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Abstract. This report presents an analytical approach to the natural frequency analysis of
a porous beam consisting of a host porous layer reinforced with graphene platelets (GPLs),
namely GPL-reinforced porous core, and two piezoelectric outer layers. In the modelling,
symmetric distributions of both porosity and GPLs in the core are supposed. The effective
mechanical properties of the GPL-reinforced porous core are estimated by Halpin-Tsai
model and the rule of mixture. The electric potential in each piezoelectric layer is assumed
to vary linearly across its thickness. Two types of electrical boundary conditions, which are
open- and closed-circuits, are considered for the free surfaces of the piezoelectric layers.
Parabolic shear deformation beam theory associated with Hamilton’s principle is adopted
to derive the governing equations of the free vibration. Afterwards these equations are
solved analytically by Navier’s solution. Comparative and comprehensive studies are
carried out to examine the accuracy and effects of parameters and conditions, such as GPL
weight fraction, porosity coefficient, and electrical boundary conditions on the natural
frequencies of the beam.

Keywords: piezoelectric material, porous beam, graphene platelets, Navier’s solution.

1. INTRODUCTION

Structures that are made of porous material reinforced with GPLs, shorten as GPL-
RP structures, are a novel form of modern lightweight structures. The advantage of these
structures is due to the combination of the good features of porous material, such as light-
weight, thermal and acoustic insulation and energy dissipation, with the high strength
and high modulus of GPLs. Studies have shown that by reinforcing porous materials
with a small amount of GPLs, the stiffness of porous structures is considerably enhanced
while the lightweight ability of structures is still maintained. Thus, GPL-RP structures,
have attracted great attention from researchers. For example, the post-buckling of a GPL-
RP beam, considering geometrical imperfection and elastic foundation, was reported in
Ref. [1] for the classical beam model and in Ref. [2] for the refined shear deformable
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model by Barati and Zenkour. Ganapathi et al. [3] studied the dynamic response of GPL-
RP curved beam by Navier’s solution. Gao et al. [4] investigated the effects of stochastic
porosity distributions, GPL dispersion patterns, as well as random material properties on
the stability capacities of GPL-RP beams. Using the nonlocal strain gradient theory, Sah-
mani et al. [5] performed the nonlinear bending of GPL-RP micro/nano-beams. Anirudh
et al. [6] analyzed the bending, free vibration and buckling behavior of GPL-RP curved
beams by finite element method based on a 3-node curved beam element. Kitipornchai
et al. [7] studied the fundamental frequency and the critical buckling load of GPL-RP
beams with different combinations of GPL and porosity distributions. Using quasi-3D
beam theory, which includes both shear strain and thickness stretching effect, Priyanka
et al. [8] investigated the free vibration and buckling of GPL-RP beam under axially vari-
able loads. Xu et al. [9] analyzed the free vibration of GPL-RP beam with spinning move-
ment by the differential transformation method. All the above-mentioned works focus
on GPL-RP beams. Numerous studies on GPL-RP plates and shells were gathered and
presented in the review papers by Kiarasi et al. [10] and by Zhao et al. [11].

Recently, integrating piezoelectric layers into host porous/GPL-RP structures to ac-
tively control and reduce unexpected mechanical responses has also received high atten-
tion from the scientific community. Several studies have been conducted to investigate
mechanical behavior of such structures available in the literature. Nguyen et al. [12]
studied the dynamic responses and active vibration control of GPL-RP plates integrated
with piezoelectric sensor and actuator layers. Bending and transient responses of GPL-
RP plates embedded in piezoelectric layers were conducted by Nguyen et al. [13] using
isogeometric analysis (IGA). Nguyen et al. [14] presented the geometrically nonlinear
static and dynamic analyses of GPL-RP plates integrated with smart piezoelectric layers.
Hao et al. [15] studied the active vibration control of a porous truncated conical shell
integrated with smart sensor and actuator layers under impact loadings.

