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Abstract. A new analytical approach for nonlinear thermal buckling of Functionally
Graded Graphene Platelet Reinforced Composite (FG-GPLRC) circular plates and shal-
low spherical caps using the first-order shear deformation theory (FSDT) is presented in
this paper. The circular plates and shallow spherical caps are assumed to be subjected to
uniformly distributed thermal loads. By applying the Galerkin method, the relations be-
tween thermal load-deflection are achieved to determine the postbuckling behavior and
critical buckling loads of the considered structures. Special effects on the nonlinear ther-
mal behavior of circular plates and shallow spherical caps with five different material
distribution laws, different Graphene platelet (GPL) mass fractions, and geometrical di-
mensions are explored and discussed in numerical examples.

Keywords: nonlinear stability, first-order shear deformation theory, FG-GPLRC, thermal
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1. INTRODUCTION

The important portions in many engineering structures are constituted by shallow
spherical caps, for example, the aircraft, missile, and aerospace components. As a result,
the problems relating to mechanic behaviors in the design of this structure have attracted
the attention of many researchers.

Functionally graded material (FGM) was proposed to be made from ceramic and
metal. Creating from these advantageous properties of two constituent materials, FGM
has been used widely in many engineering structures in high-temperature environments
such as civil engineering, mechanical engineering, aerospace, nuclear plants, . . .
Najafizadeh and Hedayati [1] presented the analytical solutions for the thermo-elastic

https://doi.org/10.15625/0866-7136/17932
https://orcid.org/0000-0001-5138-5893
https://orcid.org/0000-0003-3594-7248
https://orcid.org/0000-0002-7629-6501
mailto: tubt@utt.edu.vn


A new analytical approach of nonlinear thermal buckling of FG-GPLRC circular plates . . . 419

stability of FGM circular plates using the refined theory and adjacent equilibrium crite-
rion. By using the isogeometric finite element formulation, the thermal buckling analysis
of FGM circular plates was investigated by Loc et al. [2]. Applying the assumption of
the shallowness of the caps, the complex spherical coordinate system was approximated
to the polar coordinate system, and the nonlinear buckling and vibration of axisymmet-
ric and un-axisymmetric functionally graded thin shallow spherical caps under uniform
external pressure including temperature effects were analyzed by Bich et al. [3, 4]. The
thermo-mechanical behavior of the FGM spherical caps was analyzed based on the classi-
cal shell theory (CST) and first shear deformation theory (FSDT), using different methods
for nonlinear static buckling problem [5], and nonlinear vibration [6, 7].

Functionally Graded Graphene Platelet Reinforced Composite (FG-GPLRC) is an ad-
vanced composite material, which is created by reinforcing the graphene platelet (GPL)
into the isotropic matrix, becoming popular in engineering design. Many authors focused
on the static and dynamic behavior of many types of FG-GPLRC structures. However,
a few reports of FG-GPLRC shallow spherical caps are obtained in the open literature.
Huo et al. [8] studied the bending problem of circular/annular sector FG-GPLRC plates
by applying a 3D-poroflexibility theory. The three-dimensional elasticity solutions for
the free vibration and bending of the FG-GPLRC spherical caps were analyzed by Liu et
al. [9].

This paper presents a new analytical approach to investigate the nonlinear ther-
mal buckling of FG-GPLRC circular plates and shallow spherical caps with the clamped
boundary condition at the edge by using the FSDT and Galerkin method. The effects
of geometrical and material properties on the buckling behavior of circular plates and
spherical caps with five different material distribution laws of GPL are investigated and
discussed in numerical examples.

2. GEOMETRICAL AND MATERIAL PROPERTIES

Consider the FG-GPLRC shallow spherical caps/circular plates with radius of cur-
vature R, base radius a, thickness h, and the coordinate system (r, θ, z) as shown in Fig. 1.
Five distribution laws of GPL are considered to be UD-GPLRC, X-GPLRC, O-GPLRC,
A-GPLRC, and V-GPLRC. The shallow spherical caps/circular plates are subjected to
uniformly distributed thermal loads with the clamped boundary condition at the edge.

