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Abstract. This paper deals with the nonlinear buckling and post-buckling of sandwich
cylindrical panels with non-uniform porous core and functionally graded face sheets. The
imperfect sandwich cylindrical panels are subjected to axial loading on elastic foundation.
Based on the Donnell shell theory, with von Kármán geometrical nonlinearity, the gov-
erning equations are derived. The effects of elastic foundation, various panel geometrical
characteristics, porosity parameters, and the thickness of the porous core are investigated.
The effects of foundation parameters, porosity parameters, the thickness of the porous
core, and material parameters are investigated.

Keywords: analytical methods, FGP cylindrical panel, elastic foundation, nonlinear stabil-
ity.

1. INTRODUCTION

Porous material has been known as a new type of lightweight material with me-
chanical properties that change continuously along the thickness of structures. The de-
sired mechanical properties of this material can be achieved by adjusting the distribution
law as well as the local density of pores in the structures. Possesses excellent energy-
absorbing capability, functionally graded porous (FGP) materials has received wide ap-
plication. Hence, numerous studies on the mechanical response of FGP structures have
been widely implemented and reported. Using finite element analysis, Chen et al. [1]
researched the dynamic response and energy absorption of FG porous structures. Using
Ritz method, Chen and his coworkers [2–4] studied elastic buckling, static bending, and
vibrations of FGP beam. The important research on the static and dynamic of FGP plates
are given by Magnucki and his co-workers [5], Rezaei and Saidi [6], Tu et al. [7]. With
FGP shells, Thai et al. [8], Nam et al. [9], and Foroutan and his co-workers [10] applied the
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Galerkin method to study the nonlinear stability of FGP conical shells and FGP cylinders
under axial loading, torsion and hygrothermal loading.

Cylindrical panels are used as common structural load-bearing components in mod-
ern engineering. The buckling and post-buckling response are important mechanical
characteristics of the composite cylindrical panel and have attracted many researchers.
Using singular perturbation techniques, Shen [11] presented the post-buckling of FGM
cylindrical panels under axial load in thermal environments. Based on Rayleigh–Ritz
method, an assessment of shell theories for buckling of composite laminated cylindrical
panels under axial loading is presented by Jaunky and Knight [12]. Based on Karman–
Donnell’s theory, Duc and Tung [13], Dung and Hoa [14] studied thermo-mechanical
post-buckling behavior of FGM cylindrical panels subjected to axial loading without and
with temperature-dependent properties. Therein, Poisson’s ratio is considered to depend
on the thickness z.

There are many authors studied cylindrical panels resting on elastic foundations.
Based on Timoshenko-Mindlin kinematic hypotheses and Hamilton’s principle, Fu and
Chia [15] analyzed nonlinear of unsymmetrically laminated imperfect thick panels on
elastic foundation. Turvey [16] investigated the buckling of cylindrical panels on elas-
tic foundations with simply supported boundary conditions. Based on the dynamic
Marguerre-type equations, Chia [17] studied nonlinear vibration and postbuckling of un-
symmetrically laminated imperfect shallow cylindrical panels with mixed boundary con-
ditions resting on elastic foundation. The Galerkin procedure furnishes an equation for
the time function which is solved by the method of perturbation. Based on the Reddy’s
third order shear deformation shell theory and using a singular perturbation technique
along with a two-step perturbation approach, Shen and Xiang [18] researched the effect of
negative Poisson’s ratio on the axially compressed postbuckling behavior of FG-GRMMC
laminated cylindrical panels on elastic foundations in thermal environments. Based on
Galerkin’s method, Duc et al. [19–21] presented nonlinear static, dynamic and vibration
of imperfect ES-FGM cylindrical shells on elastic foundation. With the same method,
Trang and Tung [22] analyzed the nonlinear responses of composite cylindrical panels
reinforced by single-walled carbon nanotubes, supported by an elastic foundation, ex-
posed to elevated temperature and axially compressed by uniform load.