The above literature survey reveals that researches on GPL-RP structures integrated
with piezoelectric layers are still at the infancy stage and very limited. No report on
such beam-like structures is available in the open literature. To fill the existing research
gap, this study deals with free vibration of GPL-RP beam covered by two piezoelec-
tric face layers, shortened as piezoelectric GPL-RP beam, by analytical approach. The
distributions of porosity and GPLs in the beam are assumed to be symmetrical in the
analysis. The effective mechanical properties of the GPL-reinforced porous core are esti-
mated via Halpin-Tsai model and the rule of mixture. The distribution of electric poten-
tial across the thickness of each piezoelectric layer is assumed to be linear. In addition,
open- and closed-circuit conditions are considered for the free surfaces of the piezoelec-
tric layers. Parabolic shear deformation beam theory associated with Hamilton’s princi-
ple is adopted to derive the governing equations of the free vibration. These equations
are then solved analytically by Navier’s method. A comparative study is conducted to
validate the developed formulations. Parametric study is carried out to examine the ef-
fects of key parameters and conditions, such as GPL weight fraction, porosity coefficient
and electrical boundary conditions on the natural frequencies of the beam.
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2. THEORY AND FORMULATIONS

2.1. Configuration and geometrical parameters

Consider a piezoelectric GPL-RP beam, as illustrated in Fig. 1(a). The beam has the
dimensions of L x h x b and consists of three layers. The host porous core, thickness F,,
is made of metal foam reinforced with GPLs and two piezoelectric face layers, thickness
hy. The total thickness of the beam is h = h, + 2 X hy.
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(a) Configuration, geometry and coordinate system (b) Cross-section and Vgpy.
dispersion

Fig. 1. Configuration, porosity distribution and GPL dispersion of piezoelectric GPL-RP beam

2.2. Effective material properties
2.2.1. Piezoelectric outer layers

The material of the piezoelectric face layers is assumed to be homogeneous. Hence,
elastic moduli E and G, mass density p, Poisson’s ratio y, piezoelectric stress constant e
and dielectric permittivity constant p are unchanged.

2.2.2. GPL-reinforced porous core

The porous core is made of porous material strengthened by reinforcing GPLs. There
are many types of porosity and GPL distributions which can be designed for porous
material reinforced with GPLs. They have significant effect on the stiffness of GPL-RP
structures. Various studies, e.g., [1-3,7, 8], show that both symmetric distributions of
pores and GPLs in which the presence of low porosity and high content of GPLs far
from the neutral surface is the most effective way to enhance the stiffness of the system.
Thus, both symmetric distributions of porosity and GPLs are supposed in this study. The
distribution of pores as well as GPLs are illustrated in Fig. 1. Consequently, the effective
material properties, such as elastic moduli E(z) and G(z), and mass density p(z), can be
defined as functions of variable z below [7]
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where £ and p denote Young’s modulus and mass density of GPL-reinforced metal foam
without internal pores, respectively; e, is the porosity coefficient; e,, is the coefficient of
mass density which could be determined via the porosity coefficient ¢, by the relation

o _ Li21 [1 91—z )] )
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Meanwhile, the volume fraction of GPLs, denoted as Vip; and illustrated in Fig.
1(b), can be defined as [7]
Verr (z) = VG [1 —cos (nz/h.)], —h/2<z<h./2, (3)
max

where V5 are the peak volume fraction value of GPLs. It is determined by the rela-
tion between the volume fraction V;p and weight fraction Wgpr of GPLs by following
equation [7]

W, he/2 he/2
PmVVGPL / 1—e,C(z)|dz = / 1—eu(z) Vi z)dz, (4
pmWepL + pcprr — pcrLWarL 2, [ mé (2)] . [ mé (2)] Vopr (z)dz, (4)

in which p,, and pgpr. are mass density of metal matrix and GPLs, respectively.
The elastic modulus E of GPL-reinforced material without pores can be estimated
based on Halpin-Tsai micromechanics model [16]
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The coefficients in Eq. (5) are determined via the mechanical properties and geomet-
rical parameters of the metal matrix and GPLs by the relations:

)
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In addition, the mass density ¢ and Poisson’s ratio ji of GPL-reinforced material

without pores can be determined by the rule of mixtures [11]

p = pcrLVerr + pm (1 — Vepr)
ft = ucprLVepr + pm (1 — Vipr)

7)

In Eqgs. (5)—(7), Em, pm and uy, are, respectively, the elastic modulus, mass density
and Poisson’s ratio of the metal matrix; similarly, Ecpr, pcpr and pgpp are those of GPLs;
lgpL, tepL, wepL represent the average length, thickness and width of GPLs, respectively.

Poisson’s ratio of GPL-reinforced porous core is also estimated as [7]

1(z) = 0.221ené (2) + i [0.342{(3,,15 (2)}2 = 121en (z) + 1] . (8)
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2.3. Displacement field, strain field and constitutive equation

In this work, the parabolic shear deformation beam theory (PSBT) is adopted to
model the beam. The displacement components u# and w, which are, respectively, in
the x- and z-directions, can be expressed as

ow, (x,t
zwa(xx) + P (z) @os (x, 1)

w(x,z,t) =w, (x,t) 9)
® (z) =z —42°/ (3h?)

in which u,, w, and ¢, are, respectively, the displacements in the x-, z-directions and the
transverse shear strain of an arbitrary point on the mid-surface (z = 0); ¢ stands for the
time.