The Young’s modulus of the spherical caps/circular plates is determined based on
the extended Halpin–Tsai model as follows [10]

E (z) =
3
8

1 + ζ1δ1VGPL (z)
1 − δ1VGPL (z)

Em +
5
8

1 + ζ2δ2VGPL (z)
1 − δ2VGPL (z)

Em, (1)

where

δ1 =
(EGPL/Em)− 1
(EGPL/Em) + ζ1

, δ2 =
(EGPL/Em)− 1
(EGPL/Em) + ζ2

, ζ1 = 2
(

aGPL

tGPL

)
, ζ2 = 2

(
bGPL

tGPL

)
, (2)

with Em and EGPL are respectively the elastic moduli of the matrix and GPL, aGPL, bGPL
and tGPL are the length, width and thickness of the GPL, respectively, and VGPL is the



420 Bui Tien Tu, Le Ngoc Ly, Nguyen Thi Phuong

Bui Tien Tu, Le Ngoc Ly, Nguyen Thi Phuong 2 

This paper presents a new analytical approach to investigate the nonlinear thermal buckling of 
FG-GPLRC circular plates and shallow spherical caps with the clamped boundary condition at the edge 
by using the FSDT and Galerkin method. The effects of geometrical and material properties on the 
buckling behavior of circular plates and spherical caps with five different material distribution laws of 
GPL are investigated and discussed in numerical examples. 

2. Geometrical and material properties 
Consider the FG-GPLRC shallow spherical caps/circular plates with radius of curvature , base 

radius , thickness , and the coordinate system  as shown in Fig.1. Five distribution laws of 
GPL are considered to be UD-GPLRC, X-GPLRC, O-GPLRC, A-GPLRC, and V-GPLRC. The shallow 
spherical caps/circular plates are subjected to uniformly distributed thermal loads with the clamped 
boundary condition at the edge. 

 
Fig. 1. Configuration of shallow spherical caps/circular plates, and five distribution laws of GPL  

The Young’s modulus of the spherical caps/circular plates is determined based on the extended 
Halpin-Tsai model as follows [10] 

  (1) 

where 

  (2) 

with  and  are respectively the elastic moduli of the matrix and GPL,  and  are 
the length, width and thickness of the GPL, respectively, and  is the volume fraction of the GPL 

, defined as 

R
a h ( ), ,r zq

( ) ( )
( )

( )
( )

1 1 2 2

1 2

1 13 5
8 1 8 1 ,

GPL GPL
m m

GPL GPL

V z V z
E z E E

V z V z
+z d +z d

= +
-d -d

( )
( )

( )
( )1 2 1 2

1 2

1 1
2 2

/ /
, , , ,

/ /
GPL m GPL m GPL GPL

GPL m GPL m GPL GPL

E E E E a b
E E E E t t

- - æ ö æ ö
d = d = z = z =ç ÷ ç ÷+z +z è ø è ø

mE GPLE  ,GPL GPLa b GPLt

GPLV
( )1m GPLV V+ =

Fig. 1. Configuration of shallow spherical caps/circular plates, and five distribution laws of GPL

volume fraction of the GPL (Vm + VGPL = 1) defined as

VGPL (z) =
WGPL

WGPL +
(
ρGPL

/
ρm

)
(1 − WGPL)

, (3)

where ρm and ρGPL are the densities of the matrix and the GPL, respectively, WGPL is
the mass fraction of GPL which depends on five distribution laws of GPL of spherical
caps/circular plates with the following functions
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(4)

where W∗
GPL is denote of total mass fraction of GPL.

According to the rule of mixture, the Poisson’s ratio and thermal expansion coeffi-
cient of FG-GPLRC shallow spherical caps/circular plates are determined as

ν (z) = νm (1 − VGPL) + νGPLVGPL,
α (z) = αm (1 − VGPL) + αGPLVGPL.

(5)
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3. ESTABLISHMENT PROCESS OF GOVERNING EQUATIONS

Due to the assumption that the shallow spherical caps/circular plates are axisym-
metrically deformed, based on the FSDT, displacement components at any point at a
distance z from the mid-surface are determined as

ū (r, z) = u (r) + zψ (r) , v̄ (r, z) = 0, w̄ (r, z) = w (r) + w∗ (r) , (6)

where w∗ (r) is the initial imperfect deflection of spherical caps.
Hooke’s law is applied to the FG-GPLRC shallow spherical caps/circular plates, tak-

ing into account the thermal strains, presented as{
σr
σθ

}
=

[
Q11 Q12
Q12 Q22

]{
εr
εθ

}
−

[
Q11 Q12
Q12 Q22

]{
α∆T
α∆T

}
, σrz = Q44εrz, (7)

where ∆T is the uniformly distributed thermal load, and the reduced stiffnesses can be
determined as

Q11 = Q22 =
E (z)

1 − [ν (z)]2
, Q12 =

E (z) ν (z)
1 − [ν (z)]2

, Q44 =
E (z)

