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Abstract. Direct methods, comprising limit and shakedown analysis, are a branch of com-
putational mechanics. They play a significant role in mechanical and civil engineering de-
sign. The concept of direct methods aims to determine the ultimate load carrying capacity
of structures beyond the elastic range. In practical problems, the direct methods lead to
nonlinear convex optimization problems with a large number of variables and constraints.
If strength and loading are random quantities, the shakedown analysis can be formulated
as stochastic programming problem. In this paper, a method called chance constrained
programming is presented, which is an effective method of stochastic programming to
solve shakedown analysis problems under random conditions of strength. In this study,
the loading is deterministic, and the strength is a normally or lognormally distributed
variable.

Keywords: limit analysis, shakedown analysis, chance constrained programming, stochastic
programming, reliability of structures.

1. INTRODUCTION

The plastic collapse limit and the shakedown limit, which define the load-carrying
capacity of structures, are important in assessing the structural integrity. Due to the high
expenses of experimental setups and the time-consuming full elastic-plastic cyclic load-
ing analysis, the determination of these limits by numerically direct plasticity methods is
of great interest. Lower bound limit analysis determines directly the largest load, which is
safe against plastic collapse as a statically formulated maximum problem. Alternatively,
lower bound limit analysis determines the least collapse load as a kinematically formu-
lated minimum problem. Both optimization problems are convex, so that they have the
same solution by duality, which is therefore an exact solution of classical plasticity. Shake-
down analysis extends the optimization approach to time-variant loading and is used for
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limit state design to check against failure by alternating plasticity and incremental plas-
tic collapse (ratcheting). A structure is safe against plastic failure if initial plastic defor-
mations cease because the structure “shakes down” to elastic behavior. The theory and
several numerical methods can be found in [1–6]. Under uncertainty, it is important that
uncertain quantities like Young’s modulus and details of the load history do not affect
the limit and shakedown load. For a prescribed structural reliability (or prescribed failure
probability) the limit and shakedown load can be obtained by stochastic optimization.

2. DETERMINISTIC PROGRAMMING FOR LIMIT AND SHAKEDOWN
OF STRUCTURES

2.1. Limit analysis
Consider a structure made of elastic-perfectly plastic or rigid-perfectly plastic ma-

terial and there is a set of forces F acting on it. A common assumption is that all the
components of the set of forces change proportionally to a certain load factor α. This case
is referred to as proportional loading. In matrix notation we can write

F = αF0, (1)

where F0 is some fixed reference load vector. In Fig. 1 it is F0 = (F, 2F).
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Figure 1. Portal frame with the “combined” failure mechanism under the load  0 1 2,F FF  

If the value of   remains sufficiently low, response of the structure is elastic. As   increases 

and reaches a special value, the first point in the body reaches the plastic state. This state of stress is 

called elastic limit. Further increase of   will lead to the expansion of plastic region in the structure. In 

the frame in Figure 1 localized plastic hinges gradually form and the structure becomes statically 

determinate before the next occurring plastic hinge transform the structure into a collapse mechanism. 

At this limit state, the structure is collapsed by applied forces. The value lim   corresponding to the 

plastic collapse state is called the safety factor of the structure or the limit load factor It is unique and 

independent of Young's modulus and residual stresses, since the structure was statically determinate 

before collapse. This property is useful because the influence of some uncertain quantities is eliminated 

from the limit analysis problem. 

 

The numerical limit analysis can be based on two theorems. 

 Lower bound theorem: 

If a stress field σ  can be found, which satisfies the statically admissible state, then the 

corresponding multiplier   cannot exceed the limit multiplier lim . 

 Upper bound theorem: 

Any multiplier   corresponding to a kinematically admissible state is not less than the 

limit multiplier lim .  

