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Abstract. Despite the extensive use of thin-walled structures, the studies on their be-
haviours when exposed to extreme thermal environment are relatively scarce. Therefore,
this paper aims to present the buckling analysis of thin-walled composite I-beams un-
der thermo-mechanical loads. The thermal effects are investigated for the case of stud-
ied beams undergoing a uniform temperature rise through their thickness. The theory
is based on the first-order shear deformation thin-walled beam theory with linear vari-
ation of displacements in the wall thickness. The governing equations of motion are de-
rived from Hamilton’s principle and are solved by series-type solutions with hybrid shape
functions. Numerical results are presented to investigate the effects of fibre angle, mate-
rial distribution, span-to-height’s ratio and shear deformation on the critical buckling load
and temperature rise. These results for several cases are verified with available references
to demonstrate the present beam model’s accuracy.

Keywords: thin-walled beam, thermal buckling, buckling analysis, series solution.

1. INTRODUCTION

The application of anisotropic laminated composite materials is increasing in many
engineering fields such as aerospace, aircrafts and civil [1–4]. Thanks to its excellent me-
chanical properties, especially the strength-to-weight ratio, such structures have become
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a topic of interest for many researchers, some of which, can be found in [5, 6]. Compara-
ble to the Euler-Bernoulli theory for solid beam, Vlasov [7] developed the classical thin-
walled beam theory (CTWBT) which ignores the effects of shear deformation. Vlasov’s
theory is easy to implement and analyse LC thin-walled beams [7–10]. Nonetheless, in
the case of thick short beam, Vlasov’s theory deliver inaccurate beam responses predic-
tions such as the deflection, natural frequencies and critical buckling loads. Razaqpur
and Li [11] developed a finite element model for thin-walled box girder that can analyse
the extension, flexure, torsion, torsional warping, distortion, distortional warping, and
shear lag effects using an extended version of Vlasov’s thin-walled beam theory. Pavazza
et al. [12] proposed a novel torsion theory for shear deformable thin-walled beams of ar-
bitrary open cross-sections based on the classical Vlasov’s theory of thin-walled beams
and the Timoshenko’s beam bending theory. Comparable to the first-order shear defor-
mation beam theory, the first-order thin-walled beam theory (FTWBT) takes the trans-
verse shear into account and allow the transverse displacement vary linearly across the
thin wall thickness. The FTWBT gives better beam responses’ predictions for beam with
L/b3 < 10 and has been studied in multiple researches [13–23]. The FTWBT demands
a shear correction factor [24] to be calculated but it can also be a source of error. To
overcome this setback, the high-order deformation thin-walled beam theory (HTWBT)
has been proposed [25–27]. Though the HTWBT predicts more accurate results than the
FTWBT, it appears to be too complicated to implement.

Besides, in practical engineering contexts, thin-walled beams are exposed to high-
temperature environments. Therefore, the predictions of the thin-walled beams’ responses
to the thermal load in such contexts are of utmost importance. Many models and ap-
proaches on this matter have been studied in recent years for solid beams with rectangle
sections, some representative references are herein cited. Trinh et al. [28] presented an
analytical method for the vibration and buckling of functionally graded beams under
mechanical and thermal loads. Nguyen et al. [29] investigated the hygro-thermal effects
on vibration and thermal buckling behaviours of functionally graded beams. Li et al. [30]
studied the free vibration characteristics of a spinning composite thin-walled beam under
hygrothermal environment. Sun et al. [31] investigated the buckling and post-buckling
behaviors of functionally graded Timoshenko beams on non-linear elastic foundation.
A brief literature study shows that although many researches on thermal responses of
laminated composite and functionally graded beams with rectangle sections have been
performed, thermal buckling behaviors of thin-walled beams are extremely limited, Si-
monetti et al. [32] recently presented the thermal buckling analysis of thin-walled closed
section functionally graded beam-type structures [32]. Pantousa [33] conducted a numer-
ical study on thermal buckling of empty thin-walled steel tanks under multiple pool-fire
scenarios.
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This paper aims to investigate the elastic buckling of laminated composite thin-
walled beams with I-section in thermo-mechanical environments. It is based on the
FTWBT with a uniform temperature rise. The characteristic equations are derived from
Hamilton’s principle and solved by Ritz method with hybrid shape functions. Numer-
ical results are presented for the laminated composite I-beams with various boundary
conditions, fibre angles and length-to-height ratios.

