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Abstract. Composite plates are high-tech structures used in many areas of modern engi-
neering, like building, space travel, ships, etc. In practice, these structures are often used in
their thin form, typically a reinforced composite plate subjected to dynamic loads. There-
fore, when subjected to loads, the plate may be instability. The article presents the element
model, finite element algorithm, and buckling analysis results of reinforced composite
plates subjected to dynamic loads in order to determine the buckling domain. Further-
more, the influence of some factors such as geometric parameters, reinforcing stiffeners,
and material characteristics on the buckling domain of the plate is studied in detail.
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1. INTRODUCTION

Research on the parameter stability of the structure has been carried out by many
scientists. Among them, the earliest Bolotin [1] has had many research results on the
parameter stability of elastic systems such as isotropic homogeneous plates and shells
subjected to harmonic loads. Sofiyev et al. [2] solved the problem of bending plates and
shells under the action of torsion forces that change linearly with time. The authors es-
tablished the stability equation as a system of differential equations with time-dependent
coefficients solved by applying Galerkin’s method, and established formulas for limited
dynamic and static loads. Hutt and Salam [3] used the finite element method to ana-
lyze the dynamic stability of homogeneous plates using a four-node thin plate element,
which gave results on the dynamic stability of rectangular plates subjected to dynamic
loads with or without shock absorbers. Aboudi et al. [4] studied the instability of ho-
mogeneous, viscous plates under cyclic compressive loads in the plane on the basis of
Liapunov exponents, thereby establishing formulas for dynamic loads. Srinivasan and

https://doi.org/10.15625/0866-7136/17938
https://orcid.org/0000-0001-5421-7772
https://orcid.org/0000-0003-2023-6275
mailto: tiendat1962@gmail.com


Dynamic buckling analysis of reinforced composite plate subjected to harmonic loads 61

Chellapandi [5] used the analytical method to investigate the dynamic stability of a rect-
angular plate bearing harmonic load on the plate’s mean surface, determine the expres-
sion of the critical force, and construct graphs of the plate’s stability domain.

The increasing use of fiber-reinforced composite panels and shells in many impor-
tant engineering fields has led to interest in the influence of the material structure on the
dynamic instability of the structure. Therefore, the study of dynamic stability calcula-
tion of structures made of composite materials is also of interest to many scientists. The
dynamic instability of composite panels under compressive loads in the plane is stud-
ied in [6], in which author Cederbaum built the basic equations and used the Bubnov–
Galerkin method to calculate Calculate and investigate the influence of some geometrical
and material factors on the critical force. Chen and Yang [7] investigated the dynamic
stability of a composite rectangular plate uniformly compressed at the mean and flex-
ural surfaces using the Galerkin method. The research results show that the influence
of horizontal shear deformation and rotational inertia as well as the influence of the
number of layers, reinforcement angle, and load characteristics on the critical parame-
ters are clear. Wang and Dawe [8] have investigated the dynamic stability characteristics
of rectangular composite plates using Bolotin’s method, where periodic solutions in the
form of Fourier series are employed, and the boundaries of the instability regions are
obtained using eigenvalue approach. Grady et al. [9] presented the results of studying
the dynamic stability of layered composite panels subjected to impact loads by the finite
element method. The authors have built a dynamic stability equation and a solution algo-
rithm. Through the study, the influence of the composite layer on the unstable forms was
investigated. Sahoo and Singh [10] studied the dynamic stability of layered composite
panels and sandwich panels subjected to harmonic compression in the mean face of the
plate. Using the finite element method, algorithms and numerical simulations have been
built to allow the study of the influence of geometrical parameters, materials, bound-
ary conditions, and loads on the critical force of the structure. Dey and Singha [11], the
dynamic stability characteristics of simply supported laminated composite skew plates
subjected to a periodic in-plane load are investigated using the finite element approach.
The formulation includes the effects of transverse shear deformation, in-plane and rotary
inertia. The boundaries of the instability regions are obtained using the Bolotin’s method
and are represented in the nondimensional load amplitude-excitation frequency plane.
The principal and second instability regions are identified for different parameters such
as skew angle, thickness-to-span ratio, fiber orientation and static in-plane load. Moorthy
et al. [12] studied the dynamic instability of composite panels subjected to bidirectional
compressive loads in the mean plane by analytical method. Dynamic instability behavior
of composite and sandwich laminates with interfacial slips was studied by Chakrabarti
and Sheikh [13], by using the refined higher order shear deformation theory and later
the same theory combined with a linear spring model was used to study the dynamic
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instability of imperfect laminated sandwich plates having in-plane partial edge loading.
This paper reports on the dynamic instability study conducted on symmetric angle-ply
composite plate. The FEM formulation used in this study is based on the first order shear
deformation theory (FSDT). The instability charts are plotted and the effect of several pa-
rameters on the instability chart and the degree of instability (DOI) have been calculated.