There are two basic approaches to limit analysis corresponding to the two above theorems. The 

static approach is based on the lower bound theorem, which calculates the safety factor for the 

maximum statically admissible load multiplier   by solving a maximum optimization problem 
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The constraints in (2.2) are the Cauchy equations of equilibrium, static boundary conditions and 

conditions of plastic admissibility, respectively. With  0 ,F b t  in (2.1) the body force b  and the 

traction t  in normal direction n  to the static boundary tS  increase proportionally with  . 
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Fig. 1. Portal frame with the “combined” failure mechanism under the load F0 = (F, 2F)

If the value of α remains sufficiently low, response of the structure is elastic. As α
increases and reaches a special value, the first point in the body reaches the plastic state.
This state of stress is called elastic limit. Further increase of α will lead to the expansion
of plastic region in the structure. In the frame in Fig. 1 localized plastic hinges gradually
form and the structure becomes statically determinate before the next occurring plastic
hinge transform the structure into a collapse mechanism. At this limit state, the structure
is collapsed by applied forces. The value α = αlim corresponding to the plastic collapse
state is called the safety factor of the structure or the limit load factor It is unique and
independent of Young’s modulus and residual stresses, since the structure was statically
determinate before collapse. This property is useful because the influence of some uncer-
tain quantities is eliminated from the limit analysis problem.
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The numerical limit analysis can be based on two theorems.
- Lower bound theorem:
If a stress field σ can be found, which satisfies the statically admissible state, then the corre-

sponding multiplier α cannot exceed the limit multiplier αlim.
- Upper bound theorem:
Any multiplier α corresponding to a kinematically admissible state is not less than the limit

multiplier αlim.
There are two basic approaches to limit analysis corresponding to the two above

theorems. The static approach is based on the lower bound theorem, which calculates the
safety factor for the maximum statically admissible load multiplier α by solving a maxi-
mum optimization problem

αlim = max α

s.t.:

 −∇ · σ = αb̄ in V
σ · n = αt̄ on St
f (σ) ≤ 0 in V

(2)

The constraints in (2) are the Cauchy equations of equilibrium, static boundary con-
ditions and conditions of plastic admissibility, respectively. With F0 =

(
b̄, t̄
)

in (1) the
body force b̄ and the traction t̄ in normal direction n to the static boundary St increase
proportionally with α.

The second kinematic approach is based on the upper bound theorem that calculates
the safety factor by searching for the minimum kinematically admissible load multiplier
by the minimum problem

αlim = min α

α =
∫
V

D(ε̇)dV

s.t.:


ε̇ = (∇u̇)sym in V
u̇ = 0 on Su∫
V

b̄ · u̇dV +
∫
Su

t̄ · u̇dS − 1 = 0

(3)

where
∫

V
D(ε̇)dV is the plastic dissipation power. The constraints in (3) are the strain-

displacement relations, the kinematic boundary conditions on the boundary Su, and the
normalized positive external power.

2.2. Shakedown analysis of structures
For limit analysis, all the components of the set of forces acting upon the structures

change monotonically. In practice, however, certain types of loads on structures are far
from monotonic. Moreover, the load acting on the structures may be repeated (cyclic)
many times or varying arbitrarily in a certain convex load domain L.
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V
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Figure 2. Convex load domain L  for two forces acting on structure 

 

As the load intensities become higher than the elastic limit, plastic deformation occurs. It may 

happen that, after some plastic deformation in the initial load cycles, the structural behaviour becomes 

eventually elastic. Such stabilization of plastic deformations is called (elastic) shakedown or adaptation. 

If we consider the structure at elastic shakedown regime, we can extend the load capacity by increasing 

the load domain by a shakedown load factor   to L  as shown in Figure 2. Low cycle fatigue, 

ratchetting and collapse are failure modes which are not allowed to happen in the safe structures. There 

are two fundamental theorems for shakedown analysis. Melan’s static theorem provides a lower bound 

to the shakedown load factor so that all load histories in L  shakedown by convexity of L  [13]. 

