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Abstract. In this work, geometrically nonlinear behavior of sandwich composite beams
reinforced by carbon nanotubes is studied, taking into account the influence of agglomer-
ation of the carbon nanotubes (CNTs). The core of the sandwich beams is homogeneous
while the two face sheets are made of CNT reinforced composite with the effective mate-
rial properties being estimated by the Eshelby-Mori-Tanaka approach. A first-order shear
deformable nonlinear beam element is formulated in the context of the total Lagrange
formulation and used to construct the discretized nonlinear equilibrium equation. The
Newton–Raphson based iterative procedure is used in conjunction with the arc-length
method to trace the equilibrium paths of the beams. Detail parametric studies are car-
ried out to illustrate the influence of the CNTs agglomeration, the amount of CNT volume
fraction as well as the thicknesses of face sheets on the nonlinear behavior of the structure.

Keywords: nanocomposite sandwich beam, agglomeration effect of CNTs, Eshelby-Mori-
Tanaka approach, total Lagrange formulation, large deflection analysis.

1. INTRODUCTION

Nonlinear analysis of structures is an important topic in structural mechanics. Since
the analytical methods encounter difficulties in dealing with nonlinearities, a numerical
method, especially the finite method is often chosen as a replacement. Regarding geomet-
rically nonlinear analysis of beams, the topic discussed herein, several beam elements for
the analysis are available in the literature, and some of which have been documented in
the textbooks [1,2]. For nonlinear analysis of sandwich beams, Nguyen and Tran [3] per-
formed a large displacement analysis of functionally graded (FG) sandwich beams and
frames using a co-rotational Euler–Bernoulli beam element. Hoai et al. [4] derived a non-
linear finite beam element for studying the large displacements of FG sandwich beams,
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considering the effect of environment temperature rise. The influence of various homog-
enization schemes on large deflections of dual-phase FG sandwich beams is investigated
by Nguyen et al. [5] using a nonlinear finite element procedure.

Because of the superior mechanical, thermal, electrical, and physical properties, CNTs
are outstanding candidate for reinforcing polymer matrix [6, 7]. Investigations on me-
chanical behavior of carbon nanotubes reinforced composite (CNTRC) sandwich beams
have been reported by several authors. However, most of the works have been carried
by assuming that the CNTs are aligned in the polymer matrix. The influence of CNTs
agglomeration seems to be firstly considered by Kamarian et al. [8] in their free vibration
analysis of sandwich beams reinforced by FG-CNTs. The results of the work reveal that
the CNTs agglomeration has significant influence on the natural frequencies of the FG-
CNTRC sandwich beams. On the basis of the Eringen’s nonlocal elasticity theory and the
sinusoidal shear deformation theory, Daghigh et al. [9] presented a nonlocal bending and
buckling analysis of agglomerated CNTRC nanoplates resting on a Pasternak founda-
tion. They found that the elastic properties of the nanoplates are adversely affected in the
presence of CNTs agglomeration and ignoring the agglomeration in numerical modeling
of nanocomposites can lead to significant errors.

To the authors’ best knowledge, the large deflections of sandwich composite beams
reinforced by agglomeration carbon nanotubes have not been reported so far. As an
attempt to fill this gap, this paper presents a geometrically nonlinear analysis of CN-
TRC beams by considering the agglomeration effect of single-wall carbon nanotubes
(CNTs). The materials properties of the sandwich composite beams are estimated by
the Eshelby–Mori–Tanaka approach. Based on a total Lagrange formulation, a first-order
shear deformable nonlinear beam element is formulated and used to construct the non-
linear equilibrium equation for the beams. Newton–Raphson iterative procedure is em-
ployed in conjunction with the arc-length method to compute the equilibrium paths of
the beams. The influence of CNTs agglomeration, the amount of CNT volume fraction
in the face sheets, and the thicknesses of face sheets on the nonlinear behavior of the
sandwich beams is examined and discussed.