To enhance the stability of the plate, the solution of arranging reinforcement ribs
was used. One of the current research topics is the numerical solution of the dynamic
stability problem for structural forms made of reinforced ribbed composite materials.
This is a complex problem, but currently, there are not many published research results
to determine the critical force, the stability domain of the structure and the influence of
composite tendons on the stability of the structure.

This paper shows the results of using the finite element method and the stability
standard of the periodic coefficient linear differential equation system to solve the dy-
namic stability problem of thin plates made of composite materials. Reinforcing ribs are
subjected to cyclic loads acting in the plate plane.

2. GOVERNING EQUATIONS

Consider a rectangular laminated composite plate with reinforcing ribs that run par-
allel to the plate’s edges. Each layer of the plate and the ribs is made of the same material
and is arranged in a way that makes the average face of the plate symmetrical. The mate-
rial of each layer is a homogeneous composite, including the base material and the fiber
reinforcement. The problem model is shown in Fig. 1.
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Fig. 1. The model of reinforced composite plate

The plate subjected to bending due to time-varying loads in the mean plane is de-
scribed by the finite element method by a system of equations as follows [14, 15]

[Mu] {q̈}+ ([Ku] + [KG (t)]) {qu} = 0, (1)
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where {qu} =
{

w1ϕx1ϕy1 . . . wn ϕxn ϕyn
}

is the bending displacement vector of the
nodes, n is the total number of nodes, [Mu] is the mass matrix, [Ku] is the bending stiffness
matrix,

[
Kg
]

is the geometric stiffness matrix which changes with time t.

To set up the geometric stiffness matrix in the formula (1), consider plate oscillation
subjected to harmonic load T acting in the plate plane as follows[

M f
] {

q̈ f
}
+
[
K f
] {

q f
}
= {F (t)} , (2)

where
{

q f
}
= {u1v1 . . . unvn} is the node displacement vector in the plane,

[
K f
]

,
[
M f
]

are the stiffness matrix and the mass matrix of the plate in the planar problem, {F (t)} is
the load vector. The cyclic load vector {F (t)} is represented as

{F(t)} = {F0}+
N

∑
k=1
{Fk} cos kpt, (3)

where p =
2π

T
is the fundamental frequency. Then the stable forced oscillation has the

following form:
{

q f (t)
}
= {a0}+

N

∑
k=1
{ak} cos pkt. The stress at the center of each element

is calculated through the node displacement vector

{σ}e =
{

σxσyτxy
}e

=
[
D f
]e [B f

]e {q f
}e

=
[
D f
]e [B f

]e

(
{a0}e +

N

∑
k=1
{ak}e cos pkt

)
. (4)

From the stress components in formula (4), the geometric stiffness matrix of the plate
has the form

[KG (t)] = [KG0] +
N

∑
k=1

[KGk] cos pkt. (5)

The global matrix of the composite plate [Ku] ,
[
Kg
]

,
[
K f
]

, [Mu] ,
[
K f
]

are determined
from the element stiffness matrix of the composite plate [15]

[Ku] = ∑ [Kue], [Mu] = ∑ [Mue],
[
K f
]
= ∑

[
K f e
]
,
[
M f
]
= ∑

[
M f e

]
, [KG] = ∑ [KGe].

(6)

2.1. Composite plate element

- Determining [Kue]

Considering the rectangular element of the composite plate subjected to bending, at
each node there are 3 degrees of freedom (Fig. 2(a)). In this paper, the Kirchhoff plate
theory is used to describe the displacement field of the structure.



64 Pham Tien Dat, Le Pham Binh 4 

              
a)                                                                  b) 

Fig. 2. Composite plate element 
a) bending plate, b) compression plate in the mean plane 
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(a) Bending plate
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(b) Compression plate in the mean plane

Fig. 2. Composite plate element

The node displacement vector and the node load vector of the element are defined as

{qu}e =
{

w1 φx1 φy1 . . . w4 φx4 φy4
}T . (7)

The deflection at a point within the element is determined through the element’s
node displacements as follows

w0 = [Lw] {qu}T
e , (8)

where [Lw] is the shape function matrix in bending.

