	

+ 139.123𝑧. − 146.682𝑧/ + 92.3552𝑧0), 𝑧 = 𝑎'/ℎ;                                  	
𝑓&(𝑧) = 𝑧&(0.6272 − 1.04533𝑧 + 4.5948𝑧& − 9.9736𝑧, + 20.2948𝑧% − 33.0351𝑧- + 

+47.1063𝑧. − 40.7556𝑧/ + 19.6𝑧0), 𝑧 = 𝑎'/ℎ. 

Note that the introduced crack magnitudes are dependent upon not only crack depth but also are 
function of the material parameters such as elasticity ratio 𝑅< and volume fraction index n, which have 
been calculated only for some values of the the elasticity ratio [35]. 
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Thus, conditions should be satisfied at the crack position are [46]

U
(
ej + 0

)
= U

(
ej − 0

)
+ γajU′

x
(
ej
)

, Θ
(
ej + 0

)
= Θ

(
ej − 0

)
+ γbjΘ′

x
(
ej
)

,

Θ′
x
(
ej + 0

)
= Θ′

x
(
ej − 0

)
, W ′

x
(
ej + 0

)
= W ′

x
(
ej − 0

)
+ γbjΘ′

x
(
ej
)

.
(28)

where γaj = A11/Tj, γ2 = A22/Rj are so-called crack magnitudes determined as follow

γaj = A11/Tj = γ1jϑ1 (RE, n) , γbj = A22/Rj = γ2jϑ2 (RE, n) , (29)
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where

ϑ1 (RE, n) = (RE + n) / (1 + n) ,

ϑ2 (RE, n) =
[
(3RE + n) /3 (3 + n)− (2RE + n) / (2 + n) α + (RE + n) / (1 + n) α2] ,

and [17, 18]

γ1j = Ebbh/Tj = 2π
(
1−ν2

0
)

h f1
(
aj/hb

)
, γ2j = Ebbh3/Rj = 6π

(
1−ν2

0
)

h f2
(
aj/hb

)
, (30)

f1 (z) = z2
(

0.6272 − 0.17248z + 5.92134z2 − 10.7054z3 + 31.5685z4 − 67.47z5

+139.123z6 − 146.682z7 + 92.3552z8) , z = aj/h,

f2 (z) = z2
(

0.6272 − 1.04533z + 4.5948z2 − 9.9736z3 + 20.2948z4 − 33.0351z5

+47.1063z6 − 40.7556z7 + 19.6z8) , z = aj/h.

Note that the introduced crack magnitudes are dependent upon not only crack depth
but also are function of the material parameters such as elasticity ratio RE and volume
fraction index n, which have been calculated only for some values of the the elasticity
ratio [35].

2.2.3. Vibration shape
Using the traditional method in the ordinary differential equation theory, general

solution of Eq. (27) for intact beam, {Z0 (x, ω)} = {U0 (x, ω) , Θ0 (x, ω) , W0 (x, ω)}T can
be found in the form [46]

{Z0 (x, ω)} = [G0 (x, ω)] {C} , (31)

where {C} = (C1, . . . , C6)
T is vector of constants and G0 (x, ω) is the matrix

[G0 (x, ω)] =

 α1ek1x α2ek2x α3ek3x α1e−k1x α2e−k2x α3e−k3x

ek1x ek2x ek3x e−k1x e−k2x e−k3x

β1ek1x β2ek2x β3ek3x −β1e−k1x −β2e−k2x −β3e−k3x

 , (32)

with k1, k2, k3 being the wave numbers determined from the so-called characteristic equa-
tion

det
[
λ2A2 + λA1 + A0

]
= 0,

and

αj = [ω2 I11 + k2
j A11]/ω2 I12; β j = (ω2 I11 + k2

j A11)k j A33/ω2 I12(ω
2 I11 + k2

j A33), j = 1, 2, 3.
(33)

In case of cracked beam, solution of Eq. (27), {Z (x, ω)} = {U (x, ω) , Θ (x, ω) , W (x, ω)}T,
satisfying conditions (28) at crack sections is [46]

{Z (x, ω)} = [Φ (x, ω)] {C} , (34)

where

[Φ (x, ω)] = [G0 (x, ω)] +
n

∑
j=1

[
K
(
x − ej

)]
·
[
Mj

]
, (35)
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with

[K (x)] =

{
[Gc (x)] : x > 0
[0] : x ≤ 0

[
K′ (x)

]
=

{ [
G′

c (x)
]

: x > 0
[0] : x ≤ 0

[Gc (x, ω)] =



γa

3

∑
i=1

αiδi1 cosh kix γb

3

∑
i=1

αi (δi2 + δi3) cosh kix 0

γa

3

∑
i=1

δi1 cosh kix γb

3

∑
i=1

(δi2 + δi3) cosh kix 0

γa

3

∑
i=1

βiδi1 sinh kix γb

3

∑
i=1

βi (δi2 + δi3) sinh k2x 0


, (36)

δ11 = (k3β3 − k2β2) /∆, δ12 = (α3k2β2 − α2k3β3) /∆, δ13 = (α2 − α3) /∆,

δ21 = (k1β1 − k3β3) /∆, δ22 = (α1k3β3 − α3k1β1) /∆, δ23 = (α3 − α1) /∆,

δ31 = (k2β2 − k1β1) /∆, δ32 = (α2k1β1 − α1k2β2) /∆, δ33 = (α1 − α2) /∆,

∆ = k1β1 (α2 − α3) + k2β2 (α3 − α1) + k3β3 (α1 − α2) .

Matrices
[
Mj

]
are determined by recurrent relationship

[
Mj

]
=

[
G′

0
(
ej, ω

)]
+

j−1

∑
k=1

[
G′

c
(
ej − ek

)]
· [Mk] . (37)
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2.2.3. Vibration shape 

Using the traditional method in the ordinary differential equation theory, general solution of Eq. (2.27) 
for intact beam,  {𝒁*(𝑥, 𝜔)} = {𝑈*(𝑥, 𝜔), Θ*(𝑥, 𝜔),𝑊*(𝑥, 𝜔)}7 can be found in the form [46] 

{𝒁*(𝑥, 𝜔)} = [𝐆*(𝑥, 𝜔)]{𝑪}                                                         (2.31) 
where {𝑪} = (𝐶3, . . . , 𝐶.)7is vector of constants and 𝐆*(𝑥, 𝜔) is the matrix 

[𝐺*(𝑥, 𝜔)] = �
𝛼3𝑒5"9 𝛼&𝑒5#9 𝛼,𝑒5$9 𝛼3𝑒65"9 𝛼&𝑒65#9 𝛼,𝑒65$9

𝑒5"9 𝑒5#9 𝑒5$9 𝑒65"9 𝑒65#9 𝑒65$9
𝛽3𝑒5"9 𝛽&𝑒5#9 𝛽,𝑒5$9 −𝛽3𝑒65"9 −𝛽&𝑒65#9 −𝛽,𝑒65$9

�

         

(2. 32) 

with  𝑘3, 𝑘&, 𝑘, being the wave numbers determined from the so-called characteristic equation 

det[ 𝜆!𝐀𝟐 + 𝜆𝐀𝟏 + 𝐀𝟎] = 0 
and 

.         (2.33) 

In case of cracked beam, solution of Eq. (2.27), {𝒁(𝑥, 𝜔)} = {𝑈(𝑥, 𝜔), Θ(𝑥, 𝜔),𝑊(𝑥, 𝜔)}7 , satisfying 
conditions (2.28) at crack sections is [46] 

{𝒁(𝑥, 𝜔)} = [𝚽(𝑥, 𝜔)]{𝑪},                                              (2.34) 
where  

[𝚽(𝑥, 𝜔)] = [𝐆*(𝑥, 𝜔)] + ∑ [𝐊(𝑥 − 𝑒')] ⋅ [𝐌']1
'23                                 (2.35) 

with  

[𝐊(𝑥)] = �
[𝐆A(𝑥)] : 𝑥 > 0;
[𝟎]:											𝑥 ≤ 0; [𝐊

′(𝑥)] = �[𝐆A
′ (𝑥)] : 𝑥 > 0;

[𝟎]:											𝑥 ≤ 0;
 

[𝐆A(𝑥, 𝜔)] = �
𝛾@ ∑ 𝛼8𝛿83 cosh 𝑘8 𝑥,

823 𝛾+ ∑ 𝛼8(𝛿8& + 𝛿8,) cosh 𝑘8 𝑥,
823 0

𝛾@ ∑ 𝛿83 cosh 𝑘8 𝑥,
823 𝛾+ ∑ (𝛿8& + 𝛿8,) cosh 𝑘8 𝑥,

823 0
𝛾@ ∑ 𝛽8𝛿83 sinh 𝑘8 𝑥,

823 𝛾+ ∑ 𝛽8(𝛿8& + 𝛿8,) sinh 𝑘& 𝑥,
823 0

�;             (2.36) 

𝛿33 = (𝑘,𝛽, − 𝑘&𝛽&)/∆; 𝛿3& = (𝛼,𝑘&𝛽& − 𝛼&𝑘,𝛽,)/∆; 𝛿3, = (𝛼& − 𝛼,)/∆;	
𝛿&3 = (𝑘3𝛽3 − 𝑘,𝛽,)/∆; 𝛿&& = (𝛼3𝑘,𝛽, − 𝛼,𝑘3𝛽3)/∆; 𝛿&, = (𝛼, − 𝛼3)/∆;	
𝛿,3 = (𝑘&𝛽& − 𝑘3𝛽3)/∆; 𝛿,& = (𝛼&𝑘3𝛽3 − 𝛼3𝑘&𝛽&)/∆; 𝛿,, = (𝛼3 − 𝛼&)/∆;	

∆= 𝑘3𝛽3(𝛼& − 𝛼,) + 𝑘&𝛽&(𝛼, − 𝛼3) + 𝑘,𝛽,(𝛼3 − 𝛼&). 