2. PROBLEM DESCRIPTION

An FGSW beam with length L, rectangular cross section (b × h) in a Cartesian coor-
dinate system (x, y, z) is shown in Fig. 1. The sandwich beam consists of a homogeneous
core and two face sheets made of CNTRC material. The CNTs volume fraction Vcnt is
assumed to vary in the beam thickness according to

Vcnt (z) =



V∗
CNT

(
1 − z + 0.5

h f

)
0

V∗
CNT

(
1 +

z − 0.5
h f

) (1)
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where h and h f are the thickness of the beam and the face sheets, respectively; V∗
CNT is

the maximum possible amount of CNT volume fraction in the face sheets. According to
(1), the core of beam does not contain CNT, whereas the lower and upper face sheets are
made of the CNTRC material.

Fig. 1. Geometry of FG-CNTRC sandwich beam

Fig. 2. RVE with Eshelby cluster model of agglomeration of CNTs [8]

It is assumed that a number of CNTs are uniformly distributed (UD) throughout the
matrix and the other CNTs appear in cluster form because of agglomeration, as illustrated
in Fig. 2. The total volume of CNTs in the representative volume element (RVE), Vr, can
be divided into the following two parts

Vr = Vcluster
r + Vm

r , (2)

where Vcluster
r represents the volumes of CNTs inside a cluster, and is the volume of CNTs

in the matrix and outside the clusters. The two parameters describing the agglomeration
are defined as [8]

µ =
Vcluster

V
, η =

Vcluster
r
Vr

, 0 ≤ η, µ ≤ 1, (3)

where V is the volume of RVE, Vcluster is the volume of cluster in the RVE. The symbol µ

denotes the volume fraction of clusters with respect to the total of the RVE, and η is the
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volume ratio of the CNTs inside the clusters over the total CNT inside the RVE. A value of
µ = 1 corresponding to the case that all CNTs are uniformly distributed in the matrix, and
with the decrease of µ, the agglomeration degree of CNTs is more severe. If η = 1, all the
nanotubes are located in the clusters. The case µ = η means that the volume fraction of
CNTs inside the clusters is as same as that of CNTs outside the clusters (fully dispersed).
When η > µ, the bigger value of η the more heterogeneous the spatial distribution of
CNTs. Thus, we consider the CNTRC as a system consisting of clusters of sphere shape
embedded in a matrix. First, we may estimate the effective elastic stiffness of cluster and
the matrix, respectively; and then calculate the overall property of the whole composite
system. The effective bulk modulus Kin and shear modulus Gin of the cluster and the
effective bulk modulus Kout and shear modulus Gout of the equivalent matrix outside the
cluster can be calculated by [8]

Kin = Km +
Vcntη (δr − 3Kmαr)

3 (µ − Vcntη + Vcntηαr)
, (4)

Kout = Km +
Vcnt (1 − η) (δr − 3Kmαr)

3 [1 − µ − Vcnt (1 − η) + Vcnt (1 − η) αr]
, (5)

Gin = Gm +
Vcntη (ηr − 2Gmβr)

2 (µ − Vcntη + Vcntηβr)
, (6)

Gout = Gm +
Vcnt (1 − η) (ηr − 2Gmβr)

2 [1 − η − Vcnt (1 − η) + Vcnt (1 − η) βr]
, (7)

where

αr =
3 (Km + Gm) + kr − lr

3 (Gm + kr)
, (8)

βr =
1
5

{
4Gm + 2kr + lr

3 (Gm + kr)
+

4Gm

Gm + pr
+

2 [Gm (3Km + Gm) + Gm (3Km + 7Gm)]

Gm (3Km + Gm) + mr (3Km + 7Gm)

}
, (9)

δr =
1
3

[
nr + 2lr

(2kr + lr) (3Km + 2Gm − lr)
Gm + kr

]
, (10)

ηr =
1
5

[
2
3
(nr−lr)+

8Gm pr

Gm+pr
+

8mrGm (3Km + 4Gm)

3Km (mr+Gm)+Gm (7mr+Gm)
+

2 (kr−lr)(2Gm+lr)
3 (Gm+kr)

]
. (11)

The subscripts m and r in the above equations stand for the quantities of the matrix
and the reinforcing phase, Km and Gm are the bulk and shear moduli of the matrix, re-
spectively; kr, mr, nr and pr are the Hill’s elastic moduli for the reinforcing phase (CNTs).