2 [1 + ν (z)]
. (8)

The strain components of the shallow spherical caps are defined as εr
εθ

εrz

 =

 ε0
r + zχr

ε0
θ + zχθ

ψ + w,r

 , (9)

where ε0
r , ε0

θ are the strains at the mid-surface, χr, χθ are curvature constituents, expressed
as {
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θ
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The forces and moments are determined by

(Nr, Mr) =

h/2∫
−h/2

(1, z)σrdz, (Nθ , Mθ) =

h/2∫
−h/2

(1, z)σθdz, Qr =

h/2∫
−h/2

σrzdz. (11)

Substituting Eq. (9) into Eq. (7), and then substituting the resultant equations into
Eq. (11), the force and moment expressions are obtained
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where Ks =
5
6

is the shear correction factor.
The nonlinear equilibrium equations of shallow spherical caps/circular plates are

(rNr),r − Nθ = 0, (rMr),r − Mθ − rQr = 0,

(rQr),r +
r
R
(Nr + Nθ) +

[
rNr

(
w,r + w∗

,r
)]

,r = 0.
(14)

Substituting Eq. (10) into the forces and moments (12), then substituting the result
into Eq. (14), the equilibrium equation system is rewritten by
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4. BOUNDARY CONDITION AND SOLVING PROBLEM

In this paper, the FG-GPLRC shallow spherical caps/circular plates are assumed to
be clamped and immovable at the edge, subjected to uniformly distributed thermal loads.
The following approximate solutions for the displacement components and rotation are
assumed to be in the forms

u = U sin
πr
a

, ψ = Ψ sin
πr
a

, w = W cos2 πr
2a

, w∗ = W∗ cos2 πr
2a

, (18)

where U, W, and Ψ are maximal displacement constituents and rotation, W∗ is maximal
imperfection.

Substituting the solution forms (18) into equilibrium equations (15)–(17) and apply-
ing the Galerkin method, leads to

X11W2 + X12W + X13U + X14Ψ = 0, (19)

X21W2 + X22W + X23U + X24Ψ = 0, (20)

X31W3 +X32W2 +

(
X33U + X34Ψ + X35 +

π2Φ∗
1∆T

16

)
W +X36U +X37Ψ+X38Φ∗

1∆T = 0,

(21)
The expressions of Uand Ψ can be solved from Eqs. (19) and (20), and substituting

them into Eq. (21), leads to

 X31 −
X33 (X11X24 − X14X21)

X13X24 − X14X23

+
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+
X34 (X12X23 − X13X22)
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−X36 (X11X24 − X14X21)

X13X24 − X14X23

+
X37 (X11X23 − X13X21)

X13X24 − X14X23


W2

+

 X35 −
X36 (X12X24 − X14X22)

X13X24 − X14X23

+
X37 (X12X23 − X13X22)

X13X24 − X14X23

W = −
(

π2Φ∗
1

16
W + X38Φ∗

1

)
∆T.

(22)
In the case of perfect circular plates (W∗ = 0, R → ∞), the thermal critical buckling

loads ∆Tcr (K) can be determined by applying W → 0 in Eq. (22), as

∆Tcr = − 16
π2Φ∗

1

[
X35 −

X36 (X12X24 − X14X22)

X13X24 − X14X23
+

X37 (X12X23 − X13X22)

X13X24 − X14X23

]
. (23)
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5. NUMERICAL RESULTS AND DISCUSSIONS

5.1. Validation
Consider the clamped FGM circular plates subjected to uniformly distributed ther-

mal loads. Table 1 compared the thermal critical buckling loads of present results with
those of the adjacent equilibrium criterion solutions [1] and the isogeometric finite ele-
ment solutions [2] using FSDT and HSDT, respectively. Clearly, good agreements can be
observed in these comparisons.

Table 1. Comparison of thermal critical buckling loads (K) of FGM circular plates
with previous results

h/a

0.05 0.04 0.03 0.02 0.01

FSDT [1] 146.8150 94.0810 53.0290 23.6030 5.9060
HSDT [2] 144.9953 93.4005 52.8191 23.5719 5.9093
Present 147.0435 94.4065 53.2351 23.7019 5.9318

5.2. Numerical examples
In this sub-section, material properties and efficiency parameters of GPLs and cop-

per matrix are chosen as the report of Wang et al. [10]. The effects of the mass fraction
of GPL, geometric ratio a/h and distribution laws on the thermal critical buckling loads
of circular plates are presented in Table 2. As can be seen, when the mass fraction of the
GPL increases, the thermal critical buckling load of plates increases for the four distribu-
tion laws UD-GPLRC, X-GPLRC, V-GPLRC, and A-GPLRC, in which the largest critical
buckling loads are obtained for X-GPLRC plates. Especially, an abnormal tendency can
be observed for O-GPLRC plates. In addition, the thermal critical buckling load increases
strongly as the geometric ratio a/h decreases in all investigated cases.

