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Abstract. This paper presents the approach of building a mathematical model for a par-
allel robotic manipulator with flexible links and elastic joints. The links to the base are
assumed to be rigid bodies, and the thin connecting rods are assumed to be flexible links.
The elasticity of the transmission from the actuators to the transmission is modeled by
a torsional spring and viscous damper. This is a mixed system of rigid bodies, spring,
and flexible links. The deformation motion of the elastic link is approximated by shape
functions similar to the finite element method. The differential equations of motion are
established by combining the substructure method and the Lagrange equation of the 2nd
kind for the serial multibody system. Based on the differential equation established for
the parallel robot manipulator of five bars, numerical simulations were carried out to in-
vestigate the response of the system.

Keywords: parallel robot manipulator, elastic links, elastic joints, modeling, numerical sim-
ulation.

1. INTRODUCTION

In the era of the fourth industrial revolution, mechatronics and robotics are playing
an increasingly important role. Compared with the serial robot manipulator, the parallel
robot manipulator has the following advantages: higher accuracy, because the error be-
tween the pins is compensated for each other without having to accumulate; the mass of
the moving link is lighter; better stability. Although the disadvantages of parallel robots
are that the workspace is smaller and they require more complex analysis of singularities
than serial robots, they are often preferred for high speed and high-precision tasks. The
efficiency of the robot is not only to be more accurate and faster, but also to be lighter
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and consume less energy. This fact leads that the slender link is no longer considered
as a rigid body but as an elastic link, which takes into account the elastic deformation
of the links. In addition, when the robot has a large acceleration, the elasticity of the
transmission also needs to be considered.

The study of flexible manipulators has attracted the attention of scientists in the last
three decades. There have been many studies on the dynamics and control of manipu-
lators with flexible links. These works are summarized in review articles such as [1–6].
In general, they focus on modeling, calculation of dynamics and oscillation, and con-
trol design for flexible manipulators. The research works presented in [3, 7–11] focus on
elastic serial robotic manipulators. Other works [12–16] concern closed loop multi-body
systems to study parallel robots with elastic links in which, five main methods are used
to model elastic links including: (1) Lumped parameter method [17], (2) Finite difference
method [18], (3) Method of expansion to assumed mode functions [7,10,12,13,16,19–25],
(4) Finite element method [9, 11, 14, 26, 27], (5) Method of multibody systems [8]. Each
method has its advantages and disadvantages, which method to use depends on forte
and supporting tools.

In this paper, the finite element method and Lagrange equation of 2nd kind are used
to build a dynamic model for a parallel planar manipulator with elastic links and joints.
Based on the equations of motion, it is possible to simulate the response of the system to
the conventional PD controller for the positioning problem. The remainder of this paper
is organized as following: Section 2 describes the structure diagram of the manipulator
from actuators to the end effector. Section 3 presents the establishment of a dynamic
model for the system, in which the equations of motion for one part is developed in
detail. Section 4 presents the numerical simulation results of the forward dynamics. The
conclusion is made in the final section.

2. ELECTROMECHANICAL MODEL OF A FIVE-BAR PARALLEL ROBOT WITH
FLEXIBLE LINKS AND JOINTS

Consider a 5-bar planar parallel manipulator driven by two DC motors as shown
in Fig. 1. The two links connected to the base are considered as rigid bodies, the two
slender rods connected to the end point E are flexible links, and the transmission of the
active joints are also considered elastic ones.

The system parameters include:
- DC motor: resistance Ra, inductance La, torque constant Km, back-emf constant Ke,

inertia of the rotor Im;
- Gear transmission: r – gear ratio, its mass is neglected;
- Torsional stiffness of the shaft k, torsional damping c; linear damping at the shaft d;
- Links connected to the base: length of l1, mass m1, moment of inertia about the axis

of rotation I1, center of mass at the middle point;
- Flexible links: length of l2, cross-sectional area b × h, mass density ρ, elastic mod-

ule E;
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To establish the dynamic equation for this robotic manipulator, we combine the sub-
structure method and the Lagrange equation of the 2nd kind. Imagine that the joint E is
cut and two reaction forces are added at E of each part. Two parts are then treated as
serial manipulators with elastic joints and link, Fig. 2. The dynamic equations for the two
parts are similar. Therefore, only the deriving equations of motion for the right part is
presented in detail.
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Fig. 1: Five-bar parallel robot with flexible links and joints 
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Fig. 1. Five-bar parallel robot with flexible links and joints 3 
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Fig. 2: Substructure diagram 
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Description of the deformation motion of the elastic link