Matrices [𝐌'] are determined by reccurent relationship  

[𝐌'] = [𝐆*′ (𝑒' , 𝜔)] + ∑ [𝐆A′ (𝑒' − 𝑒5)] ⋅ [𝐌5]
'63
523 .                               (2.37) 
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Let us consider a functionally graded beam of length L, width 𝑏 and thickness ℎ+ bonded with a 
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Fig. 3. Model of beam with piezoelectric layer

Let us consider a functionally graded beam of length L, width b and thickness hb
bonded with a piezoelectric layer of thickness hp as shown in Fig. 3. Governing equations
for the host beam have been given in Eqs. (23)–(24) and that equations for piezoelectric
layer are represented as

up (x, z, t) = up0 (x, t)− zθp (x, t) , wp (x, z, t) = wp0 (x, t); εpx = u′
p0 − zθ′p, γp = w′

p0 − θp,

σpx = Cp
11εpx − h13D; τp = Cp

55γp;∈= −h13εpx + β
p
33D,

(38)



326 Nguyen Tien Khiem

where Cp
11, Cp

55 are elastic and shear modulus, h13, β
p
33 are piezoelectric and dielectric con-

stants; ∈ and D are electric field and displacement of the piezoelectric material.
Assume that the host beam and piezoelectric layer are perfectly bonded, and they

have the same cross-section rotation so that it should be satisfied the conditions

u
(

x,−hb

2
, t
)
= up

(
x,

hp

2
, t
)

, w (x,−hb/2, ) = wp
(
x, hp/2, t

)
, θ = θp, (39)

that yield

up0 = u0 + θh, h =
(
hb + hp

)
/2, wp0 = w0, εpx = u′

0 − (z − h) θ′, γp = w′
0 − θ.

Therefore, strain and kinetic energies of the integrated beam can be calculated as

Π = Πb + Πp = (1/2)
∫ L

0

{
A∗

11u
′2
0 + 2A∗

12u′
0θ′ + A∗

22θ
′2 + A∗

33
(
w′

0 − θ
)2

−2h13ApD
(
u′

0 + hθ′
)
+ β

p
33ApD2

}
dx,

T = Tp + Tp = (1/2)
∫ L

0

{
I∗11u̇2

0 + 2I∗12u̇0θ̇ + I∗22θ̇2 + I∗11ẇ2
0
}

dx,

(40)

where comma and dot denote derivative with respect to x and t respectively and

A∗
11 = A11 + Cp

11Ap, A∗
12 = Cp

11Aph, A∗
22 = A22 + Cp

11

(
Ip + Aph2) , A∗

33 = A33 + Cp
55Ap,

Ap = bhp, I∗11 = I11 + ρp Ap, I∗12 = ρp Aph, I∗22 = I22 + ρp Ip + ρp Aph2, Ab = bhb, Ip = bh3
p/12.

Substituting expressions (40) of total energies into Hamilton principle∫ t2

t1

δ (T − Π)dt = 0,

allows one to obtain the equations of motion(
I∗11ü0 − B∗

11u
′′
0

)
+

(
I∗12θ̈ − B∗

12θ′′
)
= 0,(

I∗12ü0 − B∗
12u

′′
0

)
+

(
I∗22θ̈ − B∗

22θ′′
)
− A∗

33
(
w′

0 − θ
)
= 0,

I∗11ẅ0 − A∗
33

(
w

′′
0 − θ′

)
= 0,

(41)

where

B∗
11 = A∗

11 − Aph2
13/β

p
33 = EAb + Ep Ap, B∗

12 = A∗
12 − Aphh2

13/β
p
33 = Ep Aph,

B∗
22 = A∗

22 − Aph2h2
13β

p
33 = EIb + Cp

11 Ip + Ep Aph2, Ep = Cp
11 − h2

13/β
p
33,

and
D = h13

(
u′

0 + hθ′
)

/β
p
33. (42)

Transferring the equations (41) into frequency domain one gets equations at the same
form as Eq. (27)

[D2]
{

Z′′}+ [D1]
{

Z′}+ [D0] {Z} = 0, (43)



Vibrations of cracked functionally graded beams: General solution and application – A review 327

but with other coefficient matrices

[D2] =

 B∗
11 B∗

12 0
B∗

12 B∗
22 0

0 0 A∗
33

 , [D1] =

 0 0 0
0 0 A∗

33
0 −A∗

33 0

 ,

[D0] =

 ω2 I∗11 ω2 I∗12 0
ω2 I∗12 ω2 I∗22 − A∗

33 0
0 0 ω2 I∗11

 .

Eqs. (41) show that presence of the piezoelectric layer in even homogeneous beams leads
also to coupling of axial and flexural vibration modes. The coupling represented by coef-
ficients B∗

12 = Ep Aph and I∗12 = ρp Aph would be both vanished if the piezoelectric layer
thickness equals to zero.

So, general solution of Eq. (43) for vibration shape of cracked Timoshenko beams
bonded with a piezoelectric layer,

{Z (x, ω)} = {U (x, ω) , Θ (x, ω) , W (x, ω)}T

has the same form as given in Eqs. (34)–(37) with the wave numbers k1, k2, k3 determined
from the other characteristic equation

det
[
λ2D2 + λD1 + D0

]
= 0. (44)

Therefore, modal electric characteristics of the piezoelectric layer can be calculated
from the solution as

D (x, ω) = h13
[
U′ (x, ω) + hΘ′ (x, ω)

]
/β

p
33. (45)

3. APPLICATION FOR ANALYSIS

3.1. Application for modal analysis
The vibration shapes obtained above for various beam types are employed herein to

develop the exact methods for dynamic analysis of cracked beam-like structures includ-
ing the framed ones.

3.1.1. The Transfer Matrix Method
Let us consider a framed structure consisting of multiple cracked beam elements

joined each with other through connecting nodes xk, k = 1, 2, . . . , n. Suppose that vibra-
tion shapes of the beam elements are given as

{Zk (x, ω)} = {Uk (x, ω) , Θk (x, ω) , Wk (x, ω)}T = [Φk (x, ω)] {Ck} , k = 0, 1, 2, . . . , n + 1
(46)

with {C} being six-dimensional constant vector and [Φk (x, ω)] - 3 × 6 – function matrix.
Introducing the so-called state vector for the k-th beam element

{Sk (x, ω)} = {Uk (x, ω) , Θk (x, ω) , Wk (x, ω) , Nk (x, ω) , Mk (x, ω) , Qk (x, ω)}T , (47)
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where {Pk (x, ω)} = {Nk (x, ω) , Mk (x, ω) , Qk (x, ω)}T is internal force vector determined
from the vibration shape {Zk (x, ω)} as

{Pk (x, ω)} = ℜ {Zk (x, ω)} =
[
ΦN

k (x, ω)
]
{Ck} , (48)

one obtains the state vector expressed in the form

{Sk (x, ω)} = [Ψk (x, ω)] {Ck} . (49)

Substituting expression (49) into continuity conditions at the nodes {Sk (xk, ω)} =
[Γk] {Sk−1 (xk, ω)} with the given node transferring matrices [Γk] yields the recurrent con-
nection

{Ck} =
[
Γk
]
{Ck−1} ,

[
Γk
]
= [Ψk (xk, ω)]−1 [Γk] [Ψk−1 (xk, ω)] ,

that allows one to get the relationship

{Ck} = [Tk] {C0} , [Tk] =
[
Γk . . . Γ1

]
, (50)

and

{Cn+1} = [Tn] {C0} .

Thus, we obtain

{Zk (x, ω)} =
[
Φk (x, ω)

]
{C0} ,

[
Φk (x, ω)

]
= [Φk (x, ω) Tk] , (51)

for every beam k-the segment k = 1, 2, . . . , n + 1 and

{Z0 (x, ω)} = [Φ0 (x, ω)] {C0} , {Zn+1 (x, ω)} =
[
Φn+1 (x, ω)

]
{C0} .

Applying boundary conditions for the latter expression

B0 {[Φ0 (x, ω)]}x=0 {C0} = [B0] {C0} = 0,

Bn+1
{[

Φn+1 (x, ω)
]}

x=↕n+1
{C0} = [Bn+1] {C0} = 0,

or

[B (ω)] {C0} = 0, [B] = [B0, Bn+1]
T . (52)

The finally obtained equation is essential for the free vibration problem that yields
the frequency equation

det [B (ω)] = 0, (53)

for finding the natural frequencies ωj, j = 1, 2, . . . and corresponding mode shapes{
ϕj (x)

}
=

[
Φk

(
x, ωj

)] {
Cj

}
, xk−1 < x < xk, k = 1, . . . , n + 1, j = 1, 2, 3, . . . , (54)

where
{

Cj
}

is the normalized solution of equation
[
B
(
ωj

)]
{C} = 0. These equations

will be employed for modal analysis of single span, multispan and continuous beams
with cracks in subsequent sections.
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3.1.2. The Dynamic Stiffness Method
The developed above transfer matrix method showed to be more efficient for modal

analysis of beam-like structures such as multi-span and continuous beams and it faces
a difficulty in an application for framed structures. For the analysis of typical cracked
framed structures, the so-called dynamic stiffness method is more appropriate because it
is an enhancement of the powerful finite element method well-known in engineering ap-
plications. This subsection is devoted to developing a dynamic stiffness model of cracked
frames using the vibration shapes established above for beam elements.