From Melan’s shakedown theorem, smallest load factor   can be found by solving the mathematical 

programming 

Fig. 2. Convex load domain L for two forces acting on structure

As the load intensities become higher than the elastic limit, plastic deformation oc-
curs. It may happen that, after some plastic deformation in the initial load cycles, the
structural behaviour becomes eventually elastic. Such stabilization of plastic deforma-
tions is called (elastic) shakedown or adaptation. If we consider the structure at elastic shake-
down regime, we can extend the load capacity by increasing the load domain by a shake-
down load factor α to αL as shown in Fig. 2. Low cycle fatigue, ratchetting and collapse
are failure modes which are not allowed to happen in the safe structures. There are two
fundamental theorems for shakedown analysis. Melan’s static theorem provides a lower
bound to the shakedown load factor so that all load histories in αL shakedown by con-
vexity of L [7]. From Melan’s shakedown theorem, smallest load factor α− can be found
by solving the mathematical programming

α− = max α

s.t.


∇ · σE = −fv , ∇ · ρ̄ = 0 in V
∇ · σE = −ft , nTρ̄ = 0 on ∂V
f
[
ασE (t) + ρ̄

]
− σy ≤ 0 in V, ∀t ∈ [0, ∞)

(4)

Considering that the inequality condition needs to be checked only in the m load
vertices of a convex load domain, problem (4) can be written in finite element formulation

α− = max α

s.t.:


NG

∑
i=1

wiBT
i ρ̄i = BTρ̄ = 0

f
[
ασE

ik+ρ̄i

]
≤ ri, ∀k = 1, m, ∀i = 1, NG

(5)

where:
+ B = [w1B1, w2B2, . . . , wiBi, . . . , wNGBNG];
+ ρ̄T =

[
ρ̄T

1 , ρ̄T
2 , . . . , ρ̄T

i , . . . , ρ̄T
NG

]
;



FEM shakedown analysis of structures under random strength with chance constrained programming 463

+ ρ̄ is the discretized residual stress field with its components computed at Gauss
points;

+ σE
ik is the fictitious elastic stress vector at Gauss point i corresponding to the vertex

P̂k of the load domain L;
+ Bi is the deformation matrix B(x) at Gauss point i;
+ wi is the weight factor of the Gauss point i;
+ NG denotes the total number of Gauss points of the discretized structure;
+ ri is the yield stress of the material at Gauss point i.
The second approach is based on Koiter’s kinematic theorem. This is an upper bound

nonlinear programming problem. If the von Mises yield condition is used, then the dis-
cretized formulation of the upper bound problem is [8]

α+ = min
m

∑
k=1

NG

∑
i=1

√
2
3

ri

√
ε̇T

ikDε̇ik + ε2
0

s.t.:



m

∑
k=1

ε̇ik − Biu̇ = 0 ∀i = 1, NG

Dvε̇ik = 0 ∀i = 1, NG, ∀k = 1, m
m

∑
k=1

NG

∑
i=1

wi ε̇
T
ikσe

ik − 1 = 0

(6)

where:
+ ε̇ik is strain rate vector at Gauss point i, corresponding to load vertex P̂k

ε̇ik =
[
ε̇i

11, ε̇i
22, ε̇i

33, γi
12, γi

23, ε̇i
31

]T

k
;

+ σe
ik is the fictitious elastic stress vector at Gauss point i corresponding to the

vertex F̂k;
+ u̇ is the displacement rate vector;
+ ε2

0 is the small positive number to avoid the singularity of the dissipation function;
+ D, Dv are square matrices, in a 3D model they have the form

D =


1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 1/2 0 0
0 0 0 0 1/2 0
0 0 0 0 0 1/2