However, the problem of the nonlinear analysis of FG porous cylindrical panels sub-
jected to mechanical or thermal loading is restricted. Recently, the results on the nonlin-
ear vibration of FGP porous cylindrical panels have been considered by Keleshteri and
Jelovica [23], Akbari et al. [24], Anh and Duc [25]. Using the Galerkin method, Do Quang
Chan and the authors [26] studied the nonlinear stability of imperfect cylindrical panels
made of FGP sandwich materials subjected to axial compression with different boundary
conditions. The studied FGP sandwich panel consists of three layers, in which the two
outer layers are made of variable mechanical properties and the middle layer is made of
symmetrical porous materials. The numerical results show the influence of geometrical
parameters, porosity parameter e0, and foam core layer thickness on the buckling and
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post-buckling of the FG porous sandwich cylindrical panel. Developing the article [26],
this study analyzes the influence of the foundation coefficients on the nonlinear stability
of the imperfect FGP sandwich cylindrical panel under axial compression. The sandwich
cylindrical panel considered is composed of symmetric porous core and FG face sheets
subjected to axial loads. The material properties of the two face sheets are assumed to be
continuously graded in the thickness direction according to a simple power-law distri-
bution in terms of the volume fraction of constituents. The core layer is made of symmet-
ric porous material characterized by a porosity coefficient which influences the physical
properties of the panel in the form of the simple cosine function in the panel thickness
direction. The material continuity of face sheets-core and face sheets-stiffeners is guar-
anteed. Based on the Donnell shell theory, the Galerkin method are applied to solve the
nonlinear problem.

2. FG POROUS SANDWICH CYLINDRICAL PANELS

In this study, a symmetric porous sandwich cylindrical panel with FG coating and
the cylindrical coordinate system with axes x, y, z depicted in Fig. 1 is examined. Where
R, a, b are mean radius, length of straight edge, and curved edge, respectively. The thick-
ness of each FG coating layer and porous layer are hFG/2 and hcore. The total thickness of
FG porous sandwich panels is h (h = hcore + hFG).
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Fig. 1. Geometry of symmetric porous cylindrical panels with FG coating 
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Emc = Em − Ec, νmc = νm − νc, p ≥ 0.

The notation c, m and sh denote ceramic, metal and shell, respectively. p is the vol-
ume fraction index of the two functionally graded layers of the panel. The porosity coef-
ficient is e0 (0 ≤ e0 < 1). Young’s modulus of the metal, ceramic and shell are Em, Ec, Esh.
Poisson’s ratios of the metal and ceramic are νm, νc, νsh, respectively.

3. NONLINEAR EQUILIBRIUM EQUATIONS TAKING INTO ACCOUNT
ELASTIC FOUNDATION EFFECT

Based on the Donnell shell theory with von Karman geometrical nonlinearity, the
nonlinear equilibrium equations of imperfect FGP cylindrical panel, taking into account
a two-parameter elastic foundation are given by [19–22]

A3∇4 f +
1
R

f,xx + A4∇4w + f,yy
(
w,xx + w∗

,xx
)
− 2 f,xy

(
w,xy + w∗

,xy

)
+ f,xx

(
w,yy + w∗

,yy

)
+ Ks(w,xx + w,yy)− Kww = 0,

(2)

∇4 f + A1∇4w − A2

(
w2

,xy − w,xxw,yy − w,xx/R+ 2w,xyw∗
,xy − w,xxw∗

,yy − w,yyw∗
,xx

)
=0,

(3)
where w is the displacement components of the mid-plane of the plate in z-direction, the
quantity w∗ is an initial imperfection of porous panel, f (x, y) is the Airy stress function
and Kw, Ks are foundation parameters

A1 = J2/D11, A2 = 1/ (J0D11) , A3 = J0 J2, A4 = J0 (D12 J1 + D22 J2)− D13,

J0 =
1

D2
11 − D2

21
, J1 = D11D12 − D21D22, J2 = D11D22 − D21D12.