[Lw] =
[

Nu1 Nu2 Nu3 . . . Nu10 Nu11 Nu12
]

, (9)

where Nu1 (i = 1, . . . , 12) is the shape functions in bending [3].

The element’s stiffness matrix is determined by the formula [14, 15]

[Kue] =
∫
s

[Bu]
T [Du] [Bu]dS, (10)

with [Bu] is the matrix obtained from the differential of shape functions for the bending
problem. [Du] is the matrix of bending stiffness constants of the composite plate, which
is determined as follows [16]

[Du] =

 D11 D12 D16
D12 D22 D26
D16 D26 D66

 , Dij =
1
3

n

∑
k=1

Qij
(
z3

k+1 − z3
k
)
, (i, j = 1, 2, 6). (11)

- Determining
[
K0

ge

]
The components of the matrix [KGe] are determined as follows [15](
Kij
)e

G =
∫
S

[
N0x

∂ [Lw]

∂x
∂ [Lw]

T

∂x
+ N0y

∂ [Lw]

∂y
∂ [Lw]

T

∂y
+ 2N0xy

∂ [Lw]

∂x
∂ [Lw]

T

∂y

]
dS, (12)
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where N0x, N0y, N0xy are the internal membrane force components that result when solv-
ing the planar problem (2).

- Determining
[
K f e
]

Node displacement vector{
q f
}

e =
{

u1 v1 u2 v2 u3 v3 u4 v4
}T . (13)

The stiffness matrix of the composite film element is determined by the formula

[
K f
]

e =
∫
s

[
B f
]T [D f

] [
B f
]

dS, (14)

with
[
B f
]

is the matrix obtained from the differential of shape functions for the bearing
plate problem in the mean plane.

[
D f
]

is the matrix of membrane stiffness constants of
the composite plate, which is determined as follows [4]

[
D f
]
=

 A11 A12 A16
A12 A22 A26
A16 A26 A66

 , Aij =
n

∑
k=1

Qij (zk+1 − zk), (i, j = 1, 2, 6). (15)

- Determining [Mue]

[Mue] =
∫
S

{
J0 [Lw]

T [Lw]
}

dS, (16)

where

J0 =
n

∑
k=1

ρk (zk+1 − zk), (17)

with ρk is the density of the kth composite layer material.

2.2. Stiffener composite element

For bending and torsion, stiffeners are modeled as composite beam elements, as
shown in Fig. 3(a).

The nodal element displacement vector is defined as{
qgue

}
=
{

w1 θx1 θy1 w2 θx2 θy2

}T . (18)
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Stiffness and mass matrix of the bending composite beam element

[
Kgue

]
=



12Eu Jy

`3 0 −
6Eu Jy

`2 −
12Eu Jy

`3 0 −
6Eu Jy

`2

0
Gx Jx

`
0 0 −Gx Jx

`
0

−
6Eu Jy

`2 0
4Eu Jy

`

6Eu Jy

`2 0
2Eu Jy

`

−
12Eu Jy

`3 0
6Eu Jy

`2

12Eu Jy

`3 0
6Eu Jy

`2

0 −Gx Jx

`
0 0

Gx Jx

`
0

−
6Eu Jy

`2 0
2Eu Jy

`

6Eu Jy

`2 0
4Eu Jy

`


, (19a)

[
Mgue

]
=



13ρtF`
35

0
11ρtF`2

210
9ρtF`

70
0 −13ρtF`2

420
0

ρt`Jx

3
0 0

ρt`Jx

6
0

11ρtF`2

210
0

ρtF`3

105
−13ρtF`2

420
0 −ρtF`3

140
9ρtF`

70
0

13ρtF`2

420
13ρtF`

35
0 −11ρtF`2

210
0

ρtF`Jx

6F
0 0

ρtF`Jx

3F
0

−13ρtF`2

420
0 −ρtF`3

140
−11ρtF`2

210
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. (19b)

For compression and bending, stiffeners are modeled as composite bar elements as
shown in Fig. 3(b). The node element displacement vector

{
qgne

}
=
{

u1 v1 u2 v2
}T . (20)
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Stiffness and mass matrix of the compression composite bar element [3]

[
Kgne

]
=



EmF
`

0 −EmF
`

0

0
12Eu J
`3 0 −12Eu J

`3

−EmF
`

0
EmF
`

0

0 −12Eu J
`3 0

12Eu J
`3


, (21)

[
Mgne

]
=



ρtF`
3

0
ρtF`

6
0

0
13ρtF`
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70

ρtF`
6

0
ρtF`

3
0

0
9ρtF`

70
0

13ρtF`
35


.