2. THEORETICAL FORMULATION
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Fig. 1. Coordinate systems of a thin-walled beam

To analyse the thin-walled beam, the variables are defined in three set of coordinate
systems as displayed in Fig. 1. These are the Cartesian coordinate system (x, y, z) , the
local plate coordinate system (n, s, z) and the contour coordinate s along the profile of
the section. The angle θ is the angle between s- and x-axes. The pole P (xP, yP) is op-
timally chosen to be at the shear center of the section. The assumptions made in this
beam model are: the effects of geometrical nonlinearity are ignored, the section contour
remains undeformed in its own plane and the transverse shear strains are constant in the
wall thickness. Fig. 2 shows how the aforementioned coordinate systems fit in to the
thin-walled I-beam in this paper. The widths (b1, b2, b3) and the thicknesses (h1, h2, h3)

with lower index 1, 2, 3 are for the beam’s top, bottom flange, and web, respectively.
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Fig. 2. Geometry of a thin-walled I-beam

2.1. Kinematics

The displacements (ū, v̄, w̄) at any point on the midsurface of the laminated compos-
ite thin-walled beams under a small rotation φ about the pole axis can be expressed in
terms of those at the pole (U, V, W) as follows

ū (s, z) = Ux (z) sin θ (s)−Uy (z) cos θ (s)− φ (z) q (s) , (1a)

ν̄ (s, z) = Ux (z) cos θ (s) + Uy (z) sin θ (s)− φ (z) r (s) , (1b)

w̄ (s, z) = Uz (z) + ςy (z) x (s) + ςx (z) y (s) + ςω (z)ω (s) , (1c)

where ςx, ςy, ςω are the rotations of the cross-section with respect to and, respectively,
which are defined by

ςy = γ0
xz −U′x , ςx = γ0

yz −U′y , ςω = γ0
ω − φ′. (2)

The warping function ω is given by

ω (s) =
∫ s

s0

r (s)ds. (3)

Moreover, the displacements (u, v, w) at a point on the beam section are expressed in
term of the mid-surface displacements (ū, v̄, w̄) as follows

u (n, s, z) = ū (s, z) , (4a)
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ν (n, s, z) = ν̄ (s, z) + nς̄s (s, z) , (4b)

w (n, s, z) = w̄ (s, z) + nς̄z (s, z) , (4c)

where ς̄s and ς̄z are expressed as follows

ς̄z = ςy sin θ − ςx cos θ − ςωq, ψ̄s (s, z, t) = −∂u
∂s

. (5)

2.2. Strains

From the displacements defined in Eq. (4), the strain field can be written as

εs (n, s, z) = ε̄s (s, z) + nκ̄s (s, z) , (6a)

εz (n, s, z) = ε̄z (s, z) + nκ̄z (s, z) , (6b)

γsz (n, s, z) = γ̄sz (s, z) + nκ̄sz (s, z) , (6c)

γnz (n, s, z) = γ̄nz (s, z) + nκ̄nz (s, z) , (6d)

where
ε̄s = 0, ε̄z =

∂w̄
∂z

= ε0
z + xκy + yκx + ωκω, κ̄s = 0, (7a)

κ̄z =
∂ς̄z

∂z
= κy sin θ − κx cos θ − κωq, κ̄sz = κsz, κ̄nz = 0, (7b)

ε0
z = W ′, κx = ς′x, κy = ς′y, κω = ς′ω, κsz = φ′ − ςω, (7c)

εz = εz
0 + (x + n sin θ) κy + (y− n cos θ) κx + (ω− nq) κω, (7d)

γsz = γ0
xz cos θ + γ0

yz sin θ + γ0
ωr + nκsz, γnz = γ0

xz sin θ − γ0
yz cos θ − γ0

ωq. (7e)

2.3. Stress-strains relation

For laminated composite thin-walled beams, it is supposed to be constituted by a
number of orthotropic material layers with the same thickness. The reduced constitutive
equations at the kth-layer is given by σz

σsz
σnz

 =

 P11 P16 0
P16 P66 0
0 0 P55

 εz
γsz
γnz

 , (8a)

where P11 = Q̄11 −
Q̄2

12
Q̄22

, P16 = Q̄16 −
Q̄12Q̄26

Q̄22
, P66 = Q̄66 −

Q̄2
26

Q̄22
, P55 = Q̄55; Q̄ij are the

transformed reduced stiffness matrix elements which can be computed based on the fibre
lay-up as follows