with
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, E3 =
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Assume four edges are simply supported

w = Mx = Nxy = 0, Nx = −r0h at x = 0, x = a,

w = My = Nxy = 0, Ny = −p0h at y = 0, y = b.
(4)
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According to Eqs. (4), the w function are chosen as [20, 22, 26]

w = W sin αx sin βy,

w∗ = W∗ sin αx sin βy.
(5)

where α =
mπ

a
; β =

nπ

b
; W∗ = ξh; 0 ≤ ξ ≤ 1; m, n = 1, 2, 3, . . .

Substituting Eq. (5) into Eq. (3), the solution of the equation is [20, 22]

f = B1cos2αx + B2cos2βy + B3sinαxsinβy +
1
2

Nxy2 +
1
2

Nyx2 (6)
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Substituting Eqs. (5), (6) into Eq. (2) then using Galerkin method, yields
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Consider FG porous sandwich cylindrical panel subjected to axial loading on elastic
foundation, taking Nx0 = −r0h, Ny0 = −p0h = 0, Eq. (7) yields

r0 =
−4

hα2(W∗ + W)

{
S1W + S2W(W + 2W∗) + S3W(W∗ + W)

−S4W(W∗ + W)(W + 2W∗)− 1
4
[
Ks

(
α2 + β2)+ Kw

]
W

}
(8)

Using Eq. (8), the effects of foundation parameters, porosity parameters, the thick-
ness of the porous core, and material parameters on post-buckling load-deflection can be
analyzed.

For perfect FG porous sandwich cylindrical panel (ξ = 0), Eq. (8) leads to

r0 =
−4
hα2

(
S1 + S2W + S3W − S4W2 − 1

4
[
Ks

(
α2+β2)+ Kw

])
. (9)

The upper buckling load of perfect cylindrical panels (buckled in bifurcation type)
can be obtained when W → 0 as
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−4
hα2

{
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1
4
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(
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]}
. (10)

When not counting the elastic background (Kw = Ks = 0)
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)(
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.

(11)
The Eq. (11) is used the buckling load of the imperfect FGP sandwich cylindrical

panel under axial compression.

4. NUMERICAL RESULTS

4.1. Comparisons

In this subsection, to validate the present method, the comparison is made for isotropic
cylindrical panels under axial uniform load with simply supported four edges. Based on
Eq. (11), Table 1 compares the buckling load of isotropic cylindrical panels under axial
loading with the results given by Jaunky [12] and Shen [11]. Here in, the buckling load

Table 1. Comparisons of upper load Ncr of isotropic cylindrical panels under
axial uniform loading: E = 107 psi, ν = 0.3 and h = 0.24 in

a/b a/R b/h
Jaunky [12] Shen [11] Present

FEM Donnell-theory HSDT Donnell-theory

3.1831 10 78.5398 41945.4 53080.6 51419.68 53572.203 (8,4)∗

3.1831 10 157.0796 12360.0 13834.1 13119.99 13378.790 (13,6)
3.1831 10 314.1593 3358.8 3549.9 3228.12 3344.882 (15,8)

∗buckling mode (m, n).
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Ncr = rupper/ (bh) and rupper is calculated by the Eq. (11). According to Table 1, it can
conclude that the numerical solutions of this research are reliable.

4.2. FG porous sandwich cylindrical panels

The purpose of this work is to study the effects of foundation parameters, porosity
parameters, the thickness of the porous core, and material parameters on the nonlinear
buckling and post-buckling of sandwich cylindrical panels with non-uniform porous core
and functionally graded face sheets. In the following sections, the cylindrical panel with
two FGM face sheets between a metal foam core is considered. The FGM of face sheets
and stiffeners are mixture of Zirconia (ceramic) and Ti-6Al-4V (metal). The core layer
made of metal foam is Ti-6Al-4V and Poisson’s ratio v = 0.3. The volume fraction in-
dexes, geometrical parameters of panels, porosity coefficients and foundation parameters
are taken as: p = 1, h = 0.006 m, a/b = 1.5, b/h = 50, a/R = 0.5, hcore/hFG = 5, e0 = 0.5,
Kw = 6 × 107 N/m3, Ks = 5 × 105 N/m.