Thus, for a two-nodes beam element as shown in Fig. 4, where the following nodal
displacement and force vectors have been introduced

{Ue(ω)} = {U1, Θ1, W1, U2, Θ2, W2}T, {Pe(ω)} = {N1, M1, Q1, N2, M2, Q2}T, (55)

with

U1 = U(0, ω), Θ1 = Θ(0, ω), W1 = W(0, ω), U2 = U(L, ω), Θ2 = Θ(L, ω), W2 = W(L, ω),

N1 = −N{Z(x, ω)}x=0, M1 = −R{Z(x, ω)}x=0, Q1 = −Q{Z(x, ω)}x=0,

N2 = N{Z(x, ω)}x=L, M2 = R{Z(x, ω)}x=L, Q1 = Q{Z(x, ω)}L,

or

{U1, Θ1, W1}T = {Z(0, ω)}, {U2, Θ2, W2}T = {Z(L, ω)},

{N1, M1, Q1}T = ℜ{Z(x, ω)}x=0, {N2, M2, Q2}T = ℜ{Z(x, ω)}x=L,
(56)

where ℜ = {N, R, Q}T is differential vector operator with elements being operators for
calculating international forces such as axial, bending moment and shear forces.
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Substituting expression for vibration shape {Z (x, ω)} = [Φ (x, ω)] {C} into (56)
yields

{U1, Θ1, W1}T = [Φ(0, ω)]{C}, {U2, Θ2, W2}T = [Φ(L, ω)]{C},

{N1, M1, Q1}T = [ℜΦ(x, ω)]x=0{C}, {N2, M2, Q2}T = [ℜΦ(x, ω)]x=L{C},
(57)

or

{Ue} =

[
Φ(0, ω)
Φ(L, ω)

]
{C}, {Qe} =

[
ℜΦ(x, ω)x=0
ℜΦ(x, ω)x=L

]
{C}. (58)

Eliminating vector C from Eqs. (58) leads to

{Qe} = [De(ω)]{Ue}, (59)

where

[De(ω)] =

[
ℜΦ(x, ω)x=0
ℜΦ(x, ω)x=L

]
·
[

Φ(0, ω)
Φ(L, ω)

]−1

, (60)

is called hereby dynamic stiffness matrix for the beam element.
In general case, when a given structure consists of a number of beam elements, the

total dynamic stiffness matrix for the structure is assembled as accomplished in the finite
element method. Namely, the dynamic stiffness matrix is

[D(ω)] =
ne

∑
e=1

[Te]
−1[De(ω)] · [Te], (61)

where [Te] is the matrix of co-ordinate transform for e-th element.

3.2. Application for frequency response analysis
Now we consider equation

[D2]
{

Z′′}+ [D1]
{

Z′}+ [D0] {Z} = {P (x, ω)} , (62)

where

{P (x, ω)} =
∫ +∞

−∞
{p (x, t)} e−iωtdt,

is Fourier Transform of the given distributed load {p (x, t)}. Assume, furthermore, that
general solution of homogeneous equation

[D2]
{

Z′′}+ [D1]
{

Z′}+ [D0] {Z} = 0,

has been found in the form

{Z0 (x, ω)} = [Φ (x, ω)] {C} .

So, general solution of Eq. (62) can be constructed as

{Z (x, ω)} = [Φ (x, ω)] {C}+ {Q (x, ω)} , (63)

where {Q(x, ω} is a particular solution of inhomogeneous equation (62), for example,

{Q (x, ω)} =
∫ x

0
[H (x − τ, ω)] {P (x, ω)}dτ, (64)
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with matrix [H (x, ω)] is solution of equation

[D2]
[
H ′′]+ [D1]

[
H ′]+ [D0] [H] = 0, [H (0, ω)] = [0] ,

[
H ′ (0, ω)

]
= [D2]

−1 .

Applying boundary conditions

B0 {Z (x, ω)}x=0 = 0, BL {Z (x, ω)}x=L = 0,

for solution (63) one gets

[B0] {C} = {Q0 (ω)} , [BL] {C} = {QL (ω)} , (65)

[B0 (ω)] = B0 {[Φ (x, ω)]}x=0 , [BL (ω)] = BL {[Φ (x, ω)]}x=L ,
{Q0 (ω)} = B0 {[Q (x, ω)]}x=0 , {QL (ω)} = BL {[Q (x, ω)]}x=L . (66)

Consequently, we can find vector as

{C} = −
[

B0 (ω)
BL (ω)

]−1 { Q0 (ω)
QL (ω)

}
,

and solution (63) satisfying the boundary conditions would be

{Z (x, ω)} = {Q (x, ω)} − [Φ (x, ω)]

[
B0 (ω)
BL (ω)

]−1 { Q0 (ω)
QL (ω)

}
. (67)

This is frequency response of the beam to external load {p (x, t)}. For instance, in case of
point impulse

{p (x, t)} = P0 {0, 0, 1}T δ (x − x0) δ (t) ,
one has

{Q (x, ω)} = P0 {H3 (x − x0)} ,
where

H3 (x) = {0, for x < x0 or h3 (x) for x ≥ x0} ,
and h3 (x) is the third column of the matrix [H (x, ω)] .

4. NUMERICAL EXAMPLES

4.1. Modal analysis of cracked functionally graded beams
4.1.1. Single span functionally graded beams

First, modal analysis of single span FGM beam with single crack is conducted using
Eq. (53) that can be rewritten in the form

det [B (ω, e, a, r, n)] = 0, (68)

where e, a are crack location and depth, r = Et/Eb is the top-to-bottom elasticity mod-
ulus ratio, n – the volume fraction index and matrix B (ω, e, a, r, n) = [B0 (ω, e, a, r, n) ,
BL (ω, e, a, r, n)]T with

[B0 (ω, a, e, r, n)] = B0 {[Φ (x, ω, e, a, r, n)]}x=0 ,

[BL (ω, a, e, r, n)] = BL {[Φ (x, ω, e, a, r, n)]}x=L .
(69)

Thus, natural frequencies of the beams can be found by solving Eq. (68) with respect
to ω in dependence upon crack location e and depth a, elasticity modulus ratio r and
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det[B(𝜔, 𝑒, 𝑎, 𝑟, 𝑛)] = 0,                                                      (4.1) 

where 𝑒, 𝑎 are crack location and depth,  is the top-to-bottom elasticity modulus ratio, n – the 
volume fraction index and matrix B(𝜔, 𝑒, 𝑎, 𝑟, 𝑛) = [B*(𝜔, 𝑒, 𝑎, 𝑟, 𝑛), BE(𝜔, 𝑒, 𝑎, 𝑟, 𝑛)]7 with  

[B*(𝜔, 𝑎, 𝑒, 𝑟, 𝑛)] = ℬ*{[𝚽(𝑥, 𝜔, 𝑒, 𝑎, 𝑟, 𝑛)]}92*, [BE(𝜔, 𝑎, 𝑒, 𝑟, 𝑛)] = ℬE{[𝚽(𝑥, 𝜔, 𝑒, 𝑎, 𝑟, 𝑛)]}92E. (4.2) 

Thus, natural frequencies of the beams can be found by solving Eq. (3.23) with respect to 𝜔 in 
dependence upon crack location e and depth a, elasticity modulus ratio 𝑟 and volume fraction index n. 
Obviously, natural frequencies obtained for 𝑎 = 0 are natural frequencies of undamaged beams and in case 
if 𝑛 = 0 roots of the equation provide natural frequencies of homogeneous beams. Therefore, crack-induced 
change in natural frequencies of FGM beam represented by the natural frequencies of cracked beams 
normalized by those of undamaged ones can be computed as function of crack location e in different (a) 
crack depth, (b) elasticity modulus ratio and (c) fraction index n. The normalized natural frequencies are 
computed for beams in conventional cases of boundary conditions such as simple supports (SS), clamped 
ends (CC) and cantilever (CF) and results of computation are presented in Figures 3.2 - 3.4 respectively for 
the boundary conditions cases. It can be seen from the Figures that the natural frequency variation for FGM 
beams versus crack location and depth is similar to that for homogeneous beams and the variation increases 
with decreasing both top-to-bottom elasticity modulus ratio and volume fraction index (n). Also, there exist 
positions on FGM beams occurred at which crack makes no effect on a particular natural frequency. Such 
locations are called frequency nodes and the nodes are independent of material grading indexes.  
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Figure 4.1. Normalized three lowest natural frequencies of simply supported FGM beam in dependence 
on the crack depth (a), fraction index n (b) and elasticity modulus ratio r (c). 
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Figure 4.2. Normalized three lowest natural frequencies of uniform clamped FGM beam in dependence 
on the crack depth (a), fraction index n (b) and elasticity modulus ratio (c). 
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Fig. 5. Normalized three lowest natural frequencies of simply supported FGM beam in depen-
dence on the crack depth (a), fraction index n (b) and elasticity modulus ratio r (c)