The strain field can be derived from the displacement components by

Ju  Jdu, %w, d®,s ou Jdw 0P
St T RS S A T (19

where ¢, and 7, are the axial and shear strains, respectively.

The linear piezoelectric constitutive equation expressing the electrical and mechani-
cal interactions for one-dimensional (1D) beam problem has the form as [17]

u(x,z,t)=u,(x,t)—

Ux E 0 - 631 Sx
Txz 0 G 0 Yxz ’ (11)
D, e31 0 P33 E,

where 0y, Ty, are the axial and shear stresses, respectively; E and G are Young’s modulus
and shear modulus, respectively; e3; is the piezoelectric stress constant; D, is the electric
displacement; p33 is the dielectric permittivity constant; E; is the electric field.

Assuming that the electric potential field varies according to a linear function along
the thickness of each piezoelectric layer [18,19]. The electric field E, can be determined
as [20]

E. = —¢o (x,t) /1, (12)
where ¢, (x, t) is the electric potential difference between the top and bottom surfaces of
the considered piezoelectric layer, and /i is its layer thickness.

Evidently, the constitutive relations of Eq. (11) can also be used for the non-piezoelectric
material of the porous core by ignoring all the electric terms.

2.4. Energy expressions

The variation of the strain energy can be stated as

sU = / / 0285 + TesdYxs — D2OE,)d Adux
(13)

L
ddu 9%ow )
/ ( —— - M, ° >+ M a%s + Q6¢os + Be10¢) + BE25¢0>
0
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The stress and electric displacement resultants are defined as

o® D! D!
{N MbIMS/ QI BEl/ BEZ} / szZszq)Ux/sz dA. (14)
oz Iy hy

In Eqs. (13) and (14), ¢ (x,t) and ¢! (x,t) are the electric potential differences cor-
responding to the top and bottom piezoelectric layers, respectively; A is the area of the
beam cross-section and L is the length of the beam.

By substituting Eqs. (10) and (11) into Eq. (14), the stress and electric displacement
resultants can be expressed by matrix form

N ) Ar Bi By 0 [ Di Dy ]
M, B D D5 0 L,/ dx D, D}
Ms o Bs Ds Hs 0 —azwo/axz + Dé Dg { tt) } (15)
Q | 0 0 0 A 9os/0x 0 0 b
Bg: Di Dé Dg 0 Pos —Dé 0
[ Be2 | Dy D} D} 0 | 0 -D!|
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The variation of kinetic energy of the beam can be stated as
5K = / / o (z) (161 + o) dAdx
f [(. w, o
_ / Iy (1101t + tWodti,) dx — / I (1,20 + T 5u, ) dx
ox ox
0 0 (18)
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where
{IO/ Il/ IZ/ Il/]Z/ I3} - /P (Z) {1/ z, Z2/ q)/ Z©/ q)z}dA (19)

2.5. Hamilton’s principle and governing equations

Hamilton’s principle is used to derive the governing equations of the piezoelectric
GPL-RP beam. This principle can be expressed for the case of the free vibration as

)
/ (6U — 8K)dt = 0. (20)
5]

Substituting the expressions dU and JK from Egs. (13) and (18) into Eq. (20), then

integrating by parts and collecting the coefficients of du,, dw,, d@,s, 4)5 and 4>§ drive the
governing equations of the system. Next, substituting the stress and electric displacement
resultants of Eq. (15) into them, the governing equations can be obtained in terms of the
displacements and electric potential differences as

(Ala;;;’ — Bla; > + B; aafzos +D! %Pé n D?aa(fc’é L, I, a@;;o
31%3;‘30 - Da;aiio +D58;Z>305 +D; a% + D3 324)20 = Iy, +I183ﬁ0 L 8;w0 + 2 a%s
BS%Z;[; - D aa%{;o + Hsa;i;os As@os + D32 4)0 + Dsa% = Jiiip —
b E;; Dzaaaio + Daaé”f — Dig} =0,
Dy %L;: D} aa:;" + D3 Bgo;s _ Dl =0,

(21)

2.6. Analytical solution

Navier’s method based on Fourier series is used to determine the analytical solution
for a simply supported beam. Assuming each of the unknown components u,, w,, @os,
¢! and ¢? is trigonometric series, which satisfies the edge conditions, as follows