According to [16]

Em =
1

∆1

(
A22 A66 − A2

66
)

; ∆1 = A11A12 A66 + 2A12A16A26 − A11A2
26 − A22A2

16 − A66A2
12,

Eu =
12

h3
t DΣ

11
, D∗11 =

1
∆2

(
D22D66 − D2

26
)

, Gx =
1

βthtb2
t D∗66

,

∆2 = D11D12D16 + 2D12D16D26 − D11D2
26 − D22D2

16 − D66D2
12,

D∗66 =
1

∆3

(
D11D22 − D2

12
)

, ∆3 = D11D22D66 + 2D12D16D26 − D11D2
26 − D22D2

16 − D66D2
12.

(22)

with bt, ht, F, ρt are cross-sectional dimensions of the beam, the mass density of the com-
posite material. βt coefficient depends on the size of the cross-section. Jx and Jy are the
moments of inertia of the cross-section with respect to the x-axis, y-axis, respectively; and
l is the length of the element.

Using the mode analysis method [14, 15]. Then, the solution of equation (1) is found
by linear transformation in the form: {qu} = [V] {q}. [V] is the matrix containing the
m first free vibration mode shapes of the bending plate, which are determined from the
unrestrained free vibration equation

[M] {q̈}+ ([K] + [G (t)]) {q} = 0, (23)

[M] = [V]T [Mu] [V] , [K] = [V]T [Ku] [V] , [G (t)] = [V]T [KG (t)] [V] . (24)

When [V] the matrix is normalized to the mass, then [M] = [E] ; [K] = [Ω] .
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The problem is brought back to consider the stability of the solution of the system of
m equations for generalized coordinates {q}

{q̈}+ ([Ω] + [G (t)]) {q} = 0. (25)

The resistance matrix is diagonalized as: [Cu] = α [Ku] + β [Mu].

Eq. (25) becomes

{q̈}+ (α [Ω] + β [E]) {q̇}+ ([Ω] + [G (t)]) {q} = 0. (26)

Thus, the stability study of system (1) is reduced to the reduced system (26). Call the
state vector of equation (26)

{x (t)} =
{

q1 (t) ... qm (t) q̇1 (t) ... q̇m (t)
}T . (27)

The equation of state for a time-varying linear system (27) has the form

{ẋ (t)} = [A (t)] {x (t)} , {x0} = {x (0)} , (28)

where is a square matrix of order 2m. In the particular case under consideration, matrix
[A] dependent on time t has the form:

[A (t)] =
[

[0] [E]
− ([Ω] + [G (t)]) − (α [Ω] + β [E])

]
. (29)

3. STABILITY CRITERIA

The general solution of system (28) has the form {x (t)} = [Φ (t, 0)] {x0}, where
[Φ (t, 0)] is called the basic matrix of the system (28). The jth column of this matrix
is the jth eigenvalue of the system (28), denoted {x (t)}(j), with the initial condition
{x0}(j) = {x (0)}(j). The stability condition of the system (28) with [A (t)] a periodic
matrix T depends on the eigenvalues of the matrix [Φ (T, 0)], the solutions of the equa-
tion

det ([Φ (T, 0)− µ [E]]) = 0. (30)

Called µk is eigenvalues of [Φ (T, 0)], in general they are complex numbers. The sta-
bility criteria is stated as follows [17]: The system is asymptotically stable if every eigenvalue
has a modulus of less than 1. If every eigenvalue has a modulus of no more than 1, there is an
eigenvalue with a modulus equal to 1.1, the system is marginally stable. Conversely, even a single
value µk with a modulus greater than 1 makes the system unstable.
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4. NUMERICAL RESULTS

Consider a rectangular composite plate of size B × L (B = 100 cm, L = 200 cm),
thickness h = 0.5 cm, clamped at y = 0. The longitudinal and transverse stiffeners are
arranged with the distance between the stiffener: ex = 20 cm, ey = 40 cm, the cross-
sectional dimension of the stiffener is bg × hg = 2.0 cm × 0.5 cm. The plate is meshed
into 30 rectangular elements by 42 nodes, the stiffeners are meshed into 71 elements, the
plate is subjected to concentrated forces P = P0 cos θt as shown in Fig. 4.
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Composite material parameters for calculation are given in Table 1.