Table 2. Influence of foundation parameters (Kw, Ks) on upper critical loads (rupper)
p = 1, h = 0.006 m, a/b = 1.5, b/h = 50, a/R = 0.5, ξ = 0, hcore/hFG = 5

Kw (N/m3) Ks (N/m)
rupper (MPa)

e = 0 e = 0.2 e = 0.5 e = 0.8

Kw = 0 Ks = 0 468.9710 (1,1)∗ 434.5646 (1,1) 382.9550 (1,1) 331.2172 (2,1)
Kw = 3 × 107 Ks = 0 481.4556 (3,1) 451.2540 (3,1) 405.9517 (3,1) 356.8641 (2,1)
Kw = 6 × 107 Ks = 0 492.8542 (3,1) 462.6527 (3,1) 417.3503 (3,1) 372.0480 (3,1)
Kw = 9 × 107 Ks = 0 504.2529 (3,1) 474.0513 (3,1) 428.7489 (3,1) 383.4466 (3,1)
Kw = 3 × 107 Ks = 2 × 105 523.1223 (3,1) 492.9207 (3,1) 447.6183 (3,1) 402.3160 (3,1)
Kw = 6 × 107 Ks = 2 × 105 534.5209 (3,1) 504.3193 (3,1) 459.0170 (3,1) 413.7146 (3,1)
Kw = 9 × 107 Ks = 2 × 105 545.9195 (3,1) 515.7180 (3,1) 470.4156 (3,1) 425.1133 (3,1)
Kw = 3 × 107 Ks = 4 × 105 564.7889 (3,1) 534.5874 (3,1) 489.2850 (3,1) 443.9827 (3,1)
Kw = 6 × 107 Ks = 4 × 105 576.1876 (3,1) 545.9860 (3,1) 500.6836 (3,1) 455.3813 (3,1)
Kw = 9 × 107 Ks = 4 × 105 587.5862 (3,1) 557.3846 (3,1) 512.0823 (3,1) 466.7799 (3,1)
Kw = 3 × 107 Ks = 8 × 105 648.1223 (3,1) 617.9207 (3,1) 572.6183 (3,1) 527.3160 (3,1)
Kw = 6 × 107 Ks = 8 × 105 659.5209(3,1) 629.3193(3,1) 584.0170(3,1) 538.7146(3,1)
Kw = 9 × 107 Ks = 8 × 105 670.9195 (3,1) 640.7180 (3,1) 595.4156 (3,1) 550.1133 (3,1)
∗buckling mode (m, n).

Table 2 shows the influence of foundation parameters (Kw, Ks) on upper critical loads
(rupper) of porous cylindrical panels with functionally graded composite coating. Figs. 2
and 3 describe the influence of the foundation parameters and the imperfections of the
FGP cylindrical panel on the curve describing the axial compression load relationship
with the deflection ratio W/h. Looking at Table 2, it can see that the upper axial load
increase when the foundation coefficients increases. For example, with e0 = 0.5, the
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upper axial load increase about 55% from rupper = 382.9550 MPa (with Kw = Ks = 0) to
rupper = 595.4156 MPa (with Kw = 9 × 107 N/m3, Ks = 8 × 105 N/m). This problem also
shown in Fig. 3 when using Eqs. (8) to describe the influence of the foundation coefficients
on r0 – W/h curves. Fig. 2 shows the postbuckling load-deflection curves of perfect and
imperfect porous panels. It can be seen that, the curves of imperfect porous panels start
at original coordinates and the curves of perfect porous panels start at a point on the
vertical axis of coordinates that means the deflection of the perfect porous panels only
appears when the axial compression load is large enough – buckling load.
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can see that the upper axial load increase when the foundation coefficients increases. For example, with 