Q̄11 = Q11c4 + Q22s4 + 2(Q12 + 2Q66)s2c2, (8b)

Q̄12 = (Q11 + Q22 − 4Q66)s2c2 + Q12(s4 + c4), (8c)

Q̄22 = Q11s4 + 2(Q12 + 2Q66)s2c2 + Q22c4, (8d)

Q̄16 = (Q11 −Q12 − 2Q66)sc3 + (Q12 −Q22 + 2Q66)s3c, (8e)
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Q̄26 = (Q12 −Q22 + 2Q66)sc3 + (Q11 −Q12 − 2Q66)s3c, (8f)

Q̄55 = Q55c2 + Q44s2, (8g)

Q̄66 = (Q11 + Q22 − 2Q12 − 2Q66)s2c2 + Q66(s4 + c4), (8h)

Q11 = E1/(1− ν12ν21), Q22 = E2/(1− ν12ν21), Q12 = ν12Q22, (8i)

Q44 = G23, Q55 = G13, Q66 = G12, s = sin θ, c = cos θ, (8j)

where θ is the fibre orientation angle of the current laminated layer, E1 and E2 are the
Young’s moduli, ν12 and ν21 are the Poisson’s ratio values, G12, G13 and G23 are the shear
moduli of the laminated composite material.

2.4. Variational formulation

The characteristic equations of the laminated composite thin-walled beams can be
derived by Hamilton’s principle in which the total energy of the system Π is composed
of the strain energy ΠS and work done by external force ΠW . The strain energy ΠS of the
laminated composite thin-walled beam is expressed by

ΠS =
1
2

∫
Ω
(σzεz + σszγsz + σnzγnz) dΩ, (9)

where Ω is the beam volume. Substitution of Eqs. (6), (7) and (8) into Eq. (9) gives

ΠS =
1
2

∫ L

0
[E11 U′2z + 2E16U′zU′x + 2E17U′zU′y + 2 (E15 + E18)U′zφ′

+ 2E12U′zς′y + 2E16U′zςy + 2E13U′zς′x + 2E17U′zςx + 2E14U′zς′ω

+ 2 (E18 − E15)U′zς′ω + E66U′2x + 2E67U′xU′y + 2 (E56 + E68)U′xφ′

+ 2E26U′xς′y + 2E66U′xςy + 2E36U′xς′x + 2E67U′xςx + 2E46U′xς′ω

+ 2 (E68 − E56)U′xςω + E77U′2y + 2 (E57 + E78)U′yφ′ + 2E27U′yς′y

+ 2E67U′yς′y + 2E37U′yς′x + 2E77U′yςx + 2E47U′yςω + 2 (E78 − E57)U′yςω

+ (E55 + 2E58 + E88) φ′
2
+ 2 (E25 + E28) φ′ς′y + 2 (E56 + E68) φ′ςy

+ 2 (E78 − E57)U′yςω + (E55 + 2E58 + E88) φ′
2
+ 2 (E25 + E28) φ′ς′y

+ 2 (E56 + E68) φ′ςω + 2 (E35 + E38) φ′ς′x + 2 (E57 + E78) φ′ςx

+ 2 (E45 + E48) φ′ς′ω + 2 (E88 − E55) φ′ςω + E22ψ′
2
y + 2E26ς′yςy

+ E66ς2
y + 2E23ς′yς′x + 2E27ς′yςx + 2E36ςyς′x + 2E67ςyςx

+ E24ς′yς′ω + 2 (E28 − E25) ς′yςω + 2E46ςyςω + 2 (E68 − E56) ςyςω

+ E33ς′
2
ω + 2E37ς′xςx + E77ς2

x + 2E34ς′xς′ω + 2 (E38 − E35) ς′xςω

+ 2E47ςxς′ω + 2 (E78 − E57) ςxςω ++E44ς′
2
ω2 (E48 − E45) ς′ωςω

+ (E88 − 2E58 + E55) ς2
ω

]
dz,

(10)
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where Eij are the stiffness coefficients of the laminated composite thin-walled composite
beams [34].

