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Abstract. This paper presents a unified approach to vibration analysis of functionally
graded beams with transverse open-edge cracks based on the so-called vibration shape
obtained as a general solution of vibration equations in the frequency domain. The crack
is modeled by a pair of translational and rotational springs of stiffness computed from the
crack depth in dependence upon functionally graded material parameters. The frequency-
dependent vibration shape functions allow one not only to obtain the closed-form solution
of both free and forced vibrations for multiple cracked FGM beams but also to develop the
well-known methods such as Transfer Matrix Method or Dynamic Stiffness Method for
analysis of FGM framed structures. The proposed theoretical developments have been il-
lustrated by their application for modal analysis and frequency response analysis of multi-
span and multistep beams.

Keywords: functionally graded materials, vibration shape functions, modal analysis,
frequency response, multiple cracked beams.

1. INTRODUCTION

The crack, which usually appears in many structural components, is a kind of dam-
age that may lead a structure to collapse if it is not early detected. Nevertheless, the
conventional (local) nondestructive techniques are difficult to apply for detecting cracks
in huge or complicated structures [1-3]. Therefore, a more global approach such as the
dynamic testing technique integrated with the system identification method is needed
for the crack detection problem [4]. Obviously, when the integrated approach has been
engaged, a model of a structure with cracks and dynamics of the cracked structure be-
comes essential [5, 6]. At the early stage, a crack was treated purely as a change in
the geometry of a structure [7], but then, researchers recognized that crack may also
change the stress and strain distributions in the vicinity of the cracked section. Based on
this idea, Christides and Barr proposed the so-called one-dimensional theory of cracked
beam [8] and then, Shen and Pierrie used the theory for free vibration analysis of cracked
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beam [9,10]. On the other hand, numerous investigators, for example, Irwin [11], West-
mann and Yang [12], Dimarogonas and Paipetis [13], etc, revealed that a crack on a beam
element significantly increases the flexibility due to the strain energy concentration at the
crack tip under load. This concept of crack allows not only straightforward analysis of
cracked structures by the finite element method [14] but also developing various useful
models of a crack in beam elements. Namely, an equivalent spring model of a concen-
trated crack was adopted in [15-18] where stiffness of the springs is calculated from the
strain energy released by the crack. Another model of local crack on beam, that was
treated as a singularity of beam stiffness, has been adopted in [19,20] and used for ob-
taining closed form solution of vibration modes for cracked beams. The spring model of
concentrated crack was successfully employed for solving numerous problems of vibra-
tion in cracked Euler-Bernoulli [21-26] and Timoshenko [27-31] beams. The closed-form
solutions for the vibration mode of multiple cracked homogeneous beams have been ob-
tained in [26,31] respectively for Euler—Bernoulli and Timoshenko beams.

The present paper addresses establishing the closed-form solution of vibration mode
for cracked beams made of functionally graded material (FGM) and applying it for solv-
ing both free and forced vibration of the structures. Though many problems related
to cracked functionally graded beams have been solved [32—44], the equivalent spring
model of crack has been adequately constructed in dependence upon the material pa-
rameters only in Ref. [45]. The established model of crack in FGM has been employed
for vibration analysis of cracked functionally graded beams [46—48] and the beams with
piezoelectric layer [49,50]. Moreover, the obtained general solution for vibration mode of
cracked FGM beam allows one to develop the well-known transfer matrix method and
dynamic stiffness method for vibration analysis of cracked FGM beam-like structures.

2. GENERAL SOLUTION FOR VIBRATION SHAPE

The vibration shape of an elastic structure is acknowledged as solution of free vibra-
tion problem in the frequency domain and, therefore, it is frequency-dependent function
of spatial coordinates in the structure domain. Applying boundary conditions for the vi-
bration shape we obtain the so-called frequency equation, solution of which gives rise to
the natural frequencies of the structure under consideration. Substituting a specific natu-
ral frequency to the vibration shape yields the mode shape corresponding to the natural
frequency. Moreover, the vibration shapes are employed as frequency-dependent shape
functions for constructing the dynamic stiffness model of a structure that was proved to
be more exact than the well-known finite element model.

Thus, in the present section general vibration shape is conducted for cracked beams
of different types such as Euler-Bernoulli, Timoshenko, FGM and piezoelectric beams.
Cracks in all the above-mentioned beam-type structures are transversally edged and
modeled by equivalent springs of stiffness calculated from the crack depth in accordance
with the theory of fracture mechanics. The most advantage of the crack model is that
cracks are accounted-for in the form of conditions constraining the vibration shapes at
the cracked cross-section.



Vibrations of cracked functionally graded beams: General solution and application — A review 319

2.1. Homogeneous beams
2.1.1. Euler-Bernoulli beams

It is well-known that the free bending vibration of Euler-Bernoulli beam in the fre-
quency domain is described by the equation

o) (x) ~Mp(x) =0, xe(01), A=L"/oFw?/EL (1)

for determining vibration shape ¢(x, w).

Assume, furthermore, that the beam has been cracked at sectionsej,j = 1,2,3,...,n
and cracks are represented by rotational springs of stifness K;. So that, solution of Eq. (1)
must satisfy conditions

¢ (¢j+0,w) =¢ (¢ - 0,w),
¢" (ej4+0,w) = ¢" (¢ —0,w),
¥ (6+0,0) = ¢ (6~ 0,w),
¢’ (e +0,w) =¢' (ej—0,w) +7j¢" (¢j+0,w),
where so-called crack magnitude v; are calculated as
vj = EI/LK; = 67 (1 —v§) (h/L) fy (a;/h),
fo(z) =z (0.6272 — 1.04533z + 4.5948z% — 9.97362° + 20.2948z*

(2)

—33.03512° + 47.1063z° — 40.75562” + 19.62°) .