e0=0.5, the upper axial load increase about 55% from rupper=382.9550MPa (with Kw=Ks=0) to 

rupper=595.4156MPa (with Kw=9×107N/m3, Ks=8×105N/m). This problem also shown in Fig. 3 when 

using Eqs. (8) to describe the influence of the foundation coefficients on r0 – W/h curves. Fig. 2 shows 

the postbuckling load–deflection curves of perfect and imperfect porous panels. It can be seen that, the 

curves of imperfect porous panels start at original coordinates and the curves of perfect porous panels 

start at a point on the vertical axis of coordinates that means the deflection of the perfect porous panels 

only appears when the axial compression load is large enough – buckling load. 

Table 3. Influence of porosity coefficients e0 and core layer hcore/hFG on upper critical loads 

p=1, h=0.006m, a/b=1.5, b/h=50, a/R=0.5, ξ=0, Kw=6×107N/m3, Ks=5×105N/m 
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hcore /hFG =0 718.0359(3,1)* 718.0359(3,1) 718.0359(3,1) 718.0359(3,1) 

hcore /hFG =1 659.1270(3,1) 644.8462(3,1) 623.4251(3,1) 602.0040(3,1) 

hcore /hFG =3 614.8104(3,1) 589.3391(3,1) 551.1321(3,1) 512.9251(3,1) 

hcore /hFG =5 597.0209(3,1) 566.8193(3,1) 521.5170(3,1) 476.2146(3,1) 
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Fig. 3. Influence of Kw and Ks on r0 – W/h curves 
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Fig. 2. Influence of ξ on r0 – W/h curves 
Fig. 3. Influence of Kw and Ks on r0 – W/h
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Table 3. Influence of porosity coefficients e0 and core layerhcore/hFG on upper critical loads p =

1, h = 0.006 m, a/b = 1.5, b/h = 50, a/R = 0.5, ξ = 0, Kw = 6 × 107 N/m3, Ks = 5 × 105 N/m

rupper (MPa) e0 = 0 e0 = 0.2 e0 = 0.5 e0 = 0.8

hcore/hFG = 0 718.0359 (3,1) 718.0359 (3,1) 718.0359 (3,1) 718.0359 (3,1)
hcore/hFG = 1 659.1270 (3,1) 644.8462 (3,1) 623.4251 (3,1) 602.0040 (3,1)
hcore/hFG = 3 614.8104 (3,1) 589.3391 (3,1) 551.1321 (3,1) 512.9251 (3,1)
hcore/hFG = 5 597.0209 (3,1) 566.8193 (3,1) 521.5170 (3,1) 476.2146 (3,1)
hcore/hFG = 10 579.3658 (3,1) 544.3449 (3,1) 491.8136 (3,1) 439.2822 (3,1)

hcore = h, hFG = 0 556.1821 (3,1) 514.6600 (3,1) 452.3767 (3,1) 390.0935 (3,1)

Based on Eq. (10), the influence of the thickness ratios of core layer-to-face layer
(hcore/hFG) and porosity coefficients e0 on upper axial loads are shown in Table 3. Look
at these number result, it can see that the upper axial load decreases about 59% from
rupper = 718.0359 MPa (with hcore/hFG = 0, e0 = 0.5) to rupper = 452.3767 MPa (with
hcore = h, hFG = 0, e0 = 0.5). Table 3 shows that the critical axial load decreases when
porosity coefficients e0 increases. For example, with hcore/hFG = 5, the upper axial load
decreases about 25% from rupper = 597.0209 MPa (with e0 = 0) to rupper = 476.2146 MPa
(with e0 = 0.8). This proves that as the porosity of the cylindrical panel increases, the
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bearing capacity of the panel becomes weaker. Thus, it can be concluded that the porosity
coefficients e0 and the thickness ratios of core layer-to-face layer hcore/hFG has a signifi-
cant effect on the compressive load capacity of porous panels. This problem also shown
in Fig. 4 and Fig. 5 when using Eqs. (8) to describe the influence of the thickness ratios of
core layer-to-face layer (hcore/hFG) and porosity coefficients e0 on r0 – W/h curves.
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Fig. 4. Influence of hcore/hFG on r0 – W/h
curves
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Based on Eq. (10), the influence of the thickness ratios of core layer-to-face layer (hcore/hFG) and 