 , Dv =


1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

3. STOCHASTIC PROGRAMMING FOR LIMIT AND SHAKEDOWN ANALYSIS
UNDER RANDOM STRENGTH

3.1. Lower bound approach
For a real structure the strength ri of the material is uncertain it can be modelled

through random variables ri = ri(ω) on a certain probability space. Under uncertainty,
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the inequalities of (5) are not always satisfied so that the structure may fail with the prob-
ability Pf because the stress is not plastically admissible. The structure must be safe with
a required reliability ψ = 1− Pf that is the probability of the ith yield condition being sat-
isfied is greater than some reliability level ψ. Problem (5) becomes a chance constrained
stochastic program

α− = max α

s.t.:


NG

∑
i=1

wiBT
i ρ̄i = 0

Prob
[

f
(

ασE
ik+ρ̄i

)
− ri(ω) ≤ 0

]
≥ ψ, ∀k = 1, m , ∀i = 1, NG

(7)

If the strength ri(ω) of the material follows a Gaussian distribution ri ∼ N(µi, σi)
with mean value µi and standard deviation σi. Let Φ denote the cumulative distribu-
tion function (CDF) of the standard normal distribution. Introducing the new variable
κ = Φ−1 (ψ) so that ψ = Φ (κ), the chance constrained program (7) can be convert into
equivalent deterministic programming after some transformations

α− = max α

s.t.:


NG

∑
i=1

wiBT
i ρ̄i = 0

f
[
ασE

ik+ρ̄i

]
≤ µi − κσi , ∀k = 1, m, ∀i = 1, NG

(8)

If the strength of the material ri(ω) is distributed lognormally ln ri ∼ N (µi, σ2
i ) with

parameters µi and σi, we get the equivalent deterministic formulation of the problem

α− = max α

s.t.:


NG

∑
i=1

wiBT
i ρ̄i = 0

f
[
ασE

ik+ρ̄i

]
≤ eµi−κσi , ∀k = 1, m, ∀i = 1, NG

(9)

3.2. Upper bound approach
If the strength ri is an uncertain quantity, the objective function of the kinematic prob-

lem is a stochastic variable and the upper bound problem (6) also becomes a stochastic
programming problem. We can state the problem in such a way that one looks for a min-
imum lower bound η of the objective function under the constraint that the probability ψ
of violation of that bound is prescribed [9, 10]
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α+ = min η

s.t.:



Prob

(
m

∑
k=1

NG

∑
i=1

√
2
3

ri

√
ε̇T

ikDε̇ik + ε2
0 ≥ ψ

)
= η

m

∑
k=1

ε̇ik − Biu̇ = 0 ∀i = 1, NG

Dvε̇ik = 0 ∀i = 1, NG, ∀k = 1, m
m

∑
k=1

NG

∑
i=1

wi ε̇
T
ikσe

ik − 1 = 0

(10)

If yield stress ri(ω) is distributed normally, program (10) can be converted into an
equivalent deterministic program [11]

α+ = min
m

∑
k=1

NG

∑
i=1

√
2
3
(µi − κσi)

√
ε̇T

ikDε̇ik + ε2
0

s.t.:



m

∑
k=1

ε̇ik − Biu̇ = 0 ∀i = 1, NG

Dvε̇ik = 0 ∀i = 1, NG, ∀k = 1, m
m

∑
k=1

NG

∑
i=1

wi ε̇
T
ikσe

ik − 1 = 0

(11)

In the case of a lognormal distribution of strength, problem (10) can be convert into
the equivalent deterministic program by duality [11]

α+ = min
m

∑
k=1

NG

∑
i=1

e(µi−κσi)
√

ε̇T
ikDε̇ik + ε2

0

s.t.:



m

∑
k=1

ε̇ik − Biu̇ = 0 ∀i = 1, NG

Dvε̇ik = 0 ∀i = 1, NG, ∀k = 1, m
m

∑
k=1

NG

∑
i=1

wi ε̇
T
ikσe

ik − 1 = 0

(12)

3.3. Duality between lower bound and upper bound
One can show that problem (11) is dual to problem (8) for normal distributions, and

problem (12) is dual to problem (9) for lognormal distributions. The solution of the lower
bound and upper bound converge to the same load factor α = α+ = α− , which therefore
is the exact solution of the FEM discretization. This fact is used to create a dual chance
constrained programming algorithm, which calculates upper bound and lower bound
shakedown load factors at the same time. More detail is given in [7, 8].