Letting ¢ (x, w) denote solution of Eq. (1) for uncracked beam and introducing the
function

K(x) =0forx < 0and =S (x) forx > 0with S (x) = (1/2A) (sinh Ax +sinAx), (3)

one can prove that solution of Eq. (1) is represented in the form

n

¢ (x,w) = o (x,w) + ZyjK (x—e¢j), (4)

j=1

where so-called damage parameters y;,j = 1,2,3,...,n are determined by the reccurent
formula

ui=7|¢" (ejw +EykS ej—e)|, j=1...,n (5)

On the other hand, it was well-known that general solution of Eq. (1) for uncracked
beam is expressed as
¢o (x,w) = C1 cosh Ax + C; sinh Ax 4+ C3 cos Ax 4 Cy sin Ax,

with constants C;, Cy, C3, C4 determined by boundary conditions. So, if the damage pa-
rameters y; is represented in the form p; = Cipjs + Copjp + Gapjz + Cuptjy, j = 1,2,..., 1,
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then parameters Hiks k=1,2,3,4 are calculated as

-1 j—1
wit =7 [AZ coshAej + Y nS" (ej — ek)] ;M = [/\2 sinh Aej + ) nS” (e — ek)] ,
k=1 k=1

j—-1 j—1
Uiz = j [—/\2 cosAej+ Y pisS” (ej — ek)] ;Mg =i [—/\2 sinAej + ) _ 45" (ej — ek)] ,
k=1 k=1
(6)
and solution (4) can be rewritten as
¢ (x,w) =C1d, ()\x) + Cr Py (Ax) + C3P3 (/\x) + Cy D3 ()\x) , (7)
where Oy (Ax) ,k=1,2,3,4 are

n n
@1 (Ax) = coshAx + Y upK (x —¢j), Py (Ax) =sinhAx+ ) upK(x—e¢j),
=1 =1

- (8)

@3 (Ax) = cosAx + Y uppK (x —ej), P4(Ax) =sinAx+ ) puK (x—e¢j).
j=1 j=1
So, an explicit expression of general vibration shape of multiple cracked Euler-
Bernuolli beam has been obtained in the form of Eq. (7) with functions &, (Ax),k =
1,2,3,4 determined by Eq. (8) and damage parameters Wik, j=123...,mk=12734
calculated by formulas (6).
Moreover, four equations in (6) can be rewritten in the matrix form

(Bl {m} ={bx}, k=1234, 9)
where p = {1, .., i}, B = bij,i,j =1,2,3,...,n] is n X n—matrix with elements
bij ={1ifi = j;0fori < j;—v;S" (e; —¢;) fori > j}, (10)

and vectors by, k = 1,2,3,4 are
{b1} = A2 {71 cosh ey, ..., vn Cosh/\en}T, {by} = A2 {71sinh Aey, ..., v, sinh )\en}T,

{b1} = —)\? {71cosAey,...,yncos /\en}T Aby} = —\? {71sinAey, ..., vn sin/\en}T )
(11)
So, in case if crack parameters such as positions and magnitudes are given the dam-
age parameters i are evaluated by solving equation (9)—(11).

2.1.2. Timoshenko beams
For Timoshenko beam, the frequency domain equations of motion are
W oW (x) + kG (W' — @) =0, w?pI® (x)+EIQ" (x) +xGA (W' —©) =0, (12)
and conditions at crack positions get the form
W (ej+0) =W (ej—0) =Wi(ej), ©O(ej+0) =0 (e;—0) =0 (e),

© (¢ +0) = © (¢ = 0) + %0 (¢)) , Wi (ej +0) = W (¢ = 0) + 705 (¢), 77 = EI(/113<§'
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In this general solution of Eq. (12) for uncracked beam can be found in the form
Wy (x) = Cq coshkix 4+ Cp sinh kyx + C3 cos kpx + Cy sinksx,
(ON) (x) = r1Cy sinh k1x + 71Cy cosh k1x 4+ r2Cs sinkox — rpCy cos ko x,

r = (pr/Kle +ki), = (pr/Ksz — k),

ky = \/(\/b2+4c— b) /2, ky = \/<\/b2+4c+b> /2,

b=a(1+pB), c=a(t—ap), a=pw?/E, B=E/xG, T=A/L (15)
Using the notations

(14)

Sw (x) = Sysinhkix + Sysinkox, Sy (x) = r1S1 coshkix — 1252 coskax,
Si1=(rn+k)/ (rka+mrki), S»=(r1—ki)/ (rka+rki),
it can be proved that general solution of Eq. (12) satisfying conditions (13) is
W (x,w) = CiWy (k1,x) + CoWs (k1, x) + C3Ws (ko, x) + CaWy (ko, x), (17)

(16)

O (x,w) = C107 (ki,x) + C202 (k1,x) + C303 (k2, x) + C4O4 (k2, x) , (18)
where
n n
Wi (x) = coshkyx + ) iKe (x —¢j), W (x) =sinhkix + ) 1i2iKe (x —¢j),
= = (19)

W3 (x) = coskox + ) pziKe (x —e;), Wi (x) =sinkox + ) psiKy (x —¢j),
i=1 =1

n n
©; (x) = rysinhkix + ) 1Ko (x —¢j), O3 (x) = rasinkox + ) u3iKg (x —¢;),
=1 =1

(20)
n n
O (x) = ricoshkyx + Y poiKo (x —¢j) , ©O4 (x) = —rpcoskox + ) paiKp (x —¢;),
=1 j=1
Ky (x) ={0: x <0; Sy (x) : x >0}, K}, (x)={0:x<0;S,(x): x>0},
Ko(x) ={0: x <0; Sp(x) : x >0}, Kp(x)={0:x<0; Sy(x):x>0},
-1
ykayj{Lk(ej)Jr 1kiSp (ej—ei)}; k=1,234j=12,...,n.
i=1

Li(x) = kyrq coshkix, Ly(x) = kyry sinhkix, Lz(x) = karp coskpx, La(x) = karp sinkyx.
(21)
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2.2. Functionally graded Timoshenko beams

2.2.1. Governing equations

E Gip Neutrj axis

[ | |
b

&g Ey Gy po iy ;

Fig. 1. Multiple cracked FGM beam model

Let’s consider a Timoshenko beam made of functionally graded material as shown in
Fig. 1 with mechanical properties varying accordingly to the power law along the beam
thickness

J(z) =T+ (3 =Tp)V(z), V(z)=(z/h+1/2)", —h/2<z<h/2, (22)

where J stands for elasticity (E), shear (G) modulus and material density (o) and indexes
t and b denote the top and bottom materials; z is ordinate of the point from the central
axis and / is the beam thickness.