The effective bulk modulus K and the effective shear modulus G of the composite
are derived from the Mori–Tanaka method as follows [8]

K = Kout

1 +
µ

(
Kin

Kout
− 1

)
1 + α (1 − µ)

(
Kin

Kout
− 1

)
 , (12)
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G = Gout

1 +
µ

(
Gin

Gout
− 1

)
1 + β (1 − µ)

(
Gin

Gout
− 1

)
 , (13)

in which

νout =
3Kout − 2Gout

2 (3Kout + Gout)
, (14)

α =
1 + νout

3 (1 − νout)
, (15)

β =
2 (4 − 5νout)

15 (1 − νout)
. (16)

Finally, the effective Young’s modulus E and Poisson’s ratio ν of the composite are
given by [8]

E =
9KG

3K + G
, (17)

ν =
3K − 2G
6K + 2G

. (18)

3. TOTAL LAGRANGE FORMULATION

In this section, a nonlinear finite beam element for large deflection analysis is for-
mulated in the context of the total Lagrange formulation. A two-node shear deformable
beam element taking into account the variation of the material properties in the beam
thickness is considered herewith. The element with six degrees of freedom, as depicted
in Fig. 3, based on the Antman’s nonlinear beam model [10] was firstly derived by Pa-
coste and Eriksson [11] for nonlinear analysis of homogeneous beams. The vector of
nodal degrees of freedom is of the form

d = {u1 w1 θ1 u2 w2 θ2}T, (19)

where ui, wi and θi (i = 1, 2) are, respectively, the axial, transverse displacements and
rotation at node i; the superscript ‘T’ in Eq. (19) and hereafter, is used to denote the
transpose of a vector or a matrix.

The beam element with length l is initially straight and lies on the x-axis as depicted
in a Cartesian coordinate system (x, z) in Fig. 3. A point P with abscissa x and its asso-
ciated cross section S in the initial configuration become point P′ and section S′ in the
deformed configuration. The deformation of the point P can be defined through an angle
θ(x)- the rotation of the cross section S, and the current position vector r,x (x) of the point
P′, as [11]

r,x (x) =
dr (x)

dx
= [1 + ε (x)] e1 + γ (x) e2, (20)

where
e1 = cos θ i + sin θ j, e2 = − sin θ i + cos θ j, (21)
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are the unit vectors, orthogonal and parallel to the current section S′, respectively. The
curvature of the beam κ (x) at the point P′ is given by

κ (x) =
dθ (x)

dx
. (22)

Fig. 3. Configurations and kinematics of a two-node beam element

From Eqs. (20)–(22), one can write the axial and shear strains in the forms

ε (x) =
(

1 +
du
dx

)
cos θ +

dw
dx

sin θ − 1, γ (x) =
dw
dx

cos θ −
(

1 +
du
dx

)
sin θ. (23)

As emphasized in [11] that the strains ε (x) , γ (x) and the curvature κ (x) although
parameterized for convenience by the reference abscissa x ∈ [0, l] take the values on the
current deformed configuration.

The strain energy for the shear deformable beam element is of the form

U =
1
2

l∫
0

[
A11ϵ(x)2 + 2A12ϵ(x)κ(x) + A22κ(x)2 + ψA33γ(x)2]dx, (24)

where ψ is the shear correction factor, chosen by 5/6 for the rectangular cross section;
A11, A12, A22 and A33 are, respectively, the axial, axial-bending coupling, bending and
shear rigidities, which are defined as