4. NUMERICAL EXAMPLE

4.1. Limit analysis of a two span beam
In the first example, we consider a two span continuous beam with rectangular

cross-section on a pin joint and two roller joints, (Sikorski and Borkowski 1990 [12]).
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The beam is subjected to two concentrated forces shown in Fig. 3. Each span has ran-
dom yield moments characterized by the mean values M̄0,1 = 2.0 kNm, M̄0,2 = 3.0 kNm
and the standard deviations σi = 0.1M̄0,i (i = 1, 2). For the numerical analysis the corre-
sponding yield stress is obtained as σy = 2000 kN/m2 from the plastic section modulus
Zp = bh2/4 with height h = 0.244 m and width b = 0.1 m of the section. Let us deter-
mine the limit load factor for the failure probability Pf = 1.0 · 10−4 or the reliability level
ψ = 1 − Pf = 0.9999 so that κ = Φ−1(ψ) = Φ−1(0.9999) = 3.719.

The numerical solution converges as shown in Fig. 3 to the deterministic limit load
factor α = 2.19 and to the probabilistic limit load factors α = 1.38 and α = 1.51 for
normally and lognormally distributed strength, respectively. The limit loads in [12] and
the analytical limit loads are based on beam theory and are therefore different from the
numerical limit loads. All limit loads are summarized in Table 1. Fig. 4 and Fig. 5 show
the dependency of the stochastic limit load on the coefficient of variation and the failure
probability, respectively.
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Figure 3. Two span beam and the mesh using three-node triangular elements; all dimensions in mm. 
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Fig. 3. Two span beam and the mesh using three-node triangular elements; all dimensions in mm

Table 1. Limit load factor of the two span beam

Lower bound Upper bound Method, reference

2.19 2.19 deterministic numerical, Tran et al. [13]
2 2 analytical, Sikorski, Borkowski [12]

1.15 1.36
normal

Sikorski, Borkowski [12]
1.38 1.38 numerical, Tran et al. [13]
1.256 1.256 analytical, Tran et al. [13]

1.509 1.509 lognormal numerical
1.373 1.373 analytical



FEM shakedown analysis of structures under random strength with chance constrained programming 467N.T. Tran, T.L. Trinh, N.T.Dao, M.K. Truong, V.T. Giap, T.H. Dinh, M. Staat 8 

 

Figure 4. Convergence of the limit load factor. 

 

Table 1 : Limit load factor of the two span beam 

Lower 

bound 

Upper 

bound 
 Method, reference 

2.19 2.19 
deterministic 

numerical, Tran et al.[8] 

2 2 analytical, Sikorski, Borkowski [1] 

1.15 1.36 

normal 

Sikorski, Borkowski [1] 

1.38 1.38 numerical, Tran et al. [8] 

1.256 1.256 analytical, Tran et al. [8] 

1.509 1.509 
lognormal 

numerical 

1.373 1.373 analytical 

 

Fig. 4. Convergence of the limit load factor
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Figure 5. Dependency of the limit load on the coefficient of variation 

 

 

Figure 6. Dependency of the limit load on the failure probability 

Fig. 5. Dependency of the limit load on the coefficient of variation
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Figure 5. Dependency of the limit load on the coefficient of variation 

 

 

Figure 6. Dependency of the limit load on the failure probability 
Fig. 6. Dependency of the limit load on the failure probability

4.2. Shakedown analysis of square plate with a hole
In the second example, we consider a plate with hole (D/L = 0.2), with yield stress

σy, and subjected to two forces F1, F2 varying independently in a load domain

(F1, F2) ∈
[
0; σy

]
×
[
−σy; σy

]
.