Accordingly, the Timoshenko beam theory represented by the relationships

u(x,z,t) = up(x,t) — (z—ho)0(x,t), w(x,zt)=wo(x,t), (23)

with uo(x,t), wo(x, t) being the displacements on neutral axis located at the high g from
the central axis; 6 is slope of the cross-section, allows the constituting equations be estab-
lished in the form

€x = dug/dx — (z — hy)d0/0x, yx; = dwy/dx — 0,
o = E(2)ex,  Taz = PG (2)Yxz

Using Hamilton principle, equations for free vibration of a uniform beam segment
can be established in the form

Lyii — Apu” — 120 = 0, i — I + Apb” + Azz(w' —0) =0, I;10 — Aszz(w” —0') =0,
(25)

(24)

where
A1 = bhEy (Rg+n)/(1+n),Ass = bhpG, (Rg +n)/(1+n),Rg = E¢/Ey, Rg = Gt/ Gy,
Ay =bh’E, [(B3RE+n) /3(3+n) — (2R +n)/ (2+n)a+ (Rg+n) / (1+n)a?],
w=1/24ho/h, Iy =bhpy (R, +n)/(1+n),
Iy = bi?py [(2Rp + 1) /2(24n) = (Ry+n) / (1+n)a], Ry=pi/py,
In = bh?py [(3R, +1) /3(3+n) — (2Ro+1n) / (24+n)a+ (Ry+n) / (1 +n)a?],

ho = [n(Rg — 1)/2(n +2)(n + Rg)]h.
(26)
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Seeking solution of (25) in the form u(x,t) = U(x,w)e", w(x,t) = W(x,w)e™",
0(x,t) = O(x, w)e"! one gets
(wzlnu + A11 U”) — w2112® =0, (w2122® + Azz@//) — wzllzu + A33(W/ -0)=0,
aJZInW -+ A33(W” — @,) =0,

or
[A2]{Z"} + [A1] {Z'} + [A0] {2} = O, 27)
with {Z (v, w)} = {U (x,w),O (x,w), W (x,w)}" and
An 0 0 0 0 0
A= 0 —Apn 0 |, [AJ=|0 0 —Ag |,
0 0 Asj 0 —As; 0
(UZIH —w2112 0
[Ag] = | W’y Apz—w’ln 0
0 0 w?I;

Obviously, due to functionally graded properties of the beam material the axial (lon-
gitudinal) and flexural (bending) vibration modes in FGM beams are coupled and their
coupling is characterized by the coefficient I}, that equals to zero if E; = E; or n = 0 cor-
responding to the case of homogeneous beams. Additionally, the neutral plane position
in FGM beams has deviated from the central one at a distance calculated by expression
(26) that also becomes zero for homogeneous beams.

2.2.2. Crack model in functionally graded beams

Assume furthermore that the functionally graded beam is damaged to edge-open
cracks of depth ay,...,a, at positions ey, ..., e,. Because of coupling of axial and trans-
verse vibrations in the functionally graded beam, see Eq. (25), crack at position e; should
be represented by a pair of equivalent springs, one is a translational spring of stiffness T;
and other is a rotational one of stiffness R; (Fig. 2).

. ¥ : R .
L '+ L 6
! -

T 7} v

Fig. 2. Model of open edge crack in functionally graded beam

Thus, conditions should be satisfied at the crack position are [46]
U (ej+0) = U (¢ =0) + 74Uy (¢5),  © (e +0) = O (¢j = 0) + 750 (¢)) ,
O, (6j+0) =0, (¢, —0), Wy (ej+0) = Wy (ej —0) + 7505 (¢;) -
where y,; = A11/Tj, 72 = Axn/R; are so-called crack magnitudes determined as follow
Yaj = A1/ Tj = 11j01 (Re,n), 5 = An/R; = 72i%2 (Rg, 1), (29)

(28)
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where
% (Rg,n) = (Rg+n)/ (1+n),
8 (Rg,n) = [(BRg+n) /3(3+n)— (2Rg+n) / (2+n)a+ (Rg+n) / (1+n)a?],
and [17,18]
m1j = Epbh/T; =21 (1—v3) hf1 (a;/hy) , 72 = Exbl®/R; = 67 (1—v§) hfo (a;/hy), (30)

fi(z) =22 (0.6272 — 0.17248z + 5.92134z% — 10.70542> + 31.5685z* — 67.472°
+139.1232° — 146.68227 + 92.3552z°), z =a;/h,

fa(z) =2° (0.6272 — 1.04533z + 4.59482% — 9.97362° + 20.2948z* — 33.0351z°
+47.1063z° — 40.75562” +19.62°), z =a;/h.

Note that the introduced crack magnitudes are dependent upon not only crack depth
but also are function of the material parameters such as elasticity ratio Rg and volume
fraction index 7, which have been calculated only for some values of the the elasticity
ratio [35].

2.2.3. Vibration shape

Using the traditional method in the ordinary differential equation theory, general
solution of Eq. (27) for intact beam, {Z (x,w)} = {Up (x,w), O (x, w), Wo (x,w)}T can
be found in the form [46]

{Zo (v, 0)} = [Go (v, w)]{C}, (31)
where {C} = (Cy,...,Cs)" is vector of constants and Gy (x, w) is the matrix
Déleklx Dézekzx “3ek3x (X]e_klx Déze_kzx 0(36_k3x

[GO (x,w)] — gklx ekzx ekgx e_klx e—kzx e—k3x , (32)

,Bleklx ﬁZekzx ﬁ3ek3x _,Bleiklx _lgzeszx _IBSefk3x
with ky, k, k3 being the wave numbers determined from the so-called characteristic equa-
tion
det [AZAZ + AA1 + Ao] =0,

and

= [l + A 2Ip; Bi = (WP + K2 A)kiAss/w? o (w?Tyy + k2 As3), j=1,2,3
wj = [w 1 +kjAn]/w ho; Bj = (W™l + kjAn kjAss/w”ho(w™lin + k5 Ass), j=1,2,3.