(A11, A12, A22) =
∫
A

E(k)
f (1, z, z2)dA =

3

∑
k=1

zk∫
zk−1

bE(k)
f (1, z, z2)dz,

A33 =
∫
A

G(k)
f dA =

3

∑
k=1

zk∫
zk−1

bG(k)
f dz,

(25)

with A is the cross-sectional area.
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The displacements and rotation inside the element of the first-order shear deforma-
tion beam element can be linearly interpolated from the nodal values according to

u =
l − x

l
u1 +

x
l

u2 , w =
l − x

l
w1 +

x
l

w2 , θ =
l − x

l
θ1 +

x
l

θ2. (26)

The beam element based on the above linear interpolation functions, however en-
counters the shear locking problem [4]. In order to overcome this problem, the reduced
integration technique, namely one-point Gauss quadrature, is employed herewith to
evaluate the strain energy of the element. In this regard, one can express the strain energy
in Eq. (24) in the following form

U =
l
2
(

A11 ε̄2 + 2A12 ε̄κ̄ + A22κ̄2 + ψA33γ̄2) . (27)

In Eq. (27), ε̄, γ̄ and κ̄ are given by

ε̄ =

(
1 +

u2 − u1

l

)
cos θ̄ +

w2 − w1

l
sin θ̄ − 1,

γ̄ = −
(

1 +
u2 − u1

l

)
sin θ̄ +

w2 − w1

l
cos θ̄,

κ̄ =
θ2 − θ1

l
,

(28)

with

θ̄ =
θ1 + θ2

2
. (29)

The internal force vector fin for the element is obtained by differentiating the strain energy
expression with respect to the nodal displacement vector as

fin =
∂U
∂d

= fa + fc + fb + fs. (30)

The element tangent stiffness matrix kt is calculated by twice differentiating the
strain energy with respect to the nodal displacement vector as follows

kt =
∂2U
∂d2 = ka + kc + kb + ks. (31)

In Eqs. (30)–(31) the subscripts a, c, b, s denote the terms stemming from the axial
stretching, axial-bending coupling, bending and shear deformation of the beam, respec-
tively.

Noting that for the nonlinear analysis considered herein, both the internal force vec-
tor fin and the tangent stiffness matrix kt depend on the current nodal displacements d.
The detailed expressions for the internal force vector in Eq. (30) and the tangent stiffness
matrix in Eq. (31) are given by Eqs. (A.1)–(A.6) in the Appendix A.
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4. EQUILIBRIUM EQUATION

The equilibrium equation for large deflection analysis of the beam can be written in
the form [1]

g (p, λ) = qin (p)− λfex = 0, (32)

where the residual force vector g is a function of the current structural nodal displace-
ments p and the load level parameter λ; qin is the structural nodal force vector, assembled
from the formulated vector fin; fex is the fixed external loading vector.

The system of Eq. (32) can be solved by an incremental/iterative procedure. The
procedure results in a predictor-corrector algorithm, in which a new solution is firstly
predicted from a previous converged solution, and then successive corrections are added
until a chosen convergence criterion is satisfied. A convergence criterion based on Eu-
clidean norm of the residual force vector is used herein as

∥g∥ ≤ ϵ∥λfex∥, (33)

where ϵ is the tolerance, chosen by 10−4 for all numerical examples reported in Section 5.
Newton–Raphson based method is used in combination with the spherical arc-length

control technique herein to solve Eq. (32). Detail implementation of the spherical arc-
length control method is given in [1].

5. NUMERICAL INVESTIGATION

The numerical results for a nanocomposite CNT-reinforced sandwich beam are pre-
sented in this section. Here, we consider PMMA, referred to polymethyl methacrylate, as
the matrix which its material properties as follows: Em = 2.5 GPa, υm = 0.34 . The rein-
forcement is assumed to be (10, 10) single-walled CNTs (SWCNTs). Otherwise stated, an
aspect ratio L/h = 10 is chosen for the analysis. The ratio of core thickness to face sheet
thickness is defined by hc/h f . Representative elastic constants for this CNT are listed in
Table 1.