Due to symmetry, a quarter of the plate is modelled by 1200 T3 elements as shown
in Fig. 7.

N.T. Tran, T.L. Trinh, N.T.Dao, M.K. Truong, V.T. Giap, T.H. Dinh, M. Staat 10 

4.2. Shakedown analysis of square plate with a hole 

In the second example, we consider a plate with hole ( 0.2D L  ), with yield stress y , and subjected 

to two forces 
1 2,F F  varying independently in a load domain: 

 1 2, 0 ; ;y y yF F             

Due to symmetry, a quarter of the plate is modelled by 1200 T3 elements as shown in Figure 7. 

 

 

 

Figure 7. Plate with hole and FE mesh 

 

The chosen reliability level in this example is 0.9999   so that 3.719  . If the yield stress 
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Table 2. Limit analysis: comparison with some authors

Tension loading equibiaxial uniaxial Load model

numerical

Belytschko [14] — 0.780

Genna [15] — 0.793

Garcea et al. [16] 0.902 0.806 deterministic

Tran et al. [17] 0.896 0.797

0.899 0.807

Present 0.565 0.506 normal

0.618 0.554 lognormal

exact

Gaydon, McCrum [18] — 0.800 deterministic

Present
— 0.502 normal

— 0.549 lognormal

The chosen reliability level in this example is ψ = 0.9999 so that κ = 3.719. If the
yield stress has the mean value E

[
σy
]
= 1 kN/m and the standard deviation Var

(
σy
)
=

(0.1µ)2 = (0.1 kN/m)2, the limit and shakedown load factors for two load cases are com-
pared with literature values in Tables 2-3. The tables also show the load factors for dif-
ferent distributions of random of strength. For normal and lognormal distributions, the
exact stochastic limit load factors in Table 2 can be calculated from the exact deterministic
limit load factor. Fig. 8 shows the convergence of the shakedown load.

Table 3. Shakedown analysis: comparison with some authors

Tension loading equibiaxial uniaxial Load model

Belytschko [14] 0.431 0.571

Genna [15] 0.478 0.653

Garcea et al. [16] 0.438 0.604 deterministic

Tran et al. [17] 0.434 0.601

0.436 0.602

Present 0.274 0.378 normal

0.299 0.414 lognormal
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Figure 8. The convergence of shakedown load for cases of distribution of strength 
Fig. 8. The convergence of shakedown load for cases of distribution of strength

5. CONCLUSIONS

Modern structural design is done with respect to ultimate limit states of the structure
such as plastic collapse, ratcheting and alternating plasticity. Admissible loads are calcu-
lated with respect to partial safety factors for actions and material [19]. The safety factors
in design codes reflect experts’ opinion about uncertainties and failure consequences.

This paper presents a technique of stochastic programming so called chance con-
strained programming to treat problem of shakedown analysis under random strength
of material. Chance constrained programming leads to a reformulation of the determinis-
tic problem so that the effort of the stochastic analysis is the same as a deterministic limit
or shakedown analysis. Uncertainties can be quantified and a target failure probability
chosen according to the failure consequences. Then a design load can calculated on the
basis of the stochastic model and data of all uncertainties. Design code committees can
decide on the target failure probabilities.

Probabilistic structural has the acceptance problem that the calculated failure prob-
abilities are very sensitive. A small change of data or a different distribution type can
change the failure probability by orders of magnitude. The stochastic programming ap-
proach is very robust. The calculated design loads change only in the order of changes in
the input data. This behavior and the small numerical efforts make the method attractive
for structural engineer.
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Figure 9. Iteration diagram of square plate with central hole ( 0.2D L  ) 

 

Fig. 9. Iteration diagram of square plate with central hole (D/L = 0.2)
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