(33)

In case of cracked beam, solution of Eq. (27), {Z (x,w)} = {U (x,w), O (x,w), W (x,w)}",
satisfying conditions (28) at crack sections is [46]

{Z(x,w)} = [®(x,w)[{C}, (34)

[® (x,w)] = [Go (x,w)] + i K (x—ej)] - [Mj], (35)
j=1

where
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with
(G (x)] : x>0 G.(x)] :x>0
o= { 6 ) = ¢ o)

0]:x<0 [0]:x<0

3 3
Ya 2 w;0;1 coshkix 7 2 o (51'2 + 51'3) coshk;x 0
i=1 i=1
3 3
[G: (x,w)] = Ya Z 61 cosh k;x Yoy (62 + 6i3) coshkix 0 |, (36)
i=1 i=1

Ya Z Bidi sinhkix 7y i Bi (0ix + 6i3) sinhkpx 0
L =1
o1 = (k3Bs —kaf2) /A, 012 = (kP — azksfs) /B, d13 =
021 = (k11 —ksBs) /A, 0 = (a1ksBs — askif1) /B, da3 =
031 = (kzﬁz —kip1) /D, 63 = (a2k1f1 — arkaP) /A, O =
= k11 (g — a3) + koo (a3 — aq) + k33 (aq — a2
Matrices [M;] are determined by recurrent relationship

ny —a3) /A,
w3 —ay) /A,
ap —a) /A,

\_/AAA

j—1

[Mj] = [Go (e, w)] + ) [GL (ej —ex)] - [Mi]. (37)

k=1
2.3. Functionally graded Timoshenko beam with a piezoelectric layer

wAZ
Up Wo A Z
(s +ip)2 |
v -
“up

A

Fig. 3. Model of beam with piezoelectric layer

Let us consider a functionally graded beam of length L, width b and thickness h;,
bonded with a piezoelectric layer of thickness 1, as shown in Fig. 3. Governing equations
for the host beam have been given in Egs. (23)-(24) and that equations for piezoelectric
layer are represented as

up (%,Z, 1) = upo (x, 1) — 260, (x, 1), wp (X,Z,1) = wyo (X, 1); €px = Uyg — 20, 7p = Wy — O,

Opx = Cpiepx — h13D; Ty = Chsyps €= —hseps + B3 D (38)
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where Cfl, C§5 are elastic and shear modulus, /13, ‘353 are piezoelectric and dielectric con-
stants; € and D are electric field and displacement of the piezoelectric material.

Assume that the host beam and piezoelectric layer are perfectly bonded, and they
have the same cross-section rotation so that it should be satisfied the conditions

h
u(x,—hzb,t>:up<x,2p,t), w(x,—hy/2,) =wp (x,h,/2,t), 6=0p, (39)

that yield
upo =g +6h, h=(hy+hy) /2, wp=uwo epx=uy—(Z—h)0, v,=wy—0.
Therefore, strain and kinetic energies of the integrated beam can be calculated as

L * 12 x Il % A2 % , 2
=11, +II, = (1/2) / 114g + 2A7u0 ‘,f‘ Azzel + Apgg, (woz_ 9) dx,
0 —2h13A,D (uy + ho') + h3ApD (10)

T=T,+T,=(1/2) /OL { I} uf + 21351100 + I3,0% + Ij;05 } dx,
where comma and dot denote derivative with respect to x and ¢ respectively and
Afy = An + Cl Ay, Al = CLLAph, A3y = Ap + CF, (I + Aph?) , Aty = Ass + CE A,
Ap =Dbhy, Ijy = I+ ppAp, Iy = pp Aph, Iy = Lo + ppl, + pp Aph®, Ay = bhy, I, = bl /12,

Substituting expressions (40) of total energies into Hamilton principle

t
/ZJ(T—H)dt:O,

31
allows one to obtain the equations of motion
(Iivito — Biyug ) + (Iiofl — Bp6") = 0,
(Lt — Biatig) + (1326 — Bp6") — A% (wh—0) =0, (41)
Iyt — Al (wg - 9’) —0,
where
Bjy = Ajy — Aphis/ By = EAy+ EpAy,  Biy = Ajy — Aphhiy/ By = EpAph,
B3, = Agy — Aph*his sy = Ely + CpyIp + EpAph?,  Ep = Cpy — i/ B,
and

D = hi3 (ug+ho') /L, (42)

Transferring the equations (41) into frequency domain one gets equations at the same
form as Eq. (27)

[D2] {Z"} + [D1] {Z'} + [Do] {Z} =0, (43)
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but with other coefficient matrices

Bj, Bj, 0 0 0 0
(D] = B By O , D= |0 0 Axp |,
0 0 Al 0 —A% 0
Wl W?I}y 0
[Do] = | W’Liy &’ —A% 0
0 0 W}

Egs. (41) show that presence of the piezoelectric layer in even homogeneous beams leads
also to coupling of axial and flexural vibration modes. The coupling represented by coef-
ficients B, = E,Aph and I}, = ppAph would be both vanished if the piezoelectric layer
thickness equals to zero.

So, general solution of Eq. (43) for vibration shape of cracked Timoshenko beams
bonded with a piezoelectric layer,

{Z (x,w)} = {U (x,w),0 (x,w), W (x,w)}"

has the same form as given in Egs. (34)—(37) with the wave numbers ki, k, k3 determined
from the other characteristic equation

det [A’D, + AD1 + Do| = 0. (44)

Therefore, modal electric characteristics of the piezoelectric layer can be calculated
from the solution as

D (x,w) = hi3 [U' (x,w) + h®' (x,w)] /B, (45)

3. APPLICATION FOR ANALYSIS

3.1. Application for modal analysis
The vibration shapes obtained above for various beam types are employed herein to

develop the exact methods for dynamic analysis of cracked beam-like structures includ-
ing the framed ones.