porosity coefficients e0 on upper axial loads are shown in Table 3. Look at these number result, it can 

see that the upper axial load decreases about 59% from rupper=718.0359 MPa (with hcore/hFG=0, e0=0.5) 
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Fig. 5. Influence of e0 on r0 – W/h curves

The effects of geometrical ratios a/b and a/R on critical axial load are shown in
Table 4. The obtained results show that the upper axial load decreases as the a/b ratio
increases and the upper axial load increases as the a/R ratio increases. For example,
with the ratio a/b = 2 the upper limit load increases from rupper = 363.0327 MPa with
a/R = 0.2 to rupper = 587.1866 MPa with a/R = 0.8 (about 62% increase) i.e. cylindrical
panel the longer it is the lower the bearing capacity.

Table 4. Influence of a/b and a/R on upper critical loads (rupper) p = 1, h = 0.006 m, b/h =

50, hcore/hFG = 5, ξ = 0, e0 = 0.5, Ks = 5 × 105 N/m, Kw = 6 × 107 N/m3

rupper (MPa) a/R = 0.2 a/R = 0.4 a/R = 0.5 a/R = 0.6 a/R = 0.8

a/b = 0.5 587.1866 (1,1) 1100.6347 (2,1) 1267.9590 (2,1) 1472.4665 (2,1) 1950.7567 (2,2)
a/b = 1 425.9975 (2,1) 587.1866 (2,1) 708.0784 (2,1) 810.8271 (3,1) 1022.3878 (3,1)

a/b = 1.5 386.2391 (2,1) 467.7873 (3,1) 521.5170 (3,1) 587.1866 (3,1) 729.1057 (4,1)
a/b = 2 363.0327 (3,1) 416.6829 (3,1) 456.2205 (4,1) 493.1596 (4,1) 587.1866 (4,1)
a/b = 3 355.0744 (5,1) 376.8615 (5,1) 393.2017 (5,1) 413.1732 (5,1) 464.0095 (5,1)
a/b = 4 349.6202 (6,1) 363.0327 (6,1) 373.0921 (6,1) 385.3870 (6,1) 414.1460 (7,1)
a/b = 5 348.5246 (8,1) 356.6645 (8,1) 362.7693 (8,1) 370.2309 (8,1) 389.2238 (8,1)
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5. CONCLUSIONS

Applying the Galerkin procedure with regard to the von Kármán nonlinearity, the
nonlinear stability of imperfect FG porous sandwich cylindrical panels under axial com-
pression on elastic foundation is analyzed in this paper. The sandwich cylindrical panels
consist of metal foam core and FGM face-sheets. The accuracy of the existing solutions
is verified by comparing with published data. The effects of foundation parameters,
porosity parameters, the thickness of the porous core, and material parameters on the
nonlinear buckling and post-buckling behavior are investigated. The results show the
load-carrying capability of the FG porous cylindrical sandwich panel is increased when
the foundation coefficients and geometrical ratio a/R increase. It will be decreased when
porosity coefficients e0, the thickness ratios of core layer-to-face layer hcore/hFG and the
geometrical ratio a/b increase. It is hoped that analyses presented in this paper will have
significant contributions to accurate predictions and reliable design of FG porous sand-
wich cylindrical panels.
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