The work done by the external mechanical axial load Nm
0 and thermal load Nt

0 is
defined as

ΠW =
1
2

∫
Ω

(
Nm

0 + Nt
0
)

A

(
u′2 + ν′

2
)

dΩ

=
1
2

∫ L

0

(
Nm

0 + Nt
0
) (

U′2x + U′2y + 2ypU′xφ′ − 2xpU′yφ′ +
Ip

A
φ′

2
)

dz,
(11)

where A is the cross-sectional area; Ip is the polar moment of inertia about the centroid
given by

Ip = Ix + Iy, (12)

where Ix and Iy are the second moment of inertia with respect to the x- and y-axes, re-
spectively

Ix =
∫

A
y2dA, Iy =

∫
A

x2dA. (13)

The axial thermal load is given as

Nt
0 =

∫
n

(αzP11 + 2αszP16)∆Tdn, (14)

where ∆T = T − T0 is the temperature difference; T0 is the initial temperature; αz, αsz

are the thermal expansion coefficients in the (n, s, z) coordinate system. The components
(αz, αsz) are derived from the thermal expansion coefficients of the studied fibre materials
(α1, α2) as follows

αz = α1 cos2 θ + α2 sin2 θ, (15a)

αsz = (α1 − α2) sin θ cos θ. (15b)

2.5. Hybrid series solution

Based on the Ritz method, the displacement field can be approximated as follows{
Ux, Uy, φ

}
(z) =

m

∑
j=1

φj (z)
{

Uxj, Uyj, φj
}

, (16a)

{
Uz, ςy, ςx, ςω

}
(z) =

m

∑
j=1

φ′j (z)
{

Uzj, ςyj, ςxj, ςωj
}

, (16b)

where Uxj, Uyj, φj, Uzj, ςyj, ςxj, ςωj are the unknowns to be computed; φj (z) is the shape
functions which satisfy the boundary conditions (BCs) (Table 1).
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Table 1. Shape functions and essential BCs of laminated composite thin-walled I-beams

BC φj(x)/e
−jx

L x = 0 x = L

S-S sin
(πx

L

)
Ux = Uy = φ = 0 U = V = φ = 0

C-F sin2
(πx

2L

) Ux = Uy = φ = 0
U′x = U′y = φ′ = 0

Uz = ςy = ςx = ςv = 0

C-C sin2
(πx

L

) Ux = Uy = φ = 0
U′x = U′y = φ′ = 0

Uz = ςy = ςx = ςv = 0

Ux = Uy = φ = 0
U′x = U′y = φ′ = 0

Uz = ςy = ςx = ςv = 0

Substituting Eq. (16) in to Eqs. (10) and (11), and then applying Hamilton’s principle
lead to the characteristic equation for the buckling analysis of the laminated composite
thin-walled beams as follows

Kp = 0, (17)

where p =
[

Uz Ux Uy Φ ςx ςy ςω

]T is the displacement vector; K is the stiff-
ness matrix and is given as

K =



K11 K12 K13 K14 K15 K16 K17

TK12 K22 K23 K24 K25 K26 K27

TK13 TK23 K33 K34 K35 K36 K37

TK14 TK24 TK34 K44 K45 K46 K47

TK15 TK25 TK35 TK45 K55 K56 K57

TK16 TK26 TK36 TK46 TK56 K66 K67

TK17 TK27 TK37 TK47 TK57 TK67 K77


, (18)

with the following matrix elements

K11
ij = E11

L∫
0

φ′′i φ′′j dz, K12
ij = E16

L∫
0

φ′′i φ′jdz, K13
ij = E17

L∫
0

φ′′i φ′jdz,

K14
ij = (E15 + E18)

L∫
0

φ′′i φ′jdz, K15
ij = E12

L∫
0

φ′′i φ′′j dz + E16

L∫
0

φ′iφjdz,

K16
ij = E13

L∫
0

φ′′i φ′′j dz + E17

L∫
0

φ′′i φ′jdz, K17
ij = E14

L∫
0

φ′′i φ′′j dz + (E18 − E15)

L∫
0

φ′′i φ′jdz,
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K22
ij = E66

L∫
0

φ′iφ
′
jdz +

(
Nm

0 + Nt
0
) L∫

0

φ′iφ
′
jdz, K23

ij = E67

L∫
0

φ′iφ
′
jdz,

K24
ij = (E56 + E68)

L∫
0

φ′iφ
′
jdz +

(
Nm

0 + Nt
0
)

yp

L∫
0

φ′iφ
′
jdz,

K25
ij = E26

L∫
0

φ′iφ
′′
j dz + E66

L∫
0

φ′iφ
′
jdz, K26

ij = E36

L∫
0

φ′iφ
′
jdz + E67

L∫
0

φ′iφ
′
jdz,

K27
ij = E46

L∫
0

φ′iφ
′′
j dz + (E68 − E56)

