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Abstract. In this paper, vibration of Timoshenko microbeams with an axial force in micro-
electromechanical systems (MEMS) is studied for the first time by using a nonlinear finite
element procedure. Based on the von Kármán geometric nonlinearity and the modified
couple stress theory (MCST), a beam element is formulated by employing hierarchical
functions to interpolate the displacement field. Using the derived element, the discretized
equation of motion for the microbeam is constructed and then solved by the Newton-
Raphson iterative procedure in conjunction with the Newmark method. The natural fre-
quencies, pull-in voltages and dynamic deflections are computed for a clamped-clamped
microbeam under electrostatic actuation of a given direct current (DC) voltage. The nu-
merical result reveals that the axial force and the microsize effect have a significant in-
fluence on the vibration, and the fundamental frequency of the microbeams is underesti-
mated by ignoring the size effect. The effects of the axial force, the applied voltage and
the material length scale parameter on the vibration of the beam are studied in detail and
highlighted.

Keywords: Timoshenko microbeam, MCST, electrostatic actuation, hierarchical interpola-
tion, nonlinear finite element analysis.

1. INTRODUCTION

Since the discovery of micro-electromechanical systems (MEMS), their development
has reached a level of maturity that, today, several MEMS devices are being used in our
every-day life. Microbeams are used in many MEMS devices such as capacitive MEMS
switches and resonators, filters, and resonant sensors. This device can be designed by
using the electroplating techniques, low temperature processes, and dry releasing tech-
niques [1]. The properties of MEMS such as the frequencies and pull-in voltages can be
determined by M-test method [2]. The simulation method, an effective tool in design
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and optimization of MEMS, are increasingly used in predicting mechanical characteris-
tics of MEMS elements, e.g. the natural frequencies and pull-in voltages of microbeams
in MEMS. Regarding the microbeam in MEMS considered herein, under the electric ac-
tuation, the microbeam often undergoes moderately large deflection, and this feature
requires nonlinear static and dynamic analyses for accurately assessing mechanical char-
acteristics of the MEMS microbeams. Both analytical and numerical methods have been
employed by researchers in predicting the vibration characteristics of microbeams actu-
ated by electric forces in MEMS.