3.1.1. The Transfer Matrix Method

Let us consider a framed structure consisting of multiple cracked beam elements
joined each with other through connecting nodes xi, k = 1,2, ...,n. Suppose that vibra-
tion shapes of the beam elements are given as

{Zi (x,w0)} = {Uk (x, ), O (x,w), Wi (x, )} = [® (x,w)] {Cc},k=0,1,2,...,n+1

(46)
with {C} being six-dimensional constant vector and [®y (x, w)] - 3 X 6 — function matrix.
Introducing the so-called state vector for the k-th beam element

{Sk (x,w)} = {Ux (x,w), O (x,w), Wk (x,w), Ni (x,w) , My (x,w), Qg (x,w)}T, 47)
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where {P; (x,w)} = {Ni (x,w), My (x,w), Qx (x,w)}" is internal force vector determined
from the vibration shape {Z; (x,w)} as

{Pe(x @)} = R{Z (x,0)} = [0} (x,w)| {C}, (48)
one obtains the state vector expressed in the form
{Sk (x,w)} = [¥x (x, ) {Ck} - (49)

Substituting expression (49) into continuity conditions at the nodes {Sk (xy, w)} =
[Tx] {Sk_1 (xx, w)} with the given node transferring matrices [I';] yields the recurrent con-
nection

{€} = [T {Cea}, [T = [T ()] [T [Feor (@),
that allows one to get the relationship
{C} = [T]{Co}, [Te] = [Tk...T1], (50)
and
{Cu1} = [T} {Co} -
Thus, we obtain
{Zi (x,w)} = [®k (v, w)] {Co}, [®r(x,w)] =[Pk (x,w) Ti], (51)

for every beam k-the segmentk =1,2,...,n+ 1 and

{20 (x,w)} = [®o (x, @) {Co}, {Zns1 (x,0)} = [®ps1 (x,w)] {Co}-

Applying boundary conditions for the latter expression

Bo {[®o (x,w)]},_g {Co} = [Bo] {Co} =0,
B {[®u1 (x,w)]},_y  {Co} = [Bur] {Co} =0,
[B(w)]{Co} =0, [B]=[Bo,Bu:1]". (52)

The finally obtained equation is essential for the free vibration problem that yields
the frequency equation

det [B (w)] = 0, (53)

for finding the natural frequencies wj, j = 1,2, ... and corresponding mode shapes
{¢](X)}: [6;( (x,w])] {E]}, xk,1<x<xk,k:1,...,n+1,j:1,2,3,..., (54)

where {C;} is the normalized solution of equation [B (w;)] {C} = 0. These equations
will be employed for modal analysis of single span, multispan and continuous beams
with cracks in subsequent sections.
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3.1.2. The Dynamic Stiffness Method

The developed above transfer matrix method showed to be more efficient for modal
analysis of beam-like structures such as multi-span and continuous beams and it faces
a difficulty in an application for framed structures. For the analysis of typical cracked
framed structures, the so-called dynamic stiffness method is more appropriate because it
is an enhancement of the powerful finite element method well-known in engineering ap-
plications. This subsection is devoted to developing a dynamic stiffness model of cracked
frames using the vibration shapes established above for beam elements.

Thus, for a two-nodes beam element as shown in Fig. 4, where the following nodal
displacement and force vectors have been introduced

{U(w)} = {Uy, 01, Wy, Uy, @, Wp} T, {P.(w)} = {Ni,M1,Q1,Na, Ma, Q2}F,  (55)
with
U =U(0,w),0, =0(0,w), W =W(0,w),U, = U(L,w),0; = O(L,w), W, = W(L,w),

Ni = —N{Z(x,w)}x=0, M1 =—-R{Z(x,w)}r—0, Q1 =—-Q{Z(x,w)}x0,
Ny =IN{Z(x,w)}r=r, Mp=R{Z(x,w)}r=1, Q1=0Q{Z(x,w)}L,

or

(U, 0, Wi}T = {Z(0,w)}, {Uy,®, Wa}" = {Z(L,w)},

56
[No My, 01T = RIZ(x, @) heco, (Noy Mo, O} = R{Z(v ) har, O

where ® = {IN,R,Q}” is differential vector operator with elements being operators for
calculating international forces such as axial, bending moment and shear forces.

Qi Q
L
Ny ) y I\ x_ N
1\/[1 | M2
Wi W

O ml () /LUZ

Fig. 4. Dynamic stiffness model of a beam element
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Substituting expression for vibration shape {Z (x,w)} = [® (x,w)]{C} into (56)
yields

{U1, 01, Wi} = [@(0,0){C), {Uz, @, W2} = [@(L, w)}{C},

(57)
{N, M1, Qi}" = [RP(x,w)]x=0{C}, {Na, M2, Q2}" = [RP(x,w)]=L{C},

wi=| e e ter=| Rt e 8)

Eliminating vector C from Egs. (58) leads to
{Qe} = [De(w)[{U.}, (59)

where
RO (x,w),_ ®(0,w -

o= [ ot ][ oa) | @

is called hereby dynamic stiffness matrix for the beam element.

In general case, when a given structure consists of a number of beam elements, the
total dynamic stiffness matrix for the structure is assembled as accomplished in the finite
element method. Namely, the dynamic stiffness matrix is

D(w)] = "ﬁl[n]l[ne(w)} [T, (61)

where [T,]| is the matrix of co-ordinate transform for e-th element.
3.2. Application for frequency response analysis
Now we consider equation
[D2]{Z"} + [D1] {2} + [Do] {Z} = {P (x, @)}, (62)

where

P = [ e,

is Fourier Transform of the given distributed load {p (x,t)}. Assume, furthermore, that
general solution of homogeneous equation

[D2]{Z"} + [D1] {Z"} + [Do] {Z} =0,
has been found in the form
{Zo (x,w)} = [®@ (x,w)]{C}.