To describe the deformation motion of elastic link AE, we introduce a floating coor-
dinate system Axy (frame 1). The origin A is fixed to one end of the link and axis Ax
tangential to the link at end A, Fig. 3. Denote [⃗i, j⃗] are two unit vectors of the coordinate
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system Axy. The displacement due to deformation of point P at a distance x = ξ from A
is determined by

d⃗ = w(x, t)⃗j,

where w(x, t) is the transverse displacement due to bending deformation.
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Here the approach of FEM (finite element method) is applied. Each flexible link will
be considered as a beam. Let [e3, e4] be transverse and angular displacements of node
2 (end 2) respectively, the displacement of point P is determined through the following
shape functions (displacements at end A are 0, [e1, e2]

T = 0)

w(x) = h3(x)e3 + h4(x)e4 =
[

h3(x) h4(x)
] [ e3

e4

]
= S(x)e, 0 ≤ x ≤ l. (1)

The shape functions are chosen by polynomials as the following

h3(x) =
1
l3 (−2x3 + 3lx2), h4(x) =

1
l2 (x3 − lx2). (2)

In the floating frame Axy, the position of the point P is determined as

r(1)P =

[
x

S(x)e

]
. (3)

The coordinates of the point P belonging to the elastic link in the fixed frame are
determined

r(0)P = r(0)A + R(θ)r(1)P , (4)

where the rotation matrix is defined by

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
.
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The results of (4) are written in detail as

x(0)P = xA + x cos θ − w(x, t) sin θ,

y(0)P = yA + x sin θ + w(x, t) cos θ.
(5)

The coordinates of the endpoint E in the fixed system are determined

x(0)E = xA + l cos θ − e3 sin θ,

y(0)E = yA + l sin θ + e3 cos θ.
(6)

Now, we can choose generalized coordinates of two parts as:

q1 = [qT
1r, qT

1e]
T = [φ1, θ11, θ12|e13, e14]

T - for the right part,

q2 = [qT
2r, qT

2e]
T = [φ2, θ21, θ22|e23, e24]

T - for the left part,

where φk, θk1, θk2 are angular position of rotors, of the rigid link, and relative angle of
flexible link w.r.t to the rigid link (Fig. 1); ek3, ek4 are transverse and angular deformation
at the end of the flexible links, k = 1, 2 (Fig. 3).

3. EQUATIONS OF MOTION

In this section, the equations of one part are established using Lagrange equations
of the second kind. The procedure is the same for serial manipulators. Here, we need
to calculate the kinetic, potential, dissipative energy of the system, and control torques.
Two parts obtained after decoupling joint E have the same structure, so in the following
only equations of motion of the right part are presented.

3.1. Kinetic energy – mass matrix

The right part consists of the rotor, the rigid link OA and the flexible link AE. The
kinetic energy of this part is calculated as

T =
1
2

Im φ̇2
1 +

1
2

I1O θ̇2
11 + TAE + Ttip.

The kinetic energy of the rotor and the rigid link OA is given by

Tr =
1
2

Im φ̇2
1 +

1
2

I1O θ̇2
11 =

1
2

q̇T
1 Mrq̇1,

with Mr = diag([Im, I1O, 0, 0, 0]).
The kinetic energy of the flexible link AE is calculated by

TAE =
1
2

∫
v2dm =

1
2

m2

l2

∫ l2

0
v2dξ,
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where v is velocity of the infinitesimal mass dm belonging to link AE. The coordinates of
the point P belonging to the elastic link in the fixed frame are determined

x(0)P = xA + x cos θ − w(x, t) sin θ

= xO1 + l1 cos θ11 + x cos(θ11 + θ12)− w(x, t) sin(θ11 + θ12),

y(0)P = yA + x sin θ + w(x, t) cos θ

= yO1 + l1 sin θ11 + x sin(θ11 + θ12) + w(x, t) cos(θ11 + θ12).

Using (1), we get

x(0)P = xO1 + l1 cos θ11 + x cos(θ11 + θ12)− S(x)e sin(θ11 + θ12),

y(0)P = yO1 + l1 sin θ11 + x sin(θ11 + θ12) + S(x)e cos(θ11 + θ12).