Z U, cos (ax), w, (x,t) = Y. W,e'“ sin (ax),
n=1
Pos (x,1) = Z Ene“ cos (ax), ¢f(x,t) =} ©Le“ sin (ax), (22)
n=1 n=1
cp (x,1) i@b e sin (ax), a="" =y
’ n=1 L’ ,

where U,,, W,,, &, @tn and @Z are the unknown maximum coefficients; w is the natural
frequency.
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Substituting Eq. (22) into Eq. (21) results in the analytical solution in matrix form as

K, K M,, 0 @)l [0
([ |- M o) {2 ={5} @

in which
(1) ,(12) ,(13) (11 . (12)
kag~ kaq kg kﬂ(ﬂP) k?q)) 1 (2)
_ 22 23 _ T _ 21 22 _ PP PP
Kgg = kt(m) kt(m) » Kop = —Kog = | kg Kgp | Kop = [ 2D (22) ]
33 31 32 PP PP
sym. Kig K| Koy
(24)
(11 (12) 13
Mgq = Mgy m‘(ifl ) u, o'
(33) =n n
sym. Mgq
k%l) = —chAl,k(q )—oc?’Bl,kEW )——zxZBs, kEM - —a’D, k(q )—zx3Ds,kgq )= —a’H,— A,
11 21
k1(1¢) = “ka((q(p) = ucDﬁ’,ka) = —a?D}, k¢(1¢) = —aZDz,k{(W) = och,k‘(W) = aD},
k) = —D5, K2 = 0,k5) = 0,k = D,
myy) = —lo,miy” = txh,mz(,f’) = —Ji,myg) = —l— a’L,my) = af,mpy) = —a.
(26)
Eliminating the electric potential vector q¢, Eq. (23) becomes

3. NUMERICAL EXAMPLES

Geometrical parameters of the beam are L = 5 x 10 '"m, h, = 4x10 3 m, hf =
1 x 10~* m; the width of the beam (b) is unity. Mechanical properties of the metal matrix
which is Aluminum are E,, = 70 GPa, p,,, = 2702 kg/ m?, tm = 0.3 [12]. Physical properties
of piezoelectric which is PZT-G1195N are E, = 63 GPa, p. = 7600 kg/ m?, He= 0.3, d3 =
254%x10" 2 m/V, P33 = 15.0%107° F/m [12,21], e31 = d31E.. Geometrical parameters and
mechanical properties of GPLs are wgpr = 1.5 um, Igpr = 2.5 pm, tgpr = 1.5 nm, Egpp =
1.01 TPa, pgpy = 1062.5 kg/m?, ucpy = 0.186 [7].

In the result presentation, non-dimensional natural frequencies are introduced as

& = (wiLz O /Em) /h. (28)

3.1. Validation

For the validation purpose, the studied beam is modified to become a single-layer
GPL-RP beam by omitting the two piezoelectric layers in the analysis. The natural fre-
quency of this beam was investigated by Priyanka et al. [8] employing quasi-3D theory.
Properties and geometries of GPLs are taken as in the material introduction of Section 3.
Metal matrix of the porous layer is copper (Cu) which has material properties as Ec,, =



400 Tran Quang Hung, Tran Minh Tu, Do Minh Duc

130 GPa, pcy, = 8960 kg/ m°, ticy = 0.34 [8]. Obtained results are reported in Table 1. The
data show an excellent agreement between the present study and the study of Priyanka
et al. [8]. The results of Priyanka et al. [8] are slightly different from those of present study
because quasi-3D theory was employed to model the beam in [8], whereas PSBT, which
is a higher-order beam theory, is adopted for the current study.

Table 1. The first non-dimensional frequency @ = wL \/ pcu (1 —u%,) /Ecy [8]
of single-layer GPL-RP beam (L/h =20, Wgpr =1 wt.%)

€
Source
0.2 04 0.6
Present 0.1911 0.1904 0.1905
Priyanka et al. [8] 0.1903 0.1894 0.1893

3.2. Comprehensive studies

Tables 2 and 3 present the first five non-dimensional natural frequencies of the piezo-
electric GPL-RP beam with different values of porosity coefficient (e,) and GPL weight
fraction (Wgpr), respectively. Two types of electrical boundary condition are taken into
consideration, which are closed- and open-circuit conditions. In the case of closed-circuit,
the surfaces of the piezoelectric layers are grounded; consequently, the electric potential
at the free surface of piezoelectric layers is identically zero. Whereas, in the case of open-
circuit, the electric potential difference between the two surfaces of each piezoelectric
layer exists; thus, the electromechanical coupling effect happens in the system [18].