So, general solution of Eq. (62) can be constructed as

{Z(xw)} =@ (xw){C}+{Q(xw)}, (63)
where {Q(x, w} is a particular solution of inhomogeneous equation (62), for example,
Q@ w)} = [ [H(x-rw){P(xw)}dr, 69
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with matrix [H (x, w)] is solution of equation
[D2] [H"] + [D1] [H'] + [Do] [H] = 0, [H (0,w)] = [0], [H' (0,w)] = [D2] "
Applying boundary conditions
By {Z (x/w)}x:0 =0, B {Z (x/w)}x:L =0,
for solution (63) one gets
[Bo] {C} ={Qo(w)}, [Bi]{C}={QL(w)}, (65)
[Bo (w)] = Bo{[® (x,w)]},—o, [Br(w)] = BA{[® (x,w)]},—p,
{Qo(w)} = BoflQ(x,w)]}—o, {Qu(w)} =Br{Q(x,w)]},—p- (66)

Consequently, we can find vector as

=[5 ] {29

and solution (63) satisfying the boundary conditions would be

-1
Zxo) =} -lemw] | p@) | 2@ @)

This is frequency response of the beam to external load {p (x,t)}. For instance, in case of
point impulse
{p (00} = R {0,0,1}75 (x — x0) 6 (),
one has
{Q(x,w)} = Py {H3(x — x0)},
where
Hj (x) = {0, for x < xg or h3 (x) for x > x¢},
and h3 (x) is the third column of the matrix [H (x, w)] .

4. NUMERICAL EXAMPLES

4.1. Modal analysis of cracked functionally graded beams
4.1.1. Single span functionally graded beams

First, modal analysis of single span FGM beam with single crack is conducted using
Eq. (53) that can be rewritten in the form

det[B (w,e,a,r,n)] =0, (68)
where e, a are crack location and depth, r = E;/E, is the top-to-bottom elasticity mod-
ulus ratio, n — the volume fraction index and matrix B (w, e, a,r,n) = [By (w,e,a,r,n),
By (w,e,a,r, n)]T with

[Bo (w,a,e,r,n)] = Bo{[® (x,w,e,a,r,n)|}, _,,

By (w,a,e,r,1)] = By {[® (x,c0,¢,a,7,m)]}._, (69)

Thus, natural frequencies of the beams can be found by solving Eq. (68) with respect
to w in dependence upon crack location e and depth 4, elasticity modulus ratio » and
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Fig. 5. Normalized three lowest natural frequencies of simply supported FGM beam in depen-
dence on the crack depth (a), fraction index # (b) and elasticity modulus ratio r (c)

volume fraction index n. Obviously, natural frequencies obtained for a = 0 are natu-
ral frequencies of undamaged beams and in case if n = 0 roots of the equation provide
natural frequencies of homogeneous beams. Therefore, crack-induced change in natural
frequencies of FGM beam represented by the natural frequencies of cracked beams nor-
malized by those of undamaged ones can be computed as function of crack location e in
different (a) crack depth, (b) elasticity modulus ratio and (c) fraction index n. The nor-
malized natural frequencies are computed for beams in conventional cases of boundary
conditions such as simple supports (SS), clamped ends (CC) and cantilever (CF) and re-
sults of computation are presented in Figs. 5-7 respectively for the boundary conditions
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cases. It can be seen from the Figures that the natural frequency variation for FGM beams
versus crack location and depth is similar to that for homogeneous beams and the vari-
ation increases with decreasing both top-to-bottom elasticity modulus ratio and volume
fraction index (n). Also, there exist positions on FGM beams occurred at which crack
makes no effect on a particular natural frequency. Such locations are called frequency
nodes and the nodes are independent of material grading indexes.
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Fig. 6. Normalized three lowest natural frequencies of uniform clamped FGM beam in depen-
dence on the crack depth (a), fraction index # (b) and elasticity modulus ratio (c)
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4.1.2. Continuous functionally graded beams

Next, for illustrating the Transfer Matrix Method developed for modal analysis of
cracked FGM structures, we consider herein also the change in natural frequencies of
cracked continuous FGM beam.

Namely, the equation (53) is solved for cracked FGM beam with two rigid supports
(three spans) in dependence on the crack and material parameters. Normalized first fre-
quency of bending (Figs. 8-9) and longitudinal (Fig. 10) vibrations in the simply sup-
ported (a) and clamped (b) continuous beam is examined as function of crack location
running along three spans for various crack depth and material grading index. It is ob-
served that the change in natural frequencies of multi-span FGM beams versus crack
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depth and material grading index # is similar to that of single span beam. Moreover,
the positions of the intermediate supports are nodes of fundamental frequency in flexu-
ral vibration for simply supported multi-span beams and the effect of crack on natural
frequencies of axial vibration modes is independent of the presence of the intermediate
supports.

First frequency ratio
:

098

requency ratio

—ah=10%
== ah=20%

Clamped end beam, n = 2.0

First support
x1=1/3

Second support 1 H
x2=213 1 09

Simply supported three-span beam, n =2.0

q 088

First support
x=113

Second support

—ah=10% == ah=20% =-=-ah=30% -~ah=40% x=213

I I I I I 1 - 086 & L L 1 L 1 1 L J
01 02 03 04 05 06 07 08 09 1 0 01 02 03 7

5 04 05,
Crack position Crack position

() (b)

Fig. 8. Normalized first flexural frequency of three-span FGM beam (a — SSB, b — CCB) as function

of crack location in various relative crack depth (a/h)

099 -

094

093

Second
support
x2=23

First
support
xI=173

094

First frequency ratio

Simply supported three-span beam, a/h=30%

‘‘‘‘‘‘ n=05 -=r=l0 --0=20  —n=l0

Fig. 9. Normalized first flexural frequency of three-span FGM beam (a — SSB, b — CCB) as function

Clamped end beam
ah=30%

First
support
xI=13

—=n=0.]n

|
Second
support
x2=213

=05==n=10==n=20—n=10
| | | 1

ol 02 03 04 05 06 07 08 09 1 0
Crack position

(@)

01 02 03 04

0s 07 08
Crack position

(b)

of crack location in various material grading index (1)




336 Nguyen Tien Khiem

; T T
First support Second support
3 x1=153 x2=213 l

Second supbon
x2=2/3

% Simply supported P ..