L∫
0

φ′iφ
′
jdz, K33

ij = E77

L∫
0

φ′iφ
′
jdz +

(
Nm

0 + Nt
0
) L∫

0

φ′iφ
′
jdz,

K34
ij = (E57 + E78)

L∫
0

φ′iφ
′
jdz−

(
Nm

0 + Nt
0
)

xp

L∫
0

φ′iφ
′
jdz, K35

ij = E27

L∫
0

φ′iφ
′′
j dz + E67

L∫
0

φ′iφ
′
jdz,

K36
ij = E37

L∫
0

φ′iφ
′′
j dz + E77

L∫
0

φ′iφ
′
jdz, K37

ij = E47

L∫
0

φ′iφ
′′
j dz + (E78 − E57)

L∫
0

φ′iφ
′
jdz,

K44
ij = (E55 + 2E58 + E88)

L∫
0

φ′iφ
′
jdz +

(
Nm

0 + Nt
0
)

Ip

A

L∫
0

φ′iφ
′
jdz,

K45
ij = (E25 + E28)

L∫
0

φ′iφ
′′
j dz + (E56 + E68)

L∫
0

φ′iφ
′
jdz,

K46
ij = (E35 + E38)

L∫
0

φ′iφ
′′
j dz + (E57 + E78)

L∫
0

φ′iφ
′
jdz,

K47
ij = (E45 + E48)

L∫
0

φ′iφ
′′
j dz + (E88 − E55)

L∫
0

φ′iφ
′
jdz,

K55
ij = E22

L∫
0

φ′′i φ′′j dz + E26

L∫
0

(
φ′′i φ′j + φ′iφ

′′
j

)
dz + E66

L∫
0

φ′iφ
′
jdz,

K56
ij = E23

L∫
0

φ′′i φ′′j dz + E27

L∫
0

φ′′i φ′jdz + E36

L∫
0

φ′iφ
′′
j dz + E67

L∫
0

φ′iφ
′
jdz,

K57
ij = E24

L∫
0

φ′′i φ′′j dz + (E28 − E25)

L∫
0

φ′′i φ′jdz + E46

L∫
0

φ′iφ
′′
j dz + (E68 − E56)

L∫
0

φ′iφ
′
jdz,
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K66
ij = E33

L∫
0

φ′′i φ′′j dz + E37

L∫
0

(
φ′′i φ′j + φ′iφ

′′
j

)
dz + E77

L∫
0

φ′iφ
′
jdz,

K67
ij = E34

L∫
0

φ′′i φ′′j dz + (E38 − E35)

L∫
0

φ′′i φ′jdz + E47

L∫
0

φ′iφ
′′
j dz + (E78 − E57)

L∫
0

φ′iφ
′
jdz,

K77
ij = E44

L∫
0

φ′′i φ′′j dz + (E48 − E45)

L∫
0

(
φ′′i φ′j + φ′iφ

′′
j

)
dz + (E88 − 2E58 + E55)

L∫
0

φ′iφ
′
jdz.

(19)

The buckling responses of the laminated composite thin-walled beam can be ob-
tained by solving det(K) = 0.

3. NUMERICAL RESULTS

The laminated composite thin-walled I-beam in this numerical study is made of
glass-epoxy materials with the following properties: E1 = 53.78 GPa, E2 = 17.93 GPa,
G12 = G13 = 8.96 GPa, G23 = 3.45 GPa, ν12 = 0.25. The thermal expansion coeffi-
cients of glass and epoxy are α1 = 6.7× 10−7 K−1 and α2 = 3.6× 10−6 K−1 respectively.
The geometry of the laminated composite thin-walled I-beam is shown in Fig. 2 with
b1 = b2 = b3 = 0.05 m, h1 = h2 = h3 = 0.00208 m.

3.1. Convergence and verification study

This section conducts convergence study of the present solution for buckling analysis
of laminated composite thin-walled I-beams under mechanical loads. For Table 2, the
laminated composite I-beam’s length is expressed as L/b3 = 40. The laminated angle-ply
for all the flanges and web is [45◦/− 45◦]4s. It can be observed in Table 2 that the results
of this paper’s approach achieve numerical convergence at m = 8 and agree with the
results of Nguyen et al. [34]. Therefore, the series number m = 8 is applied in subsequent
analyses.