The Jacobian of the point P and velocity of P are calculated as

r(0)P = r(0)P (q1) ⇒ v(0)
P = ṙ(0)P (q1) = JP(q1)q̇1

JP(q1) =
∂r(0)P (q1)

∂q1
.

(7)

The kinetic energy of the elastic link is then determined

TAE =
1
2

∫
v(0)T

P v(0)
P dm =

1
2

m2

l2
q̇T

1

(∫ l2

0
JT

P(q1)JP(q1)dξ

)
q̇1 =

1
2

q̇T
1 Me(q)q̇1.

The kinetic energy of the mass at the end point E is determined

Ttip =
1
2

m3v(0)T
E v(0)

E =
1
2

m3q̇T
1 JT

E(q1)JE(q1)q̇1 =
1
2

q̇T
1 M3(q)q̇1.

Thus, the kinetic energy of the right part is given by

T =
1
2

Im φ̇2
1 +

1
2

I1O θ̇2
11 +TAE +Ttip =

1
2

q̇T
1 [Mr +Me(q)+M3(q)]q̇1 =

1
2

q̇T
1 M1(q1)q̇1. (8)

3.2. Potential energy – generalized forces

Potential energy includes gravity and elastic one. Elastic potential energy of joints
and elastic link are given

Pe =
1
2

k(ψ1 − θ11)
2 + P2e =

1
2

k(r−1φ1 − θ11)
2 + P2e, (9)

where ψ1 = φ1/r is the angular position of the output shaft of the gear box, r is reduction
ratio.

To give the element stiffness matrix, the expression of strain potential energy due to
transverse bending of the beam needs to be calculated. According to the theory in the
strength of materials [28, 29], the bending strain potential energy of a beam is calculated
by the formula

P2e =
1
2

∫ l2

0
[EI(w′′)

2
]dξ. (10)
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From (1), we can determine bending strain as

dy = S(ξ)qe ⇒ d′′y = S′′(ξ)qe. (11)

Substituting (11) into (10) gives

P2e =
1
2

qT
e

(∫ l2

0
[EIS′′T(ξ)S′′(ξ)]dξ

)
qe =

1
2

qT
e Keqe. (12)

So, stiffness matrix of the element is obtained

Ke =
∫ l2

0
[EIS′′T(ξ)S′′(ξ)]dξ. (13)

In combination with the potential energy of torsional spring of the driven shaft:

Pe =
1
2

k(r−1φ1 − θ11)
2 +

1
2

qT
e Keqe =

1
2

qT
1 K1q1, (ψ1 = r−1φ1).

And the generalized force of the elastic force is calculated by(
∂Pe

∂q1

)T

= K1q1.

Potential energy due to gravity

When the manipulator moves in the vertical plane, the potential energy of the weight
needs to be added. Let g(0) = [gx, gy]

T = [0,−g]T be the vector of gravity in a fixed
system. If the manipulator moves in a horizontal plane, value of g is set to zero. The
gravity potential is calculated as follows

Pg = −m1g(0)Tr(0)C1 (q1)−
m2

l2

∫ l2

0
g(0)Tr(0)P (q1)dξ − m3g(0)Tr(0)E (q1). (14)

The generalized force of gravity is calculated by

∂Pg

∂q
= −m1g(0)T ∂

∂q1
r(0)C1 (q1)− m2l−1

2 g(0)T
∫ l2

0

∂

∂q1
r(0)P dξ − m3g(0)T ∂

∂q1
r(0)E (q1)

= −m1g(0)TJT1(q1)− m2l−1
2 g(0)T

∫ l2

0
J(q1)dξ − m3g(0)TJE(q1).

Or (
∂Pg

∂q

)T

= −m1JT
T1(q1)g(0) − m2l−1

2

(∫ l2

0
JT(q)dξ

)
g(0) − m3JT

E(q1)g(0). (15)

Thus, the generalized force due to potential energy can be calculated by the formula

g(q1) = K1q1 − m1JT
T1(q1)g(0) − m2l−1

2

(∫ l2

0
JT(q)dξ

)
g(0) − m3JT

E(q1)g(0). (16)

3.3. Dissipative energy

Φ =
1
2

c(ψ̇1 − θ̇11)
2 +

1
2

dθ̇2
11 =

1
2

c(r−1 φ̇1 − θ̇11)
2 +

1
2

dθ̇2
11, (17)

where d is the viscous coefficient at the bearing O1.
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3.4. Driving force and constraint forces at the cutting joint