!hreel-]szuznﬂb»am ~ 0% Clamped end three- span beam

alh=30%

First axial frequency ratio
\

ah=d0%

First axial frequency ratio

& —ah=10% = = ah=20% ==-a/h = 30%
¢ 0.96
] e n=05--n=10--n=2
092 4
0.9:
09 1 1 ‘ I I l 1 L | |
! o 2 03 04 . 03 e " " " ! (‘“h 0.1 02 0. 04 05. . 0.6
Crack position Crack position
() (b)
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4.1.3. Stepped functionally graded beams

Finally, the proposed dynamic stiffness method is applied for modal analysis of
cracked functionally graded beams with three steps that are shown in Fig. 11.

(@) (b)
Fig. 11. Model of stepped functionally graded beam: (a) step-up beam; (b) step-down beam

Normalized natural frequencies of lowest modes for stepped beams shown in Figs. 12
-17 as functions of crack location in different crack depth (Figs. 12-14), volume fraction
index (Fig. 15-17) demonstrate that increase of cross-section area leads to decrease of
natural frequency sensitivity to crack.
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4.2. Free and forced vibration of cracked Timoshenko beams with piezoelectric layer
4.2.1. Modal analysis cracked FGM beams with piezoelectric layer

Let’s consider free vibration of simply supported FGM beam with a piezoelectric
layer described by Eq. (43) general solution of which is given as

{Z(x,w)} = {U (x,0),0(x,w), W (x,w)} =[@(xw)]{C}, (70)
Putting expression (70) into boundary conditions
U@ =w(0)=M(0)=U(L)=W(L)=M(L)=0,
with M (x) = Bj,0:U (x) — B3,0xO (x), one gets

[B(w)]{C} =0, (71)
where
[ a3 o ay |
B1 B2 Bs —B1 —B2 B3
my my  mg —my  —mp  —m3

B (w)] =[Bss (W] = | o (1) ¢n(l) ¢(L) (L) ¢15(L§ ¢16(L) |’

)
¢a1(L)  ¢3(L) 4’33 (L) ¢aa(L ) ¢35(L)  ¢a(L)
| Mi(L) Ma(L) Ms(L) My(L) Ms(L) Ms(L) |
mj = (Bipaj — B3y) ki, j = 1,2,3; M; (L) = Bio¢py; (L) — Bygh; (L), j =1,2,...,6,
¢ij (x),¢j (x),i =1,2,3;j=1,2,...,6 are elements of matrices [® (x,w)] and [®' (x,w)]
defined in (35). Therefore, so-called frequency equation of the beam is obtained in the
form

det[B (w)] =0, (72)
that allows one to find natural frequencies wy, w7, w3, ... of the piezoelectric beam. For
every given natural frequency wy, a normalized of solution of Eq. (71) can be easily found
as (1, ...,0) that allow calculating corresponding mode shape as

Uy (x) = C <lxll91€k1x + Dézﬂzekzx + (x3193ek3x + 061194e_k1x + 062195e_k2x + Dé3l96e_k3x> ,
O (x) = C (ﬁleklx + 9,6F2% 4 956k 4+ Yo Y 4 Yoo 4 l9ée’k3x) , (73)
Wy (x) = G (5101ek1x + Batrek? 4 Bataekd® — Broge ¥ — Bydse Fex — ,33196€_k3x) )

where arbitrary constant C can be obtained from a chosen mode shape normalization,
for instance,
max |Wg (x)| = 1.
X

Using the mode shape, it can be calculated so-called hereby modal sensor output (MSO)
charge generated in the piezoelectric layer as

Q= (bm/Bla) [ [Uf () — 0% (x) /2]

= (bh13/B%s) { [Uk (L) — Uk (0) — 11Uy ()] — (1/2) [k (L) — Ok (0) — 1205 (6’)](%
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where 1, 72 are magnitudes of single cracks at position e defined above in Eq. (30). This
modal sensor output will be numerically examined below mutually with natural frequen-
cies and mode shapes of FGM beam with piezoelectric layer with the following input data
for the beam

Ly=L,=L=1m,b=01m,h, =L/10,
E; = 390 MPa, p; = 3960 kg/m?>, u; = 0.25; E,, = 210 MPa, p, = 7800 kg/m?, u; = 0.31,
Cl, = 69.0084 GPa, CE; = 21.0526 GPa, p, = 7750 kg/m?>, hy3 = —7.70394 x 10° V/m

Since the influence of piezoelectric layer on sensitivity of modal parameters such as
natural frequencies and mode shapes of functionally graded beam to crack is insignifi-
cant, herein we focus on the effect of crack and material grading index on modal sensor
output of the piezoelectric layer calculated by expression (74). Namely, the sensor charge
of first and third modes versus crack location in various crack depth, material grading
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Fig. 18. Crack-induced variation of modal sensor output charge in various crack depth

°

e ©

© &
T

Sensor output charge of first mode, Q1
°
®
&

Sensor output charge of third mode, Q3

SS-BEAM alh=30% hphb=0.1

=10
SS-BEAM a/h=30% hphb=0.1

L L L L L L '
o 01 02 03 04 0.5 06 07 08 09 1 o 01
Crack position along beam span

L L L L L L L
02 03 04 05 0.6 0.7 08 09 1
Crack position along beam span

Fig. 19. Crack-induced variation of modal sensor outputs charge in various material
gradient index n



Vibrations of cracked functionally graded beams: General solution and application — A review 341

hpihb=0.5 ~
037 -/ ™

0365 - hp/hb=0.3

J— hp/hb=0.2 I E—

.