volume fraction index n. Obviously, natural frequencies obtained for a = 0 are natu-
ral frequencies of undamaged beams and in case if n = 0 roots of the equation provide
natural frequencies of homogeneous beams. Therefore, crack-induced change in natural
frequencies of FGM beam represented by the natural frequencies of cracked beams nor-
malized by those of undamaged ones can be computed as function of crack location e in
different (a) crack depth, (b) elasticity modulus ratio and (c) fraction index n. The nor-
malized natural frequencies are computed for beams in conventional cases of boundary
conditions such as simple supports (SS), clamped ends (CC) and cantilever (CF) and re-
sults of computation are presented in Figs. 5–7 respectively for the boundary conditions
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cases. It can be seen from the Figures that the natural frequency variation for FGM beams
versus crack location and depth is similar to that for homogeneous beams and the vari-
ation increases with decreasing both top-to-bottom elasticity modulus ratio and volume
fraction index (n). Also, there exist positions on FGM beams occurred at which crack
makes no effect on a particular natural frequency. Such locations are called frequency
nodes and the nodes are independent of material grading indexes.
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Figure 4.1. Normalized three lowest natural frequencies of simply supported FGM beam in dependence 
on the crack depth (a), fraction index n (b) and elasticity modulus ratio r (c). 
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Figure 4.2. Normalized three lowest natural frequencies of uniform clamped FGM beam in dependence 
on the crack depth (a), fraction index n (b) and elasticity modulus ratio (c). 
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Figure 4.1. Normalized three lowest natural frequencies of simply supported FGM beam in dependence 
on the crack depth (a), fraction index n (b) and elasticity modulus ratio r (c). 
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Figure 4.2. Normalized three lowest natural frequencies of uniform clamped FGM beam in dependence 
on the crack depth (a), fraction index n (b) and elasticity modulus ratio (c). 
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Fig. 6. Normalized three lowest natural frequencies of uniform clamped FGM beam in depen-
dence on the crack depth (a), fraction index n (b) and elasticity modulus ratio (c)
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(c) 

Figure 4.3. Normalized three lowest natural frequencies of uniform cantilever FGM beam in dependence 
on the crack depth (a), fraction index n (b) and elasticity modulus ratio (c). 
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Next, for illustrating the Transfer Matrix Method developed for modal analysis of cracked FGM 
structures, we consider herein also the change in natural frequencies of cracked continuous FGM beam. 
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Figure 4.3. Normalized three lowest natural frequencies of uniform cantilever FGM beam in dependence 
on the crack depth (a), fraction index n (b) and elasticity modulus ratio (c). 
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Figure 4.3. Normalized three lowest natural frequencies of uniform cantilever FGM beam in dependence 
on the crack depth (a), fraction index n (b) and elasticity modulus ratio (c). 
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Fig. 7. Normalized three lowest natural frequencies of uniform cantilever FGM beam in depen-
dence on the crack depth (a), fraction index n (b) and elasticity modulus ratio (c)

4.1.2. Continuous functionally graded beams
Next, for illustrating the Transfer Matrix Method developed for modal analysis of

cracked FGM structures, we consider herein also the change in natural frequencies of
cracked continuous FGM beam.

Namely, the equation (53) is solved for cracked FGM beam with two rigid supports
(three spans) in dependence on the crack and material parameters. Normalized first fre-
quency of bending (Figs. 8–9) and longitudinal (Fig. 10) vibrations in the simply sup-
ported (a) and clamped (b) continuous beam is examined as function of crack location
running along three spans for various crack depth and material grading index. It is ob-
served that the change in natural frequencies of multi-span FGM beams versus crack
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depth and material grading index n is similar to that of single span beam. Moreover,
the positions of the intermediate supports are nodes of fundamental frequency in flexu-
ral vibration for simply supported multi-span beams and the effect of crack on natural
frequencies of axial vibration modes is independent of the presence of the intermediate
supports. Vietnam Journal of Mechanics, Vietnam Acdemy of Science and Technology 
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(a)                                                                                         (b) 

Fig. 4.4. Normalized first flexural frequency of three-span FGM beam (a – SSB, b – CCB) as function of 
crack location in various relative crack depth (a/h). 

 
(a)                                                                                        (b) 

Fig. 4.5. Normalized first flexural frequency of three-span FGM beam (a – SSB, b – CCB) as function of 
crack location in various material grading index (n). 

 
(a)                                                                                             (b) 

Fig. 4.6. Normalized first axial frequency of three-span FGM beam (a – SSB, b – CCB) as function of 
crack location in various crack depth (a) and material grading index (b). 

(a)

Vietnam Journal of Mechanics, Vietnam Acdemy of Science and Technology 
 

14 
 

 
(a)                                                                                         (b) 

Fig. 4.4. Normalized first flexural frequency of three-span FGM beam (a – SSB, b – CCB) as function of 
crack location in various relative crack depth (a/h). 
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Fig. 4.5. Normalized first flexural frequency of three-span FGM beam (a – SSB, b – CCB) as function of 
crack location in various material grading index (n). 

 
(a)                                                                                             (b) 

Fig. 4.6. Normalized first axial frequency of three-span FGM beam (a – SSB, b – CCB) as function of 
crack location in various crack depth (a) and material grading index (b). 

(b)

Fig. 8. Normalized first flexural frequency of three-span FGM beam (a – SSB, b – CCB) as function
of crack location in various relative crack depth (a/h)
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Fig. 4.4. Normalized first flexural frequency of three-span FGM beam (a – SSB, b – CCB) as function of 
crack location in various relative crack depth (a/h). 
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Fig. 4.5. Normalized first flexural frequency of three-span FGM beam (a – SSB, b – CCB) as function of 
crack location in various material grading index (n). 
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Fig. 4.6. Normalized first axial frequency of three-span FGM beam (a – SSB, b – CCB) as function of 
crack location in various crack depth (a) and material grading index (b). 
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Fig. 4.4. Normalized first flexural frequency of three-span FGM beam (a – SSB, b – CCB) as function of 
crack location in various relative crack depth (a/h). 
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Fig. 4.5. Normalized first flexural frequency of three-span FGM beam (a – SSB, b – CCB) as function of 
crack location in various material grading index (n). 

 
(a)                                                                                             (b) 

Fig. 4.6. Normalized first axial frequency of three-span FGM beam (a – SSB, b – CCB) as function of 
crack location in various crack depth (a) and material grading index (b). 

(b)

Fig. 9. Normalized first flexural frequency of three-span FGM beam (a – SSB, b – CCB) as function
of crack location in various material grading index (n)
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Fig. 4.4. Normalized first flexural frequency of three-span FGM beam (a – SSB, b – CCB) as function of 
crack location in various relative crack depth (a/h). 
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Fig. 4.5. Normalized first flexural frequency of three-span FGM beam (a – SSB, b – CCB) as function of 
crack location in various material grading index (n). 
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Fig. 4.6. Normalized first axial frequency of three-span FGM beam (a – SSB, b – CCB) as function of 
crack location in various crack depth (a) and material grading index (b). 
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Fig. 4.4. Normalized first flexural frequency of three-span FGM beam (a – SSB, b – CCB) as function of 
crack location in various relative crack depth (a/h). 
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Fig. 4.5. Normalized first flexural frequency of three-span FGM beam (a – SSB, b – CCB) as function of 
crack location in various material grading index (n). 
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Fig. 4.6. Normalized first axial frequency of three-span FGM beam (a – SSB, b – CCB) as function of 
crack location in various crack depth (a) and material grading index (b). 

(b)

Fig. 10. Normalized first axial frequency of three-span FGM beam (a – SSB, b – CCB) as function
of crack location in various crack depth (a) and material grading index (b)

4.1.3. Stepped functionally graded beams
Finally, the proposed dynamic stiffness method is applied for modal analysis of

cracked functionally graded beams with three steps that are shown in Fig. 11.
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Namely, the equation (3.8) is solved for cracked FGM beam with two rigid supports (three spans) in 
dependence on the crack and material parameters. Normalized first frequency of bending (Figs. 3.5 – 3.6) 
and longitudinal (Fig. 3.7) vibrations in the simply supported (a) and clamped (b) continuous beam is 
examined as function of crack location running along three spans for various crack depth and material 
grading index. It is observed that the change in natural frequencies of multi-span FGM beams versus crack 
depth and material grading index n is similar to that of single span beam. Moreover, the positions of the 
intermediate supports are nodes of fundamental frequency in flexural vibration for simply supported multi-
span beams and the effect of crack on natural frequencies of axial vibration modes is independent of the 
presence of the intermediate supports. 

4.1.3. Stepped functionally graded beams 

Finally, the proposed dynamic stiffness method is applied for modal analysis of cracked functionally 
graded beams with three steps that are shown in Fig. 4.7. 

 

 
 

(a)                                                                   (b) 
Figure 4.7. Model of stepped functionally graded beam: (a) step-up beam; (b) step-down beam. 

Normalized natural frequencies of lowest modes for stepped beams shown in Figs. 4.8 - 4.13 as 
functions of crack location in deferent crack depth (Fig. 4.8 - 4.10), volume fraction index (Fig. 4.11 – 4.13) 
demonstrate that increase of cross-section area leads to decrease of natural frequency sensitivity to crack. 

 
Figure 4.8. Variation of two lowest natural frequencies versus crack location in various crack depth for 

simply supported beam (SSB). 
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Namely, the equation (3.8) is solved for cracked FGM beam with two rigid supports (three spans) in 
dependence on the crack and material parameters. Normalized first frequency of bending (Figs. 3.5 – 3.6) 
and longitudinal (Fig. 3.7) vibrations in the simply supported (a) and clamped (b) continuous beam is 
examined as function of crack location running along three spans for various crack depth and material 
grading index. It is observed that the change in natural frequencies of multi-span FGM beams versus crack 
depth and material grading index n is similar to that of single span beam. Moreover, the positions of the 
intermediate supports are nodes of fundamental frequency in flexural vibration for simply supported multi-
span beams and the effect of crack on natural frequencies of axial vibration modes is independent of the 
presence of the intermediate supports. 