Effects of GPL distribution law on the thermal load-deflection postbuckling curves
of FG-GPLRC circular plates and shallow spherical caps are presented in Figs. 2 and 3.
The results show that with the same mass fraction of GPL and geometrical parameters,
the thermal load-deflection postbuckling curves of X-GPLRC circular plates and shallow
spherical caps are the highest, and those of the O-GPLRC are the lowest. The differ-
ence between the five thermal load-deflection postbuckling curves in the circular plates
is more clearly observable than that of the shallow spherical caps. The bifurcation points
can be observed for FG-GPLRC circular plates, oppositely, those can not be obtained for
FG-GPLRC spherical caps.
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Table 2. The effects of mass fraction of GPL, geometric ratio a/h and GPL distribution laws on
thermal critical buckling loads ∆Tcr (K) of circular plates

a/h W∗
GPL (%)

h = 0.01 m, R = ∞

UD-GPLRC X-GPLRC O-GPLRC V-GPLRC A-GPLRC

40

0 33.61831326 33.61831326 33.61831326 33.61831326 33.61831326

1 35.91610556 41.76246442 30.31616008 34.65249896 34.65249896

5 44.51537154 56.71370989 33.11716246 39.42070236 39.42070236

9 52.25587898 65.80692333 38.52783669 45.06256432 45.06256432

30

0 59.63674508 59.63674508 59.63674508 59.63674508 59.63674508

1 63.71532393 74.06237924 53.79942516 61.47908230 61.47908230

5 78.97876715 100.5714835 58.78860685 69.95894562 69.95894562

9 92.71772993 116.7070385 68.39685692 79.97840643 79.97840643

20

0 133.3591719 133.3591719 133.3591719 133.3591719 133.3591719

1 142.4953013 165.4813810 120.4360026 137.5283674 137.5283674

5 176.6838855 224.6757533 131.7226049 156.6268534 156.6268534

9 207.4561664 260.7879465 153.2719414 179.1029284 179.1029284
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Fig. 2. Effect of GPL distribution law on the thermal load-deflection postbuckling curves
of FG-GPLRC circular plates

Figs. 4 and 5 show the large effects of the mass fraction of GPL on the thermal
load-deflection postbuckling curves of UD-GPLRC circular plates and X-GPLRC shal-
low spherical caps, respectively. Obviously, the deflections of circular plates and shallow
spherical caps decrease rapidly as the mass fraction of GPL increases for both cases.
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30 

0 59.63674508 59.63674508 59.63674508 59.63674508 59.63674508 

1 63.71532393 74.06237924 53.79942516 61.47908230 61.47908230 
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20 

0 133.3591719 133.3591719 133.3591719 133.3591719 133.3591719 
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Figs. 6–9 present the thermal load-deflection postbuckling curves of circular plates
and shallow spherical caps with different geometrical ratios a/R and a/h, applied to
three distribution laws of GPL: X-GPLRC, O-GPLRC, and V-GPLRC. Clearly, the ther-
mal load-deflection postbuckling curves of circular plates and shallow spherical caps are
gradually lower as the geometrical ratio a/R decreases for all three GPL distribution
laws. Conversely, those are gradually upper when the geometrical ratio a/h increases.
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6. CONCLUSIONS

This paper presents an analytical approach of nonlinear thermal buckling of axisym-
metrical FG-GPLRC circular plates and shallow spherical caps. The governing equations
are derived by using the FSDT with von Karman geometrical nonlinearity, and the equi-
librium equations are solved by the Galerkin method. Numerical results show that:

- When the mass fraction of the GPL increases, the thermal critical buckling load
of plates increases for the four distribution laws UD-GPLRC, X-GPLRC, V-GPLRC, and
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A-GPLRC, in which the largest critical buckling loads are obtained for X-GPLRC plates.
Especially, an abnormal tendency can be observed for O-GPLRC plates;

- The load-carrying capacities of the shallow spherical caps and circular plates both
increase markedly with the increase in the mass fraction of the GPL;

- The large effects of geometrical ratios on the critical buckling loads and postbuck-
ling curves of circular plates and spherical caps can be also obtained from investigated
examples.
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