The generalized force of the motor torque acting on the rotor and the force acting at
the end point E is calculated based on the calculation of the virtual work as follows:

δA = τ0δφ + XδxE + YδyE = τ0δφ + [JT
E(q1)λ]

Tδq1,

with λ = [X, Y]T and JE(q1) = ∂r(0)E /∂q1 is Jacobian of the end point E.
The motor torque acting on the rotor is calculated according to the input current and

voltage as follows (here we use the approximate Ladi/dt ≈ 0)

τ0 = Kmi = Km
U − Ke φ̇

Ra
=

Km

Ra
U − KmKe

Ra
φ̇. (18)

3.5. Equations of motion of the right part

Applying Lagrange’s equation of the 2nd kind [30], the differential equation of mo-
tion for the right arm would take the form

M1(q1)q̈1 + C1(q1, q̇1)q̇1 + D1q̇1 + K1q1 + g1(q1) = B1u1 + JT
E1λ, (19)

where M1(q1) is the mass matrix of size 5×5 that is the Hessian matrix of kinetic en-
ergy with respect to q̇; D1 is the damping matrix; Lagrange multipliers λ = [X, Y]T are
the reaction forces at cutting joint E; the Coriolis and centrifugal matrix C1(q1, q̇1) are
determined from the mass matrix M1(q1) based on Kronecker product [31] or by the
Christoffel formula

C1(q1, q̇1) =
{

cij(q1, q̇1)
}

, cij(q1, q̇1) =
1
2

m

∑
k=1

(
∂mij

∂qk
+

∂mik

∂qj
−

∂mjk

∂qi

)
q̇k. (20)

Normally, the differential equation of motion for a serial flexible manipulator is writ-
ten in the following form[

Mrr(q) Mr f (q)
M f r(q) M f f (q)

] [
q̈r
q̈ f

]
+

[
Crr(q, q̇) Cr f (q, q̇)
C f r(q, q̇) C f f (q, q̇)

] [
q̇r
q̇ f

]
+

[
Drr 0
0 0

] [
q̇r
q̇ f

]
+

[
Krr 0
0 K f f

] [
qr
q f

]
+

[
gr(q)
g f (q)

]
=

[
BrU

0

]
+

[
ΦT

r
ΦT

f

]
λ.

(21)
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For the given manipulator, these matrices and vectors are written in detail as follows

Mrr(q) =

 Im 0 0
0 m22 m23
0 m32 m33

 , M f r = MT
r f ,

m22 = I1 +
13
35 m2e2

3 − 11
105 m2e3e4l2 + 1

105 m2e4
2l22 − m2l1e3 sin q2 +

1
6 m2l1l2e4 sin q2

+ 1
3 m2l2

2 + m2l1 cos q2l2 + m2l12 + m3(l12 + l22 + 2l1l2 cos q2 − 2l1e3 sin q2 + e3
2),

m32 = m23 = 13
35 m2e3

2 − 11
105 m2e3e4l2 + 1

105 m2e4
2l22 − 1

2 m2l1 sin q2e3 +
1

12 m2l1l2e4 sin q2

+ 1
3 m2l2

2 +
1
2 m2l1l2 cos q2 + m3(l1l2 cos q2 − l1e3 sin q2 + l22 + e3

2),

m33 = 13
35 m2e2

3 − 11
105 m2e3e4l2 + 1

105 m2e2
4l22 + 1

3 m2l2
2 + m3(l2

2 + e2
3),

M f r =

[
0 7

20 m2l2 + 1
2 m2l1 cos q2 + m3(l1 cos q2 + l2) 7

20 m2l2 + m3l2
0 − 1

20 m2l2
2 − 1

12 m2l1l2 cos q2 − 1
20 m2l2

2

]
,

M f f =

[ 13
35 m2 + m3 − 11

210 m2l2
− 11

210 m2l2 1
105 m2l2

2

]

Drr =

 c/r2 + KmKe/Ra −c/r 0
−c/r c 0

0 0 0

 , D f r = 02×3, D f f = 03×3,

Krr =

 k/r2 −k/r 0
−k/r k 0

0 0 0

 , K f r = 02×3, K f f =

[
12EI/l3

2 −6EI/l2
2

−6EI/l2
2 4EI/l2

]
,

g1(q) = 0,

g2(q) = m1s1g cos q1 +
1
12 m2[−6e3 sin(q1 + q2) + e4l2 sin(q1 + q2) + 6l2 cos(q1 + q2)