4.1.3. Stepped functionally graded beams 

Finally, the proposed dynamic stiffness method is applied for modal analysis of cracked functionally 
graded beams with three steps that are shown in Fig. 4.7. 
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Normalized natural frequencies of lowest modes for stepped beams shown in Figs. 4.8 - 4.13 as 
functions of crack location in deferent crack depth (Fig. 4.8 - 4.10), volume fraction index (Fig. 4.11 – 4.13) 
demonstrate that increase of cross-section area leads to decrease of natural frequency sensitivity to crack. 

 
Figure 4.8. Variation of two lowest natural frequencies versus crack location in various crack depth for 

simply supported beam (SSB). 

0 0.5 1 1.5 2 2.5 3
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

 

 
SS-Beam, L1=L2=L3=1;a/h=5,10,20,30,40%

1
st

 f
re

q
u

e
n

cy
 ra

tio

Crack position

S0: h1=h2=h3=0.1

S1

S1

S0

S2

S1S1

S1

S1

S2

S0

S0

S2

S1
S0

S2

S1

S1: h1=h3=0.1;h2=0.2
S2: h1=h3=0.1;h2=0.05

0 0.5 1 1.5 2 2.5 3
0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

 

 

2
n

d
 f

re
q

u
e

n
cy

 r
a

tio

SS-Beam, L1=L2=L3=1;a/h=5,10,20,30,40%

Crack position

S2 S2

S2 S2

S1

S0

S2

S0

S1

S0

S2

S0

S1

S1
S1: h1=h3=0.1;h2=0.2
S2: h1=h3=0.1;h2=0.05

S0: h1=h2=h3=0.1

S2

S1 S1

S2

(b)

Fig. 11. Model of stepped functionally graded beam: (a) step-up beam; (b) step-down beam

Normalized natural frequencies of lowest modes for stepped beams shown in Figs. 12
–17 as functions of crack location in different crack depth (Figs. 12–14), volume fraction
index (Fig. 15–17) demonstrate that increase of cross-section area leads to decrease of
natural frequency sensitivity to crack.
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Namely, the equation (3.8) is solved for cracked FGM beam with two rigid supports (three spans) in 
dependence on the crack and material parameters. Normalized first frequency of bending (Figs. 3.5 – 3.6) 
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examined as function of crack location running along three spans for various crack depth and material 
grading index. It is observed that the change in natural frequencies of multi-span FGM beams versus crack 
depth and material grading index n is similar to that of single span beam. Moreover, the positions of the 
intermediate supports are nodes of fundamental frequency in flexural vibration for simply supported multi-
span beams and the effect of crack on natural frequencies of axial vibration modes is independent of the 
presence of the intermediate supports. 

4.1.3. Stepped functionally graded beams 
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Fig. 12. Variation of two lowest natural frequencies versus crack location in various crack depth
for simply supported beam (SSB)
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Figure 4.9. Variation of two lowest natural frequencies versus crack location in various crack depth for 

clamped end beam (CCB). 
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Figure 4.10. Variation of two lowest natural frequencies versus crack location in various crack depth for 
cantilever beam (CFB) 

 
Figure 4.11. Variation of two lowest natural frequencies versus crack location in various fraction index 

for simply supported beam (SS).  
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Figure 4.9. Variation of two lowest natural frequencies versus crack location in various crack depth for 

clamped end beam (CCB). 
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Figure 4.10. Variation of two lowest natural frequencies versus crack location in various crack depth for 
cantilever beam (CFB) 
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Fig. 13. Variation of two lowest natural frequencies versus crack location in various crack depth
for clamped end beam (CCB)
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Figure 4.9. Variation of two lowest natural frequencies versus crack location in various crack depth for 
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Figure 4.10. Variation of two lowest natural frequencies versus crack location in various crack depth for 
cantilever beam (CFB) 

 
Figure 4.11. Variation of two lowest natural frequencies versus crack location in various fraction index 

for simply supported beam (SS).  
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Figure 4.9. Variation of two lowest natural frequencies versus crack location in various crack depth for 

clamped end beam (CCB). 
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Figure 4.10. Variation of two lowest natural frequencies versus crack location in various crack depth for 
cantilever beam (CFB) 
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Fig. 14. Variation of two lowest natural frequencies versus crack location in various crack depth
for cantilever beam (CFB)
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Figure 4.9. Variation of two lowest natural frequencies versus crack location in various crack depth for 

clamped end beam (CCB). 

 
(c) 

Figure 4.10. Variation of two lowest natural frequencies versus crack location in various crack depth for 
cantilever beam (CFB) 

 
Figure 4.11. Variation of two lowest natural frequencies versus crack location in various fraction index 

for simply supported beam (SS).  
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Figure 4.9. Variation of two lowest natural frequencies versus crack location in various crack depth for 

clamped end beam (CCB). 
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Figure 4.10. Variation of two lowest natural frequencies versus crack location in various crack depth for 
cantilever beam (CFB) 

 
Figure 4.11. Variation of two lowest natural frequencies versus crack location in various fraction index 

for simply supported beam (SS).  
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Fig. 15. Variation of two lowest natural frequencies versus crack location in various fraction index
for simply supported beam (SS)
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Figure 4.12. Variation of two lowest natural frequencies versus crack location in various fraction index 

for clamped end beam (CC). 

 
Figure 4.13. Variation of two lowest natural frequencies versus crack location in various fraction index 

for Cantilever beam (CF). 
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Figure 4.12. Variation of two lowest natural frequencies versus crack location in various fraction index 

for clamped end beam (CC). 

 
Figure 4.13. Variation of two lowest natural frequencies versus crack location in various fraction index 

for Cantilever beam (CF). 
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Fig. 16. Variation of two lowest natural frequencies versus crack location in various fraction index
for clamped end beam (CC)
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Figure 4.12. Variation of two lowest natural frequencies versus crack location in various fraction index
for clamped end beam (CC).

Figure 4.13. Variation of two lowest natural frequencies versus crack location in various fraction index
for Cantilever beam (CF).

4.2. Free and forced vibration of cracked Timoshenko beams with piezoelectric layer 

4.2.1. Modal analysis cracked FGM beams with piezoelectric layer

Let’s consider free vibration of simply supported FGM beam with a piezoelectric layer described by 
Eq. (2.43) general solution of which is given as 

{𝒁(𝑥, 𝜔)} = {𝑈(𝑥, 𝜔), Θ(𝑥, 𝜔),𝑊(𝑥, 𝜔)}7 = [𝚽(𝑥, 𝜔)]{𝑪}. (4.3) 

Putting expression (4.3) into boundary conditions 

𝑈(0) = 𝑊(0) = 𝑀(0) = 𝑈(𝐿) = 𝑊(𝐿) = 𝑀(𝐿) = 0 

with 𝑀(𝑥) = 𝐵%!∗ 𝜕'𝑈(𝑥) − 𝐵!!∗ 𝜕'Θ(x), one gets

[𝐁(𝜔)]{𝐶} = 0, (4.3) 
where
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Fig. 17. Variation of two lowest natural frequencies versus crack location in various fraction index
for Cantilever beam (CF)
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4.2. Free and forced vibration of cracked Timoshenko beams with piezoelectric layer
4.2.1. Modal analysis cracked FGM beams with piezoelectric layer

Let’s consider free vibration of simply supported FGM beam with a piezoelectric
layer described by Eq. (43) general solution of which is given as

{Z (x, ω)} = {U (x, ω) , Θ (x, ω) , W (x, ω)}T = [Φ (x, ω)] {C} , (70)

Putting expression (70) into boundary conditions

U (0) = W (0) = M (0) = U (L) = W (L) = M (L) = 0,

with M (x) = B∗
12∂xU (x)− B∗

22∂xΘ (x), one gets

[B (ω)] {C} = 0, (71)

where

[B (ω)] = [BSS (ω)] =


α1 α2 α3 α1 α2 α3
β1 β2 β3 −β1 −β2 −β3
m1 m2 m3 −m1 −m2 −m3

ϕ11(L) ϕ12(L) ϕ13(L) ϕ14(L) ϕ15(L) ϕ16(L)
ϕ31(L) ϕ32(L) ϕ33(L) ϕ34(L) ϕ35(L) ϕ36(L)
M1(L) M2(L) M3(L) M4(L) M5(L) M6(L)

 ,

mj =
(

B∗
12αj − B∗

22
)

k j, j = 1, 2, 3; Mj (L) = B∗
12ϕ′

1j (L)− B∗
22ϕ′

2j (L) , j = 1, 2, . . . , 6,

ϕij (x) , ϕ′
ij (x) , i = 1, 2, 3; j = 1, 2, . . . , 6 are elements of matrices [Φ (x, ω)] and

[
Φ′ (x, ω)

]
defined in (35). Therefore, so-called frequency equation of the beam is obtained in the
form

det [B (ω)] = 0, (72)
that allows one to find natural frequencies ω1, ω2, ω3, . . . of the piezoelectric beam. For
every given natural frequency ωk, a normalized of solution of Eq. (71) can be easily found
as (ϑ1, . . . , ϑ6) that allow calculating corresponding mode shape as

Uk (x) = Ck

(
α1ϑ1ek1x + α2ϑ2ek2x + α3ϑ3ek3x + α1ϑ4e−k1x + α2ϑ5e−k2x + α3ϑ6e−k3x

)
,

Θk (x) = Ck

(
ϑ1ek1x + ϑ2ek2x + ϑ3ek3x + ϑ4e−k1x + ϑ5e−k2x + ϑ6e−k3x

)
,

Wk (x) = Ck

(
β1ϑ1ek1x + β2ϑ2ek2x + β3ϑ3ek3x − β1ϑ4e−k1x − β2ϑ5e−k2x − β3ϑ6e−k3x

)
,

(73)

where arbitrary constant Ck can be obtained from a chosen mode shape normalization,
for instance,

max
x

|Wk (x)| = 1.