Table 2. First five non-dimensional natural frequencies of the piezoelectric GPL-RP beam with the
open-/close-circuit electrical boundary conditions and different values of ¢, (Wgpr = 0.5 wt. %)

e, =0 e, =04 e, =0.8
Frequencies A (%) A (%) A (%)
open closed open closed open closed
w1 3101 3.061 132 3.085 3.038 153 3.140 3.084 1.82
%) 12.399 12238 1.32 12333 12.148 1.52 12551 12327 1.81
w3 27.879 27516 132 27.726 27310 152 28205 27.703 1.81
Wy 49.516 48.870 1.32 49.233 48495 152 50.057 49.169 1.81
s 77272 76266 132 76.813 75.664 152 78.045 76.663 1.80

1

A.(%) = (@F" — @ed) /@oed x 100%

The obtained results in Tables 2 and 3 show that the natural frequencies of the piezo-
electric GPL-RP beam with the open-circuit condition are slightly higher than those with
the closed-circuit one. The reason is that the electromechanical coupling effect in the
beam with the open-circuit condition converts the electric potential to mechanical en-
ergy. This finding is similar to the results of Kiani [18], Selim et al. [19] for plate models
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coved by piezoelectric layers. Moreover, the relative discrepancy of the frequencies (A)
between open- and closed-circuit conditions increases with increasing e,, but decreases
with increasing Wgpr. In addition, the relative discrepancy A of different frequencies for
the same values of ¢, (Table 2) or W¢py, (Table 3) is very small.

Table 3. First five non-dimensional natural frequencies of the piezoelectric GPL-RP beam with the
open-/ closed-circuit electrical boundary conditions and different values of Wgpy, (e, = 0.5)

Wepr = 0 wt.% Wepr = 0.6 wt. % Wepr = 1.2 wt.%
Frequencies A (%) A (%) A (%)
open closed open  closed open closed
w1 2767 2713 198 3148 3101 1528 3487 3444 125
3 11.061 10.847 197 12585 12396 1.527 13940 13.768 1.25

w3 24.867 24386 197 28291 27866 1.525 31.335 30949 1.25
Wy 44158 43.305 1.97 50232 49479 1.523 55.631 54946 1.25
Ws 68.898 67.569 197 78362 77.188 1520 86.771 85.706 1.24

A(%) = (@F" — @oed) /@od x 100%

1

%)

et
e
W

'_}I‘ i 1 1 1 “ '}

Weer (wt.%)

(a) 2D view (b) 3D view

Fig. 2. Effect of porosity coefficient (e,) and GPL weight fraction (Wgpr) on the first
non-dimensional natural frequency of the piezoelectric GPL-RP beam (open-circuit condition)

The 3D plot in Fig. 2 illustrates the influence of porosity coefficient (e,) and GPL
weight fraction (Wgpy) on the first non-dimensional natural frequency of the piezoelec-
tric GPL-RP beam. Observing Fig. 2 as well as the data in Tables 2 and 3 shows that (1)
when Wgpy increases, the frequency usually increases; (2) when ¢, increases, the vari-
ation of the frequency is quite complicated. The frequency slightly decreases and then
increases with respect to ¢,. This is because the increase of ¢, reduces both the effec-
tive mass density and the stiffness of the beam. Hence, the complex development of the
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frequency is due to the correlation effect between the stiffness and mass matrices of the
system when ¢, increases. In other words, the increase of ¢, does not always induce the
decrease of natural frequency, it seems due to the relative relation between mass effect
and stiffness effect.

4. CONCLUSIONS AND REMARKS

Navier’s solution for the natural frequency analysis of the piezoelectric GPL-RP
beam is presented. In the modelling, the symmetrical distributions of both porosity and
GPLs in the porous core are supposed. The effective mechanical properties of the GPL-RP
core are estimated via Halpin—Tsai model and the rule of mixture. The electric potential
is assumed to vary linearly across each piezoelectric layer thickness. PSBT associated
with Hamilton’s principle is employed to derive the governing equations of motion. The
effects of parameters and conditions, including GPL weight fraction, porosity coefficient
and electrical boundary conditions on the natural frequencies of the beam are investi-
gated and discussed. The studied results for piezoelectric GPL-RP beam are initial; fur-
ther work is going on to explore the electromechanical coupling effect on controlling the
mechanical behavior of the beam.
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