Table 1. Composite material parameters

No
Ec

(N/cm2)
En

(N/cm2)
ρc

(kg/cm3)
ρn

(kg/cm3)
Core

coefficient
Core angle

(degree)
Layer thickness

hk (cm)

1 39×106 7×106 0.00263 0.0027 0.4 0 0.1
2 13×106 7×106 0.00280 0.0027 0.4 60 0.1
3 7.4×106 7×106 0.00295 0.0027 0.4 90 0.1
4 13×106 7×106 0.00280 0.0027 0.4 60 0.1
5 39×106 7×106 0.00263 0.0027 0.4 0 0.1
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4.1. Influence of the ply angle

With frequency θ = 20
rad

s
, P0 = 4000 N, the results with different values of the core

angle of the composite layers are given in Table 2.

Table 2. Influence of the ply angle

Ply angle (degree) Result

0 Stability
15 Unstabiliy
30 Unstabiliy
45 Unstabiliy
60 Unstabiliy
75 Unstabiliy
90 Stability

The stability of the plate increases when the ply angle is 0 degree and 90 degrees.

4.2. Influence of the ratio of plate thickness and stiffener thickness (hg/h)

With frequency θ = 20
rad

s
, P0 = 4000 N, the stability of the plate with different

values ratio of plate thickness and stiffener thickness shown in Table 3.

Table 3. Influence of the ratio of plate thickness and stiffener thickness

hg/h Result

0.5 Unstabiliy
0.6 Unstabiliy
0.7 Unstabiliy
0.8 Unstabiliy
0.9 Stability
1.0 Stability
1.2 Stability

The stability of the plate increases as the ratio of plate thickness and stiffener thick-
ness increases (the thickness of the stiffener increases).

4.3. Influence of load amplitude

With frequency θ = 20
rad

s
, the results with different values of load amplitude as

shown in Table 4.
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Table 4. Influence of load amplitude

P0 (N) Result

4000 Stability
4500 Stability
5000 Stability
5500 Stability
6000 Stability
6500 Stability
7000 Stability
7190 Unstabiliy

When increasing the load amplitude leads to the possibility of dynamic instability of
the plate, in the case under consideration, with the load amplitude P0 ≥ 7190 N, the plate
becomes unstable.

4.4. Influence of load frequency

The influence of the load frequency on the stability of the plate, solve some problems
with different load frequencies, with P0 = 4000 N. The results are shown in Table 5.

Table 5. Influence of load frequency

Load frequency θ (rad/s) Result

1 Unstability
5 Unstability
10 Stability
20 Stability
30 Stability
40 Stability
50 Stability

With the specific data of the problem, it can be see that with a small load frequency,
the plate becomes unstable. Specifically, with Ω = 1 rad/s and Ω = 5 rad/s, the plate will
be unstable.

4.5. Determine the buckling domain of the plate with load amplitude and stiffener
thickness

Building a stable region of the plate with two variable parameters: Load amplitude
P0 varies from 10 N to 10000 N and stiffener thickness varies from 0 to 1.5 cm. Fig. 5 shows
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the buckling domain results of the plate. The blue region correspond to the parameters
for the plate to be stable, the white region are unstable.
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q

Fig. 5. Buckling domain of the plate

5. CONCLUSIONS

The main results presented in this paper are as follows: Equation for parametric
vibration of reinforced stiffener composite plate with geometric stiffness matrix as pe-
riodic matrix, using linear transformation by tool shapes. The unimpeded eigenvalues
are converted to a system of compact differential equations of periodic coefficients, the
basic matrix is established, and the eigenvalue criteria are used to evaluate the dynamic
buckling of the reinforced composite plate.

Specific case survey for a rectangular composite plate with reinforced stiffener, clamped
on an edge subjected to harmonic loads in the plane of the plate. The numerical results
have illustrated the capabilities of the algorithm and the program, and at the same time
evaluated the effect of changing the parameters of the reinforcement angle of the layer,
the thickness of the stiffener, the load amplitude to the stability of the plate. Through cal-
culations, a buckling domain of the plate has been recognized when changing the load
amplitude and stiffener thickness.
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