Using the mode shape, it can be calculated so-called hereby modal sensor output (MSO)
charge generated in the piezoelectric layer as

Qk =
(
bh13/β

p
33

) ∫ L

0

[
U′

k (x)− hΘ′
k (x) /2

]
dx

=
(
bh13/β

p
33

) {[
Uk (L)− Uk (0)− γ1U′

x (e)
]
− (h/2)

[
Θk (L)− Θk (0)− γ2Θ′

x (e)
]}

,
(74)
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where γ1, γ2 are magnitudes of single cracks at position e defined above in Eq. (30). This
modal sensor output will be numerically examined below mutually with natural frequen-
cies and mode shapes of FGM beam with piezoelectric layer with the following input data
for the beam

Lb = Lp = L = 1 m, b = 0.1 m, hb = L/10,

Et = 390 MPa, ρt = 3960 kg/m3, µt = 0.25; Eb = 210 MPa, ρb = 7800 kg/m3, µt = 0.31,

Cp
11 = 69.0084 GPa, Cp

55 = 21.0526 GPa, ρp = 7750 kg/m3, h13 = −7.70394 × 108 V/m

Since the influence of piezoelectric layer on sensitivity of modal parameters such as
natural frequencies and mode shapes of functionally graded beam to crack is insignifi-
cant, herein we focus on the effect of crack and material grading index on modal sensor
output of the piezoelectric layer calculated by expression (74). Namely, the sensor charge
of first and third modes versus crack location in various crack depth, material grading
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𝜙8'(𝑥), 𝜙8'( (𝑥), 𝑖 = 1,2,3; 𝑗 = 1,2, … . ,6 are elements of matrices [𝚽(𝑥, 𝜔)] and [𝚽((𝑥, 𝜔)] defined in 
(2.35). Therefore, so-called frequency equation of the beam is obtained in the form 

det[𝐁(𝜔)] = 0,                                                               (4.4) 

that allows one to find natural frequencies 𝜔3, 𝜔&, 𝜔,, …. of the ezoelectric beam. For every given natural 
frequency 𝜔5, a normalized of solution of Eq. (4.3) can be easily found as (𝜗3, … , 𝜗.) that allow calculating 
corresponding mode shape as 

𝑈5(𝑥) = 𝐶5;𝛼3𝜗3𝑒5"9 + 𝛼&𝜗&𝑒5#9 + 𝛼,𝜗,𝑒5$9 + 𝛼3𝜗%𝑒65"9 + 𝛼&𝜗-𝑒65#9 + 𝛼,𝜗.𝑒65$9=; 
Θ5(𝑥) = 𝐶5;𝜗3𝑒5"9 + 𝜗&𝑒5#9 + 𝜗,𝑒5$9 + 𝜗%𝑒65"9 + 𝜗-𝑒65#9 + 𝜗.𝑒65$9=;                  (4.5) 

𝑊5(𝑥) = 𝐶5;𝛽3𝜗3𝑒5"9 + 𝛽&𝜗&𝑒5#9 + 𝛽,𝜗,𝑒5$9 − 𝛽3𝜗%𝑒65"9 − 𝛽&𝜗-𝑒65#9 − 𝛽,𝜗.𝑒65$9=, 

where arbitrary constant 𝐶5 can be obtained from a chosen mode shape normalization, for instance, 

max
9
|𝑊5(𝑥)| = 1. 

Using the mode shape, it can be calculated so-called hereby modal sensor output (MSO) charge 
generated in the piezoelectric layer as 

𝑄5 = (𝑏ℎ3,/𝛽,,
B )£ [𝑈5( (𝑥) − ℎΘ5( (𝑥)/2]𝑑𝑥

E

*
= 

         = (𝑏ℎ3,/𝛽,,
B ){[𝑈5(𝐿) − 𝑈5(0) − 𝛾3𝑈9( (𝑒)] − (ℎ/2)[Θ5(𝐿) − Θ5(0) − 𝛾&Θ9( (𝑒)]}, (4.6) 

where 𝛾3, 𝛾& are magnitudes of single cracks at position e defined above in Eq. (2.30). This modal sensor 
output will be numerically examined below mutually with natural frequencies and mode shapes of FGM 
beam with piezoelectric layer with the following input data for the beam 

𝐿+ = 𝐿B = 𝐿 = 1m; 𝑏 = 0.1m;	ℎ+ = 𝐿/10;  
𝐸> = 390MPa, 𝜌> = 3960kg/m,,	𝜇> = 0.25; 𝐸+ = 210MPa, 𝜌+ = 7800kg/m,, 𝜇> = 0.31; 

𝐶33
B = 69.0084GPa, 𝐶--

B = 21.0526GPa, 𝜌B = 7750kg/m,, ℎ3, = −7.70394 × 100𝑉/𝑚. 

Since the influence of piezoelectric layer on sensitivity of modal parameters such as natural 
frequencies and mode shapes of functionally graded beam to crack is insignificant, herein we focus on the 
effect of crack and material grading index on modal sensor output of the piezoelectric layer calculated by 
expression (4.6). Namely, the sensor chagre of first and third modes versus crack location in various crack 
depth, material grading index and piezoelectric lyer thickness have been computed and results of 
computation are given in Figs. 4.14 – 4.16. The charge computed for the second mode is very miniature so 
that is not provided in the Figures. Graphs depicted in the Figures show that an increase in crack depth and 
thickness of the piezoelectric layer-sensor leads to an increase in the modal sensor charges, while the growth 
of the material grading index reduces the charges. It is interesting to note that the sensor output charge of 
the third mode has two nodes where an occurred crack has no effect on it. 

 

 
Fig. 4.14. Crack-induced variation of modal sensor output charge in various crack depth  
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where arbitrary constant 𝐶5 can be obtained from a chosen mode shape normalization, for instance, 

max
9
|𝑊5(𝑥)| = 1. 

Using the mode shape, it can be calculated so-called hereby modal sensor output (MSO) charge 
generated in the piezoelectric layer as 

𝑄5 = (𝑏ℎ3,/𝛽,,
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where 𝛾3, 𝛾& are magnitudes of single cracks at position e defined above in Eq. (2.30). This modal sensor 
output will be numerically examined below mutually with natural frequencies and mode shapes of FGM 
beam with piezoelectric layer with the following input data for the beam 
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𝐶33
B = 69.0084GPa, 𝐶--

B = 21.0526GPa, 𝜌B = 7750kg/m,, ℎ3, = −7.70394 × 100𝑉/𝑚. 

Since the influence of piezoelectric layer on sensitivity of modal parameters such as natural 
frequencies and mode shapes of functionally graded beam to crack is insignificant, herein we focus on the 
effect of crack and material grading index on modal sensor output of the piezoelectric layer calculated by 
expression (4.6). Namely, the sensor chagre of first and third modes versus crack location in various crack 
depth, material grading index and piezoelectric lyer thickness have been computed and results of 
computation are given in Figs. 4.14 – 4.16. The charge computed for the second mode is very miniature so 
that is not provided in the Figures. Graphs depicted in the Figures show that an increase in crack depth and 
thickness of the piezoelectric layer-sensor leads to an increase in the modal sensor charges, while the growth 
of the material grading index reduces the charges. It is interesting to note that the sensor output charge of 
the third mode has two nodes where an occurred crack has no effect on it. 

 

 
Fig. 4.14. Crack-induced variation of modal sensor output charge in various crack depth  Fig. 18. Crack-induced variation of modal sensor output charge in various crack depth
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Fig. 4.15. Crack-induced variation of modal sensor outputs charge in various material gradient index n. 

 
Fig. 4.16. Crack-induced variation of modal sensor outputs charge in various thickness of piezoelectric 

layer 

4.2.2. Frequency response of cracked FGM beam with piezoelectric layer to moving load 

The frequency response of cracked FGM beam with a piezoelectric layer obtained in previous section, 
the expression (3.22), is numerically examined herein for harmonic load moving on the beam with constant 
speed 	𝑝(𝑥, 𝑡) = 𝑃*𝑒8P)>𝛿(𝑥 − 𝑣𝑡). In this case 

{𝑷(𝑥, 𝜔)} = ∫ {0,0, 𝑝(𝑥, 𝑡)}7𝑒68M>𝑑𝑡JN
6N = {0,0, 𝑃*/𝑣}7𝑒8(P)6M)9/R,                (4.7) 

that allows one to find a particular solution of Eq. (3.17) in the form 

{𝑸(𝑥, 𝜔} = ¤𝑈S*(𝜔), 𝛩S*(𝜔),𝑊S*(𝜔)¦
7 exp{𝑖Ω𝑥/𝑣} , Ω = (ΩT −𝜔)                     (4.8) 

where  
𝑈S*(𝜔) = (𝑖Ω)𝑄*𝐴,,∗ (Ω&𝐵3&∗ −𝜔&𝐼3&∗ )/Δ; 𝛩S*(𝜔) = (𝑖Ω)𝑄*𝐴,,∗ (𝜔&𝐼33∗ − Ω&𝐵33∗ )/Δ; 

𝑊S*(𝜔) = 𝑄*𝐷/Δ; Δ = (𝜔&𝐼33∗ − Ω&𝐴,,∗ )𝐷 + 𝑖Ω𝐴,,∗& (𝜔&𝐼33∗ − Ω&𝐵33∗ );                 (4.9) 

𝐷 = 𝜔%(𝐼33∗ 𝐼&&∗ − 𝐼3&∗&) + Ω%(𝐵33∗ 𝐵&&∗ − 𝐵3&∗&) + 𝐴,,∗ (Ω&𝐵33∗ −𝜔&𝐼33∗ ) + 

+𝜔&Ω&(2𝐼3&∗ 𝐵3&∗ − 𝐼33∗ 𝐵&&∗ − 𝐼&&∗ 𝐵33∗ ). 