Table 1. Hill’s elastic modulus for the CNTs [9]

Bán kı́nh CNT (Å) kr (GPa) lr (GPa) mr (GPa) nr (GPa) pr (GPa)

10 30 10 1 450 1

The following dimensionless parameters are introduced for the external loads and
displacements

P∗ =
PL2

Em I
, u∗ =

uL

L
, w∗ =

wL

L
, (34)

where I is the inertia moment of the cross section; Em is Young’s modulus of the polymer
matrix; uL and wL are the tip axial and transverse displacements, respectively.
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To verify the formulation presented in Section 4, the analytical solution for the effec-
tive Young’s modulus of the CNTRC nanobeam with agglomeration is compared with
those of Daghigh et al. [9]. The good agreement result is evaluated based on the available
data in Daghigh et al. [9] and shown in Fig. 4. It is worthy to note that the agglomeration
has a significant effect on the material properties. The curves in Fig. 4 suggest that having
CNTs in a fully-dispersed status results in the highest value of Young’s modulus, while
the increase of agglomeration degree leads to the decrease of Young’s modulus.
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Fig. 4. Effect of CNT agglomeration on the Young’s moduli of a CNTRC nanobeam (V∗
CNT = 0.1)

Next, a cantilever sandwich composite beam reinforced by agglomeration carbon
nanotubes under a transverse tip load P is considered. In Figs. 5 and 6, the effect of two
parameters used to describe the agglomeration η and µ is depicted for a transverse load
P∗ = 15. The figures confirm that the tip displacement of the sandwich composite beam is
larger for the smaller values of the agglomeration parameters. This means that the higher
agglomeration is the larger displacement are. Also, one can observed from Figure that
with the higher V∗

CNT and the smaller value of hc/h f , the obtaining load-displacement
curves are markedly different.



Geometrically nonlinear analysis of sandwich composite beams reinforced by agglomeration carbon nanotubes 385

0 5 10 15

Normalized load, P*

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

T
ip

 d
is

p
la

ce
m

en
ts

, 
u

*
 &

 w
*

=0.2 =0.4 =0.6 =0.8

0 5 10 15

Normalized load, P*

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

T
ip

 d
is

p
la

ce
m

en
ts

, 
u

*
 &

 w
*

0 5 10 15

Normalized load, P*

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

T
ip

 d
is

p
la

ce
m

en
ts

, 
u

*
 &

 w
*

0 5 10 15

Normalized load, P*

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

T
ip

 d
is

p
la

ce
m

en
ts

, 
u

*
 &

 w
*

w*

(a) h
c
/h

f
=2, V

*

CNT
=0.075

w*

u*

w*

u*

(c) h
c
/h

f
=2, V

*

CNT
=0.3 (d) h

c
/h

f
=8, V

*

CNT
=0.3

u*

w*

u*

(b) h
c
/h

f
=8, V

*

CNT
=0.075

Fig. 5. Effect of agglomeration parameter µ on the load-displacement curves
of sandwich composite beam under tip load (η = 1)
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Fig. 7 shows the load-displacement of sandwich composite beam under a tip load
P∗ = 15 at various CNT volume fractions. As can be seen from the figure that an increase
in the CNT volume fraction decreases the large displacement response of a sandwich
composite beam reinforced by agglomeration carbon nanotubes. The curves correspond-
ing to the higher ratio of core thickness to face sheet thickness (such as hc/h f = 8 in
Fig. 7(d)) get the higher tip displacements compared to that of the smaller ratio of core
thickness to face sheet thickness (hc/h f = 2 in Fig. 7(a)). Fig. 8 confirms again the above
remark on the influence of the core-to-face sheet thickness ratio on the large displacement
response of the composite beam.
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Fig. 7. Effect of V∗
CNT on the load-displacement curves of sandwich composite beam

under tip load (µ = η = 0.5)