£ 1
H [ N g
3 / N 5 r N >
2 ~ 3 N hp/hb=0.3
8 N 5 » a4
5 ossst 5 osf ~
hp/hb=0.1 N /
0.34f o - 085} N
T hp/hb=0.2
>
s r -~

0335 S-BEAM, n=2; a/h=30%

Sensor output charge of third mode, Q3
] 8
T T T
/

Sensor output charge of third mode, Q3

hp/hb=0.1

I . L L . I I L L y L L ' L L ' L L ' s
0 01 02 03 04 05 06 07 08 09 1 0 01 0.2 03 0.4 05 06 07 08 09 1
Crack position along beam span Crack position along beam span

Fig. 20. Crack-induced variation of modal sensor outputs charge in various thickness
of piezoelectric layer

index and piezoelectric layer thickness have been computed and results of computation
are given in Figs. 18-20. The charge computed for the second mode is very miniature
so that is not provided in the Figures. Graphs depicted in the Figures show that an in-
crease in crack depth and thickness of the piezoelectric layer-sensor leads to an increase
in the modal sensor charges, while the growth of the material grading index reduces the
charges. It is interesting to note that the sensor output charge of the third mode has two
nodes where an occurred crack has no effect on it.

4.2.2. Frequency response of cracked FGM beam with piezoelectric layer to moving load

The frequency response of cracked FGM beam with a piezoelectric layer obtained in
previous section, the expression (67), is numerically examined herein for harmonic load
moving on the beam with constant speed p (x,t) = Pye’™!5 (x — vt). In this case

—+o0 . .
(P(x,w)} = / (0,0, p (x,6)}T e~ @tdt = {0,0, Py/0}T el@n—w)x/o (75

that allows one to find a particular solution of Eq. (62) in the form

T
{0 (x,w)} = {ug (@), 0 (w), WY (w)} exp {iQx/v}, Q= (Qu-w), (76)
where
US (w) = (iQ2) QoAz; (QzBikz - Wzlfz) /4, ®2 (w) = (iQ2) QuAz; (Wzlikl - QzBTl) /A,

W) (w) = QuD/A, A= (W’I}) — Q*A%) D + QA3 () — O%BY), (77)

D = w* (IfI5 — Ij3) + Q* (B By, — Bi3) + A3 (°Bjy — w’Lyy)
+w? P (2I1,Bf, — I By, — 1387 -
Therefore, solution (67) for simply supported beam gets the form

{Zn(x,0)} ={Q(x,w)} — [® (v, )] [B(w)] " {P(w)}, (78)
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with matrix [B (w)] given by Eq. (71) and

w)=U%(w), P (w) :®2(w), Py (w) = Wg(w),

= Uy (w)exp {—iQL}, DP5(w) =0 (w)exp{—iQL}, (79)
Ps (w) = Wg (w)exp{—iQL}.

In case of beam with single crack, frequency-dependent sensor output charge, ac-
knowledged herein as electrical frequency response of piezoelectric layer-sensor, can be
calculated as

Q (@) = (bhis/By) [ (U (3,00) + 10, (x,0)]

— (bh13/ Bls) { [Un (L) — U (0,0) — Ul (e, 0)] 0
+h [0y (L, w) — Oy (0,w) — 120, (e, )]},

with crack magnitudes 71, 2 defined above in Eq. (30).

Analysis of the electrical frequency response (80) conducted in [50] for various pa-
rameters of the moving load shows that under a certain speed of the moving load it can
be clearly observed the vibration component of eigenfrequency (eigenmode vibration
component) mutually with the steady forced vibration component. Moreover, ampli-
tude of the eigenmode vibration component is more sensitive to crack than that of the
forced one, especially, when the load frequency closes to the eigenfrequency of intact
beam (2, = wp1). Such vibration component is acknowledged as generic resonant vi-
bration, amplitude of which is examined below in dependence upon crack, load and ma-
terial parameters. Namely, graphs given in Figs. 21-23 are generic resonant apmplitudes

Cracked SS-beam Solid lines - constant load
n=2;hp=0.1:v=0.06Vc Dot lines - resonance load

Sensor output charge ratio (cracked/intact)

L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Crack location (e/L)

Fig. 21. Crack-induced variation (cracked/intact) of first eigenmodes amplitude of sensor output
charge at generic resonant harmonic force
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of cracked SS-beam normalized by those of uncracked one as function of crack location
for various crack depth, material grading index and piezoelectric layer thickness respec-
tively. For comparison, there are presented in the Figures also the normalized amplitudes
computed for constant load (), = 0) represented by the solid lines.

Observing the graphs demonstrated in the Figures enables us to make the following
remarks: First, crack-induced variation of the eigenmode resonant vibration amplitude
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versus crack location is similar to that of fundamental frequency, but it is much more sen-
sitive to crack depth than the natural frequency; Second, an increase in the piezoelectric
layer thickness leads to the growth of the crack-induced change in the vibration ampli-
tude. Finally, the crack-induced change reaches its maximum when n = 0.5 and load
frequency makes no effect on the sensitivity of the vibration amplitude to crack. This
provides important indications for crack detection by measurement of the response of
the beam to the moving load.

5. CONCLUSIONS

Thus, this review article presented a unified approach to vibration analysis of cracked
beam structures that is based on general solution of the equations of motion in the fre-
quency domain called herein as frequency-dependent vibration shape functions. The
shape functions were obtained in an explicit expression for uniform beam elements with
multiple cracks modeled by the equivalent springs so that enable one to use the mini-
mum number of beam elements for vibration analysis of multiple cracked frame struc-
tures. Moreover, the vibration shape functions have been constructed not only for homo-
geneous beams but also for functionally graded beams so that allow vibration analysis of
cracked structures made of functionally graded materials. Numerical illustrations show
usefulness of the proposed approach to study both free and forced vibrations of multi-
span, multistep cracked FGM beams with different boundary conditions.
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