Therefore, solution (3.22) for simply supported beam gets the form 

{𝒁T(𝑥, 𝜔)} = {𝑸(𝑥, 𝜔} − [𝚽(𝑥, 𝜔)][𝐁(𝜔)]63¤𝑷Ö(𝜔)¦,                               (4.10) 

with matrix [𝐁(𝜔)] given by Eq. (4.3) and 

𝑃×3(𝜔) = 𝑈S*(𝜔)	; 𝑃×&(𝜔) = 𝛩S*(𝜔);	𝑃×,(𝜔) = 𝑊S*(𝜔);                                (4.11) 
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Fig. 4.15. Crack-induced variation of modal sensor outputs charge in various material gradient index n. 

 
Fig. 4.16. Crack-induced variation of modal sensor outputs charge in various thickness of piezoelectric 

layer 

4.2.2. Frequency response of cracked FGM beam with piezoelectric layer to moving load 

The frequency response of cracked FGM beam with a piezoelectric layer obtained in previous section, 
the expression (3.22), is numerically examined herein for harmonic load moving on the beam with constant 
speed 	𝑝(𝑥, 𝑡) = 𝑃*𝑒8P)>𝛿(𝑥 − 𝑣𝑡). In this case 

{𝑷(𝑥, 𝜔)} = ∫ {0,0, 𝑝(𝑥, 𝑡)}7𝑒68M>𝑑𝑡JN
6N = {0,0, 𝑃*/𝑣}7𝑒8(P)6M)9/R,                (4.7) 

that allows one to find a particular solution of Eq. (3.17) in the form 

{𝑸(𝑥, 𝜔} = ¤𝑈S*(𝜔), 𝛩S*(𝜔),𝑊S*(𝜔)¦
7 exp{𝑖Ω𝑥/𝑣} , Ω = (ΩT −𝜔)                     (4.8) 

where  
𝑈S*(𝜔) = (𝑖Ω)𝑄*𝐴,,∗ (Ω&𝐵3&∗ −𝜔&𝐼3&∗ )/Δ; 𝛩S*(𝜔) = (𝑖Ω)𝑄*𝐴,,∗ (𝜔&𝐼33∗ − Ω&𝐵33∗ )/Δ; 

𝑊S*(𝜔) = 𝑄*𝐷/Δ; Δ = (𝜔&𝐼33∗ − Ω&𝐴,,∗ )𝐷 + 𝑖Ω𝐴,,∗& (𝜔&𝐼33∗ − Ω&𝐵33∗ );                 (4.9) 

𝐷 = 𝜔%(𝐼33∗ 𝐼&&∗ − 𝐼3&∗&) + Ω%(𝐵33∗ 𝐵&&∗ − 𝐵3&∗&) + 𝐴,,∗ (Ω&𝐵33∗ −𝜔&𝐼33∗ ) + 

+𝜔&Ω&(2𝐼3&∗ 𝐵3&∗ − 𝐼33∗ 𝐵&&∗ − 𝐼&&∗ 𝐵33∗ ). 

Therefore, solution (3.22) for simply supported beam gets the form 

{𝒁T(𝑥, 𝜔)} = {𝑸(𝑥, 𝜔} − [𝚽(𝑥, 𝜔)][𝐁(𝜔)]63¤𝑷Ö(𝜔)¦,                               (4.10) 

with matrix [𝐁(𝜔)] given by Eq. (4.3) and 

𝑃×3(𝜔) = 𝑈S*(𝜔)	; 𝑃×&(𝜔) = 𝛩S*(𝜔);	𝑃×,(𝜔) = 𝑊S*(𝜔);                                (4.11) 

Fig. 19. Crack-induced variation of modal sensor outputs charge in various material
gradient index n
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Fig. 4.15. Crack-induced variation of modal sensor outputs charge in various material gradient index n. 

 
Fig. 4.16. Crack-induced variation of modal sensor outputs charge in various thickness of piezoelectric 

layer 

4.2.2. Frequency response of cracked FGM beam with piezoelectric layer to moving load 

The frequency response of cracked FGM beam with a piezoelectric layer obtained in previous section, 
the expression (3.22), is numerically examined herein for harmonic load moving on the beam with constant 
speed 	𝑝(𝑥, 𝑡) = 𝑃*𝑒8P)>𝛿(𝑥 − 𝑣𝑡). In this case 

{𝑷(𝑥, 𝜔)} = ∫ {0,0, 𝑝(𝑥, 𝑡)}7𝑒68M>𝑑𝑡JN
6N = {0,0, 𝑃*/𝑣}7𝑒8(P)6M)9/R,                (4.7) 

that allows one to find a particular solution of Eq. (3.17) in the form 

{𝑸(𝑥, 𝜔} = ¤𝑈S*(𝜔), 𝛩S*(𝜔),𝑊S*(𝜔)¦
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𝐷 = 𝜔%(𝐼33∗ 𝐼&&∗ − 𝐼3&∗&) + Ω%(𝐵33∗ 𝐵&&∗ − 𝐵3&∗&) + 𝐴,,∗ (Ω&𝐵33∗ −𝜔&𝐼33∗ ) + 

+𝜔&Ω&(2𝐼3&∗ 𝐵3&∗ − 𝐼33∗ 𝐵&&∗ − 𝐼&&∗ 𝐵33∗ ). 

Therefore, solution (3.22) for simply supported beam gets the form 

{𝒁T(𝑥, 𝜔)} = {𝑸(𝑥, 𝜔} − [𝚽(𝑥, 𝜔)][𝐁(𝜔)]63¤𝑷Ö(𝜔)¦,                               (4.10) 

with matrix [𝐁(𝜔)] given by Eq. (4.3) and 

𝑃×3(𝜔) = 𝑈S*(𝜔)	; 𝑃×&(𝜔) = 𝛩S*(𝜔);	𝑃×,(𝜔) = 𝑊S*(𝜔);                                (4.11) 

Vietnam Journal of Mechanics, Vietnam Acdemy of Science and Technology 
 

19 
 

 
Fig. 4.15. Crack-induced variation of modal sensor outputs charge in various material gradient index n. 

 
Fig. 4.16. Crack-induced variation of modal sensor outputs charge in various thickness of piezoelectric 

layer 

4.2.2. Frequency response of cracked FGM beam with piezoelectric layer to moving load 

The frequency response of cracked FGM beam with a piezoelectric layer obtained in previous section, 
the expression (3.22), is numerically examined herein for harmonic load moving on the beam with constant 
speed 	𝑝(𝑥, 𝑡) = 𝑃*𝑒8P)>𝛿(𝑥 − 𝑣𝑡). In this case 

{𝑷(𝑥, 𝜔)} = ∫ {0,0, 𝑝(𝑥, 𝑡)}7𝑒68M>𝑑𝑡JN
6N = {0,0, 𝑃*/𝑣}7𝑒8(P)6M)9/R,                (4.7) 

that allows one to find a particular solution of Eq. (3.17) in the form 

{𝑸(𝑥, 𝜔} = ¤𝑈S*(𝜔), 𝛩S*(𝜔),𝑊S*(𝜔)¦
7 exp{𝑖Ω𝑥/𝑣} , Ω = (ΩT −𝜔)                     (4.8) 

where  
𝑈S*(𝜔) = (𝑖Ω)𝑄*𝐴,,∗ (Ω&𝐵3&∗ −𝜔&𝐼3&∗ )/Δ; 𝛩S*(𝜔) = (𝑖Ω)𝑄*𝐴,,∗ (𝜔&𝐼33∗ − Ω&𝐵33∗ )/Δ; 

𝑊S*(𝜔) = 𝑄*𝐷/Δ; Δ = (𝜔&𝐼33∗ − Ω&𝐴,,∗ )𝐷 + 𝑖Ω𝐴,,∗& (𝜔&𝐼33∗ − Ω&𝐵33∗ );                 (4.9) 

𝐷 = 𝜔%(𝐼33∗ 𝐼&&∗ − 𝐼3&∗&) + Ω%(𝐵33∗ 𝐵&&∗ − 𝐵3&∗&) + 𝐴,,∗ (Ω&𝐵33∗ −𝜔&𝐼33∗ ) + 

+𝜔&Ω&(2𝐼3&∗ 𝐵3&∗ − 𝐼33∗ 𝐵&&∗ − 𝐼&&∗ 𝐵33∗ ). 

Therefore, solution (3.22) for simply supported beam gets the form 

{𝒁T(𝑥, 𝜔)} = {𝑸(𝑥, 𝜔} − [𝚽(𝑥, 𝜔)][𝐁(𝜔)]63¤𝑷Ö(𝜔)¦,                               (4.10) 

with matrix [𝐁(𝜔)] given by Eq. (4.3) and 

𝑃×3(𝜔) = 𝑈S*(𝜔)	; 𝑃×&(𝜔) = 𝛩S*(𝜔);	𝑃×,(𝜔) = 𝑊S*(𝜔);                                (4.11) 

Fig. 20. Crack-induced variation of modal sensor outputs charge in various thickness
of piezoelectric layer

index and piezoelectric layer thickness have been computed and results of computation
are given in Figs. 18–20. The charge computed for the second mode is very miniature
so that is not provided in the Figures. Graphs depicted in the Figures show that an in-
crease in crack depth and thickness of the piezoelectric layer-sensor leads to an increase
in the modal sensor charges, while the growth of the material grading index reduces the
charges. It is interesting to note that the sensor output charge of the third mode has two
nodes where an occurred crack has no effect on it.