The deformed configurations of sandwich composite beam reinforced by agglomer-
ation carbon nanotubes are shown in Fig. 9 for different CNT volume fractions. As men-
tioned above that having CNT in a fully-dispersed status (µ = η) results in the highest
value of Young’s modulus, the deformed configurations curves from Figs. 9(b) and 9(d)
are quite closed to each other, while that corresponding to µ = η = 0.5 from Figs. 9(a)
and 9(c) are markedly different.
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Fig. 8. Effect of hc/h f on the load-displacement curves of sandwich composite beam
under tip load (µ = η = 0.5)
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6. CONCLUSIONS

The geometrically nonlinear behaviour of sandwich composite beams was investi-
gated by considering the agglomeration effect of single-wall carbon nanotubes using the
first-order shear deformable nonlinear beam element and the Mori-Tanaka method. A
nonlinear beam element was derived in the context of the total Lagrangian formulation
and employed to construct the nonlinear equilibrium equation of the composite beams.
Newton-Raphson iterative procedure was used in combination with arc-length method
to trace the equilibrium paths of the beams. The numerical investigation reveals that
the agglomeration of the CNTs has a significant influence on the nonlinear behaviour of
the composite beams, and the nonlinear deflections are larger when the agglomeration
degree is more severe. It should be noted that the influence of thermal effect and foun-
dation support, the important factors in behaviour of composite beams in practice, has
not considered in the present work. More efforts should be made to take into account the
influence of this factors on nonlinear behaviour of agglomerated CNT reinforced com-
posite beams.
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APPENDIX A.

This Appendix presents detail expressions for the nodal forces and the tangent stiff-
ness matrices in Eq. (30) and Eq. (31). The following notations are used

s = sin θ̄ , c = cos θ̄,

a1 = (sε̄ − cγ̄) , a2 = (cε̄ + sγ̄) , a3 = γ̄2 − ε̄ (1 + ε̄) ,

a4 = cγ̄ − s (1 + ε̄) , a5 = sγ̄ + c (1 + ε̄) , a6 = (1 + ε̄)2 − γ̄2.

(A.1)

The internal force vector

fa = A11 ε̄

{
−c − s

l
2

γ̄ c s
l
2

γ̄

}T

, fb = A22κ̄{0 0 1 0 0 − 1}T,

fc = A12 ε̄{0 0 1 0 0 − 1}T + A12κ̄

{
−c − s

l
2

γ̄ c s
l
2

γ̄

}T

,

fs = ψA33γ̄

{
s − c − l

2
(1 + ε̄) − s c − l

2
(1 + ε̄)

}T

,

(A.2)

ka =
1
l

A11



c2

sc s2 sym.
l
2

a1 − l
2

a2
l2

4
a3

−c2 −sc − l
2

a1 c2

−sc −s2 l
2

a5 sc s2

l
2

a1 − l
2

a2
l2

4
a3 − l

2
a1

l
2

a2
l2

4
a3


, (A.3)

kb =
1
l

A22



0
0 0 sym.
0 0 1

0 0 0 0
0 0 0 0 0
0 0 −1 0 0 1


, (A.4)
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kc = A12κ̄



0 0 s 0 0 s
0 0 −c 0 0 −c
s
2

− c
2

− l
2
(1 + ε̄) − s

2
c
2

l
2
(1 + ε̄)

0 0 −s 0 0 −s

0 0 c 0 0 c
1
2

s −1
2

c − l
2
(1 + ε̄) −1

2
s

1
2

c
l
2
(1 + ε̄)


+

2
l

A12



0 0 −c 0 0 c
0 0 −s 0 0 s

0 0
l
2

γ̄ 0 0 − l
2

γ̄

0 0 c 0 0 −c

0 0 s 0 0 −s

0 0
l
2

γ̄ 0 0 − l
2

γ̄


,

(A.5)

ks =
ψ

l
A33



s2

−sc c2 sym.
l
2

a4
l
2

a5
l2

4
a6

−s2 sc − l
2

a4 s2

sc −c2 − l
2

a5 −sc c2

l
2

a4
l
2

a5
l2

4
a6 − l

2
a4 − l

2
a5

l2

4
a6


. (A.6)
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