To further verify the current solution in mechanical environment, Table 3 presents the
effects of the various fibre angle lay-ups, boundary conditions and the length-to-depth
ratio on the laminated composite I-beam’s critical buckling loads. It can be seen that in
both cases of L/b3 = 20 and L/b3 = 80, the critical buckling loads decrease with the
increasing fibre angle θ◦ of the [θ◦,−θ◦]4s lay-up. The buckling results of the laminated
composite I-beam with S-S boundary condition and L/b3 = 80, C-F boundary condition
and L/b3 = 20 show good agreements with past researches from Kim et al. [35] and Vo
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and Lee [18]. More results are computed for the laminated composite I-beam set-up in
Table 3 but with more cases of fibre angle θ◦. These results are plotted for L/b3 = 20 and
L/b3 = 80 in Fig. 3.

Table 2. Convergence of critical buckling loads (kN) for the laminated composite thin-walled
I-beams under mechanical load

BCs Reference
m

2 4 6 8 10 12

S-S
Present 2.931 2.679 2.671 2.671 2.671 2.671
Nguyen et al. (Shear) [34] 2.752 2.690 2.671 2.671 2.671 2.671
Nguyen et al. (No shear) [34] 2.755 2.692 2.673 2.673 2.673 2.673

C-F
Present 3.852 1.564 0.738 0.671 0.668 0.669
Nguyen et al. (Shear) [34] 0.706 0.668 0.668 0.668 0.668 0.668
Nguyen et al. (No shear) [34] 0.706 0.668 0.668 0.668 0.668 0.668

C-C
Present 10.768 10.659 10.657 10.657 10.657 10.657
Nguyen et al. (Shear) [34] 10.797 10.678 10.657 10.657 10.657 10.657
Nguyen et al. (No shear) [34] 10.832 10.712 10.691 10.691 10.691 10.691

Table 3. Comparison of critical buckling loads (N) of the thin-walled composite I-beams
under mechanical loads

BC Reference
Fibre angle

[0]16 [15/-15]4s [30/-30]4s [45/-45]4s [60/-60]4s [75/-75]4s [90/-90]4s [0/90]4s

L/b3 = 80

S-S
Present (Shear) 1438.1 1299.4 965.0 668.1 528.6 487.0 479.6 959.0
Kim et al. (No shear) [35] 1438.8 1300.0 965.2 668.2 528.7 487.1 - 959.3

C-F Present (Shear) 361.2 326.4 242.4 167.8 132.7 122.3 120.4 240.9

C-C Present (Shear) 5743.3 5191.0 3856.8 2670.6 2113.2 1946.7 1917.1 3831.4

L/b3 = 20

S-S Present (Shear) 22832.7 20660.1 15376.7 10657.3 8433.9 7767.7 7648.6 15255.8

C-F
Present (Shear) 5768.6 5213.8 3873.7 2682.4 2122.5 1955.2 1925.5 3848.3
Vo and Lee (Shear) [18] 5741.5 5189.0 3854.5 2668.4 2111.3 1945.1 - 3829.8
Kim et al. (No shear) [35] 5755.2 5199.8 3861.0 2672.7 2114.7 1948.3 - 3857.8

C-C Present (Shear) 77772.9 72116.0 57102.8 42069.5 33438.5 30632.4 29873.4 53993.2
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when θ◦ is in the range of 20◦–70◦ before plateauing afterwards. This trend is particularly
clearer when the beam is under C-C boundary condition.

Moreover, the laminated composite I-beam can withstand much more temperature
rise and thermal load with L/b3 = 20 compared to L/b3 = 80. Fig.5 demonstrates better
the effects of length-to-depth ratios on the thermal buckling stability of the laminated
composite I-beams. The thin-walled beam is drastically more stable at low L/b3 and the
L/b3 becomes less significant when L/b3 > 30.

 12 
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4. CONCLUSION

A shear-deformable thin-walled beam model and a hybrid series solution are pre-
sented in this study. The glass-epoxy composite I-beam is investigated for its mechanical
and thermal buckling stability. This model can predict accurately the critical buckling
loads and critical buckling temperature for different beam configurations. The effects
of fibre angle lay-up, boundary conditions and length-to-depth ratios are shown in the
numerical results. The beam’s buckling capacity is higher for low fibre angle, low length-
to-depth ratios and clamped-clamped boundary condition. The present model is shown
to be valid for buckling analysis of laminated composite I-beam under mechanical and
thermal loads.
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