+ 12l1 cos q1]g + m3[l1 cos q1 + l2 cos(q1 + q2)− e3 sin(q1 + q2)]g,

g3(q) = 1
12 m2[−6e3 sin(q1 + q2) + e4l2 sin(q1 + q2) + 6l2 cos(q1 + q2)]g

+ m3[l2 cos(q1 + q2)− e3 sin(q1 + q2)]g,

g4(q) = ( 1
2 m2 + m3) cos(q1 + q2)g, g5(q) = − 1

12 m2l2 cos(q1 + q2)g,

Brr =
[

Km/Ra 0 0
]T.

The equation of motion for the rotor is obtained after neglecting the current chang-
ing, it means Ladi/dt ≈ 0:

Im φ̈ +

(
c
r2 +

KmKe

Ra

)
φ̇ − c

r
θ̇ +

(
k
r2

)
φ − k

r
θ =

Km

Ra
U.

3.6. Constraint equations

With the given generalized coordinates, the constraint equations are obtained by
comparison between the position of the endpoints E of the right and left parts

ϕ(q1, q2) = r(0)E1 (q1)− r(0)E2 (q2) = 0, (22)
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in which for the right part

x(0)E1 = xO1 + l1 cos θ11 + l2 cos(θ11 + θ12)− e13 sin(θ11 + θ12),

y(0)E1 = yO1 + l1 sin θ11 + l2 sin(θ11 + θ12) + e13 cos(θ11 + θ12),

and for the left part

x(0)E2 = xO2 + l1 cos θ21 + l2 cos(θ21 + θ22)− e23 sin(θ21 + θ22),

y(0)E2 = yO2 + l1 sin θ21 + l2 sin(θ21 + θ22) + e23 cos(θ21 + θ22).

3.7. Dynamic equations of the whole system

Combining the equations of two parts together gives the dynamic equations of the
whole system in the form of differential algebraic equations (DAEs) as following

M(q)q̈ + C(q, q̇)q̇ + Dq̇ + Kq + g(q) = Bu + ΦT
q λ,

ϕ(q) = rEr(q)− rEl(q) = 0, Φq = ∂ϕ(q)/∂q.
(23)

The matrices and vectors in (23) are given as

M(q) = diag([M1(q), M2(q)]), C(q, q̇) = diag([C1(q, q̇), C2(q, q̇)]),

D = diag([D1, D2]), K = diag([K1, K2]),

g(q) = [gT
1 (q), gT

2 (q)]
T, B = [B1, 0; 0, B2],

u = [U1, U2]
T, λ = [X, Y]T, ΦT

q = [JT
E1; JT

E2].

4. NUMERICAL SIMULATION OF FORWARD DYNAMICS

4.1. Forward dynamics

Forward dynamics of flexible parallel manipulators are solved in the same way as
of rigid parallel manipulators. There are some methods to determine generalized accel-
eration q̈ from equations of motion (23). In this study, the second derivatives of the con-
straint equations is used and the matrix R satisfying RTΦT = 0 is exploited to eliminate
the Lagrangian multipliers. Additionally, to restrict the drift of constraint equations dur-
ing integration, the Baumgarte’s stabilization technique is applied [32]. So, the dynamic
equations for forward dynamics will be as following

RTM(q)q̈ = RT (Bu − C(q, q̇)q̇ − Dq̇ − Kq − g(q)) ,

Φ(q)q̈ = −Φ̇(q)q̇ − 2δωΦ(q)q̇ − ω2ϕ(q), δ, ω > 0.

Solving the above equations for q̈ gives

q̈ =

[
RTM(q)

Φ(q)

]−1 [ RT (Bu − C(q, q̇)q̇ − Dq̇ − Kq − g(q))
−Φ̇(q)q̇ − 2δωΦ(q)q̇ − ω2ϕ(q)

]
. (24)

The motion of the system is obtained by integration (24) with the consistent initial
conditions, that satisfy the constraint equations at the position and velocity level.
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4.2. Simulation results

In this subsection, the simulation results on five-bar parallel manipulator with flex-
ible link and joints are presented. The kinematic and dynamic parameters of the system
shown in Fig. 1 are chosen as in Table 1.