4.2.2. Frequency response of cracked FGM beam with piezoelectric layer to moving load
The frequency response of cracked FGM beam with a piezoelectric layer obtained in

previous section, the expression (67), is numerically examined herein for harmonic load
moving on the beam with constant speed p (x, t) = P0eiΩmtδ (x − vt). In this case

{P (x, ω)} =
∫ +∞

−∞
{0, 0, p (x, t)}T e−iωtdt = {0, 0, P0/v}T ei(Ωm−ω)x/v, (75)

that allows one to find a particular solution of Eq. (62) in the form

{Q (x, ω)} =
{

U0
q (ω) , Θ0

q (ω) , W0
q (ω)

}T
exp {iΩx/v} , Ω = (Ωm − ω) , (76)

where

U0
q (ω) = (iΩ) Q0A∗

33
(
Ω2B∗

12 − ω2 I∗12
)

/∆, Θ0
q (ω) = (iΩ) Q0A∗

33
(
ω2 I∗11 − Ω2B∗

11
)

/∆,

W0
q (ω) = Q0D/∆, ∆ =

(
ω2 I∗11 − Ω2A∗

33
)

D + iΩA∗2
33(ω

2 I∗11 − Ω2B∗
11), (77)

D = ω4 (I∗11 I∗22 − I∗2
12
)
+ Ω4 (B∗

11B∗
22 − B∗2

12
)
+ A∗

33
(
Ω2B∗

11 − ω2 I∗11
)

+ ω2Ω2 (2I∗12B∗
12 − I∗11B∗

22 − I∗22B∗
11) .

Therefore, solution (67) for simply supported beam gets the form

{Zm (x, ω)} = {Q (x, ω)} − [Φ (x, ω)] [B (ω)]−1 {P̂ (ω)
}

, (78)
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with matrix [B (ω)] given by Eq. (71) and

P̂1 (ω) = U0
q (ω) , P̂2 (ω) = Θ0

q (ω) , P̂3 (ω) = W0
q (ω) ,

P̂4 (ω) = U0
q (ω) exp {−iΩL} , P̂5 (ω) = Θ0

q (ω) exp {−iΩL} ,

P̂6 (ω) = W0
q (ω) exp {−iΩL} .

(79)

In case of beam with single crack, frequency-dependent sensor output charge, ac-
knowledged herein as electrical frequency response of piezoelectric layer-sensor, can be
calculated as

Qp (ω) =
(
bh13/β

p
33

) ∫ L

0

[
U′

m (x, ω) + hΘ′
m (x, ω)

]
dx

=
(
bh13/β

p
33

) {[
Um (L, ω)− Um (0, ω)− γ1U′

m (e, ω)
]

+h
[
Θm (L, ω)− Θm (0, ω)− γ2Θ′

m (e, ω)
]}

,

(80)

with crack magnitudes γ1, γ2 defined above in Eq. (30).
Analysis of the electrical frequency response (80) conducted in [50] for various pa-

rameters of the moving load shows that under a certain speed of the moving load it can
be clearly observed the vibration component of eigenfrequency (eigenmode vibration
component) mutually with the steady forced vibration component. Moreover, ampli-
tude of the eigenmode vibration component is more sensitive to crack than that of the
forced one, especially, when the load frequency closes to the eigenfrequency of intact
beam (Ωm = ω01). Such vibration component is acknowledged as generic resonant vi-
bration, amplitude of which is examined below in dependence upon crack, load and ma-
terial parameters. Namely, graphs given in Figs. 21–23 are generic resonant apmplitudes
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𝑃×%(𝜔) = 𝑈S*(𝜔) exp{−𝑖Ω𝐿} ; 𝑃×-(𝜔) = 𝛩S*(𝜔) exp{−𝑖Ω𝐿} ; 𝑃×.(𝜔) = 𝑊S*(𝜔) exp{−𝑖Ω𝐿}. 

In case of beam with single crack, frequency-dependent sensor output charge, acknowledged herein as 
electrical frequency response of piezoelectric layer-sensor, can be calculated as 

𝑄B(𝜔) = (𝑏ℎ3,/𝛽,,
B ) ∫ [𝑈T( (𝑥, 𝜔) + ℎ𝛩T( (𝑥, 𝜔)]𝑑𝑥 =

E
*                                   (4.12) 

= (𝑏ℎ3,/𝛽,,
B ){[𝑈T(𝐿, 𝜔) − 𝑈T(0, 𝜔) − 𝛾3𝑈T( (𝑒, 𝜔)] + ℎ[𝛩T(𝐿, 𝜔) − 𝛩T(0, 𝜔) − 𝛾&𝛩T( (𝑒, 𝜔)]} 

with crack magnitudes 𝛾3, 𝛾& defined above in Eq. (2.30).  
Analysis of the electrical frequency response (4.12) conducted in [Khiem et al., 2022] for various 

parameters of the moving load shows that under a certain speed of the moving load it can be clearly 
observed the vibration component of eigenfrequency (eigenmode vibration component) mutually with the 
steady forced vibration component. Moreover, amplitude of the eigenmode vibration component is more 
sensitive to crack than that of the forced one, especially, when the load frequency closes to the 
eigenfrequency of intact beam (Ω = 𝜔*3). Such vibration component is acknowledged as generic resonant 
vibration, amplitude of which is examined below in dependence upon crack, load and material parameters. 
Namerly, graphs given in Figs. 4.17 – 4.19 are generic resonant apmplitudes of cracked SS-beam 
normalized by those of uncracked one as function of crack location for various crack depth, material grading 
index and piezoelectric layer thickness respectively. For comparison, there are presented in the Figures also 
the normalized amplitudes computed for constant load (Ω = 0) represented by the solid lines.  

Observing the graphs demonstrated in the Figures enables us to make the following remarks: First, 
crack-induced variation of the eigenmode resonant vibration amplitude versus crack location is similar to 
that of fundamental frequency, but it is much more sensitive to crack depth than the natural frequency; 
Second, an increase in the piezoelectric layer thickness leads to the growth of the crack-induced change in 
the vibration amplitude. Finally, the crack-induced change reaches its maximum when 𝑛 = 0.5 and load 
frequency makes no effect on the sensitivity of the vibration amplitude to crack. This provides important 
indications for crack detection by measurement of the response of the beam to the moving load. 

 
Fig. 4.17. Crack-induced variation (cracked/intact) of first eigenmodes amplitude of sensor output charge 

at generic resonant harmonic force. Fig. 21. Crack-induced variation (cracked/intact) of first eigenmodes amplitude of sensor output
charge at generic resonant harmonic force
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Fig. 4.18. Effect of piezoelectric layer thickness (hp) on crack-induced change in eigenmode amplitude of 

sensor utput charge at generic resonant harmonic force 

 
Fig. 4.19. Effect of material grading index (n) on crack-induced change in eigenmode amplitude of sensor 

output charge at generic resonant harmonic force 

Fig. 22. Effect of piezoelectric layer thickness (hp) on crack-induced change in eigenmode ampli-
tude of sensor output charge at generic resonant harmonic force
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Fig. 4.18. Effect of piezoelectric layer thickness (hp) on crack-induced change in eigenmode amplitude of 

sensor utput charge at generic resonant harmonic force 

 
Fig. 4.19. Effect of material grading index (n) on crack-induced change in eigenmode amplitude of sensor 

output charge at generic resonant harmonic force Fig. 23. Effect of material grading index (n) on crack-induced change in eigenmode amplitude of
sensor output charge at generic resonant harmonic force

of cracked SS-beam normalized by those of uncracked one as function of crack location
for various crack depth, material grading index and piezoelectric layer thickness respec-
tively. For comparison, there are presented in the Figures also the normalized amplitudes
computed for constant load (Ωm = 0) represented by the solid lines.

Observing the graphs demonstrated in the Figures enables us to make the following
remarks: First, crack-induced variation of the eigenmode resonant vibration amplitude
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versus crack location is similar to that of fundamental frequency, but it is much more sen-
sitive to crack depth than the natural frequency; Second, an increase in the piezoelectric
layer thickness leads to the growth of the crack-induced change in the vibration ampli-
tude. Finally, the crack-induced change reaches its maximum when n = 0.5 and load
frequency makes no effect on the sensitivity of the vibration amplitude to crack. This
provides important indications for crack detection by measurement of the response of
the beam to the moving load.

5. CONCLUSIONS

Thus, this review article presented a unified approach to vibration analysis of cracked
beam structures that is based on general solution of the equations of motion in the fre-
quency domain called herein as frequency-dependent vibration shape functions. The
shape functions were obtained in an explicit expression for uniform beam elements with
multiple cracks modeled by the equivalent springs so that enable one to use the mini-
mum number of beam elements for vibration analysis of multiple cracked frame struc-
tures. Moreover, the vibration shape functions have been constructed not only for homo-
geneous beams but also for functionally graded beams so that allow vibration analysis of
cracked structures made of functionally graded materials. Numerical illustrations show
usefulness of the proposed approach to study both free and forced vibrations of multi-
span, multistep cracked FGM beams with different boundary conditions.
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