Table 1. System parameters

Actuatorandgeartransmission

Km = 1; Nm/A, torque constant

Ke = 1; Volt.s/rad, BACK-EMF constant

Ra = 3; Ohm, armature resistance of the motor

Im = 0.1; kgm^2 , moment of inertia of the rotor

r = −10; -, gearbox ratio

k = 5000; Nm/rad, torsional stiffness of the spring

c = k/100; Nms/rad, viscous coefficient

Rigid link 1

m1 = 3; kg, mass

l1 = 0.4; m, length

s1 = 0.2; m, center of mass, OC1

I1 = 0.2; kgm^2 , moment of inertia about axis O

Flexible link 2

rho = 2712; kg/m^3 , mass density

E = 7.102 ∗ 10ˆ10; N/m^2, elastic module

l2 = 0.5; m, length

h = 0.003; m, thickness

b = 0.030; m, width

A = b ∗ h; m^2 cross-sectional area

I = b ∗ hˆ3/12; m^4, area moment of inertia

m2 = rho ∗ l2 ∗ b ∗ h; kg, mass

L0 = 0.6; m, distance O1O2
m3 = 0.25; kg, 1/2 mass at the end-effector

g = 9.81; m/s^2, gravity acceleration

Baumgarte parameters: δ = 1, ω = 700

In the simulation, the voltage applied to the motor is chosen as PD controller plus
gravity

upd = [72*(2*r-q(1)) -30*qdot (1); 72*(2*r-q(6)) -30*

qdot (6)];

ug = pinv(R’*B)*R’*(G);

u = upd + ug;
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The consistent initial conditions are calculated based on the rigid model of the ma-
nipulator, deformation of the flexible links are disregarded

q0 = [* 0.9812 1.5958 , 0 0, * 1.7125 -1.2922, 0 0]’;

q0(1) = q0(2)*r; % torsional spring 1 is relax;

q0(6) = q0(7)*r; % torsional spring 2 is relax;

dq0 = [0 0 0, 0 0, 0 0 0, 0 0]’;
11 
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(a) Right part (b) Left part

Fig. 5. Time history of transverse and angular deflection of flexible links
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5 Conclusion 

An approach to establish dynamic models of parallel robotic manipulators with rigid and 
flexible links and elastic joints is presented. According to the symmetric structure of the parallel robot, 
the system is divided into some similar substructures consisting of components with lumped 
parameters (rigid bodies and springs) and distributed parameters (flexible links). The flexible links are 
modeled by beams subjected to flexural deflection and using a method of floating reference frames. 
Based on kinetic energy, potential energy and dissipative energy, dynamic equations are established 
for each substructure using Lagrange’s equation of 2nd kind. The overall equations obtained form a 
system of algebraic differential equations. These equations are solved by Lagrange multiplier 
elimination and combined with Baumgarte stabilization technique to ensure that the constraint is not
broken in numerical simulation. The approach in this paper can be applied to modeling parallel planar 
and spatial robots with flexible links and elastic joints. 
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The simulation results are shown in Fig. 4 and Fig. 5 include time plots of the joint
variables of the rigid link and the deflection of the flexible link. The graph of the joint
variables q11, q12, q13 and q21, q22, q23 reaches the stationary position after about 2.5 s (Fig. 4).
The deformation motion graph e13, e14,e23, e24 shows high frequency oscillation even when
the manipulator has reached the target position (Fig. 5). The oscillation of the flexible
link has a clear effect on the joint variables q13 and q23. The graph in Fig. 6 shows that
with Baumgarte stabilization, the errors of the constraint equations are kept small and
approaches zero as the manipulator comes to rest.

5. CONCLUSIONS

An approach to establish dynamic models of parallel robotic manipulators with rigid
and flexible links and elastic joints is presented. According to the symmetric structure of
the parallel robot, the system is divided into some similar substructures consisting of
components with lumped parameters (rigid bodies and springs) and distributed param-
eters (flexible links). The flexible links are modeled by beams subjected to flexural deflec-
tion and using a method of floating reference frames. Based on kinetic energy, potential
energy and dissipative energy, dynamic equations are established for each substructure
using Lagrange’s equation of 2nd kind. The overall equations obtained form a system
of algebraic differential equations. These equations are solved by Lagrange multiplier
elimination and combined with Baumgarte stabilization technique to ensure that the con-
straint is not broken in numerical simulation. The approach in this paper can be applied
to modeling parallel planar and spatial robots with flexible links and elastic joints.
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