In the early works, the classical beam theories which ignore the influence of the mi-
crosize effect have been used in modeling microbeams in MEMS. In [3], Choi and Lovell
adopted the classical Euler-Bernoulli beam theory to describe the deformation of the mi-
crobeams in MEMS, and then determined the response of the microbeams the shooting
method based numerical procedure. The Galerkin method was employed by several au-
thors, for example Abdel-Rahman et al. [4], Younis et al. [5], Younis and Nayfeh [6], in
assessing the frequencies and pull-in voltages of microbeams under static and dynamic
actuations. The influence of the axial force which resulted from residual stresses in the
fabrication process was also considered by Younis and Nayfeh [6]. Abdel-Rahman and
Nayfeh [7] investigated the response of a microbeam-based resonant sensor to super-
harmonic and subharmonic electric actuations by using a nonlinear beam model. The
perturbation method was adopted by the authors to derive the first-order nonlinear dif-
ferential equations for the microbeam, and the Galerkin method was also used to deter-
mine the static and dynamic pull-in voltages. The influence of both the axial force and the
viscous damping effect on the response of the microbeam was considered in the work.
Chaterjee and Pohit [8] presented a large deflection model for investigating the pull-in
phenomenon of microcantilever with a relatively large gap between the microbeam and
the stationary electrode. The authors concluded that the geometric nonlinearity plays
a significant role when pull-in occurs. Various problems on vibration and bending of
microbeams in MEMS have been considered in the textbook by Younis [9]. The effects
of geometric nonlinearity, viscous damping and axial force on the microbeams behavior
have been taken into account. The influence of residual stresses and axial force on pull-in
voltages of microbeams was considered by Rezazadel et al. [10]. The governing equation
of the microbeam was derived in the basis of Euler-Bernoulli beam theory and solved by
the finite difference method. Finite element method was used in [11] to study the pull-in
instability phenomenon of microbeams. Euler-Bernoulli beam theory was also adopted
in the work to model the microbeam deformation. The COMSOL multi-physics finite
element package was employed by Kaneria et al. [12] to study the pull-in instability of
microcantilever in MEMS devices. A nonlinear model for studying the nonlinear elec-
trostatic pull-in behavior of shaped actuators in micro-electro-mechanical systems was
proposed by Kuang and Chen [13], taking into account the fringing effects of the elec-
trical field. It was concluded by the authors that the pull-in voltages obtained by the
differential quadrature method in the work agree well with the measured data.
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The influence of microsize effect on mechanical response of structural elements in
MEMS has been considered recently. To this end, various higher-order continuum the-
ories [14, 15] have been proposed and used in combination with conventional structural
theories in modelling microstructures. Among the higher-order continuum theories, the
modified couple stress theory (MCST) used only parameter, namely the material length
scale [16], is widely employed in conjunction with a classical beam theory to model mi-
crobeams. In this line of works, Farokhi and Ghayesh [17] used the MCST in combination
with Euler-Bernoulli beam theory to construct the governing equations in dynamic anal-
ysis of a MEMS microcantilever subjected to an electric excitation. The authors found that
the classical beam theory, which ignores the size effect, results in a higher deflection and
a lower static pull-in voltage. Ghayesh and Farokhi [18] modelled the electrode of MEMS
by a microplate in their study on nonlinear behaviour of MEMS resonators due to elec-
tric actuation. The geometric nonlinearities, geometric imperfections, small-size effects,
and all the transverse and in-plane inertia and displacements have been taken into ac-
count in the microplate model. An analytical method based on the MCST was presented
by Baghani [19] for studying the size-dependent static pull-in behaviour of microcan-
tilevers in MEMS. The method employed the modified variational iteration procedure
in assessing the nonlinear response of the microbeams to electric actuation. Ghayesh et
al. [20] studied nonlinear size-dependent resonant behaviour of MEMS resonators sub-
jected to both DC and alternating current (AC) voltages. Euler-Bernoulli beam theory
and the MCST were adopted by the authors in the derivation of the nonlinear differential
equations, and Galerkin method was used to obtain the frequency-response curves. Hu
et al. [21] presented an analytical approach to the static, dynamic, and stability analysis
of a microcantilever subjected to electrostatic forces. Based on numerical investigation,
they concluded that the instable regions appear not only near the multiples of resonant
frequencies but also near some fractions of resonant frequency differences. Osterberg
and Senturia [22] presented a set of electrostatically actuated microelectromechanical test
for determining the electrostatic pull-in of cantilever and clamped beams. The proposed
method agreed with literature values to within 4%. Recently, Le et al. [23] studied the
size dependent behavior of a MEMS microbeam under electrostatic actuation using the
improved third-order shear deformation theory of Shimpi and Patel [24]. The authors
concluded that the dynamic deflections of the beam are overestimated when ignore the
microsize effect.

In this paper, vibration of axially loaded microbeams in MEMS with the pull-in in-
stability phenomenon is studied for the first time by using a nonlinear finite element
procedure. In order to account for the size effect, the MCST is employed in conjunction
with Timoshenko beam theory to model the microbeams. A nonlinear beam element is
formulated and used to construct the discretized equation of motion. In order to avoid
the shear-locking problem, the hierarchical functions are employed herein to interpolate
the displacement field. As above mentioned, under the electric actuation the microbeam
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in MEMS undergoes relatively large deflection, and this large deflection should be com-
puted before evaluating frequencies of the microbeam. To account for this nonlinearity,
the von Kámán nonlinear strain-displacement relationship is adopted in the derivation
of the beam element. The Newton–Raphson iterative procedure is used in combination
with the Newmark method to compute the frequencies, dynamic defections and pull-in
voltages of a clamped microbeam under different axial forces and static voltages. It is
worthy to note that in addition to the vibration analysis of the axially load Timoshenko
microbeam in MEMS presented herein for the first time, the hierarchical nonlinear beam
element derived in the present work are the main novelties of this. The influence of the
applied voltage, the axial force as well as the material length scale parameter on the fre-
quencies, the pull-in voltages and the dynamic deflections of the microbeam are studied
in detail and highlighted. The dependence of the pull-in voltage at which the instability
occurs is also examined and discussed.

2. MATHEMATICAL MODEL

Fig. 1 shows a sketch of microbeam with length L, width b, thickness h in MEM. The
initial air gap between the microbeam and the stationary electrode is d, and the applied
voltage is denoted by V.

 

Fig. 1. A sketch of microbeam and stationary electrode in MEMS

The deformation of the microbeam is described herein by using Timoshenko beam
theory. According to the theory, the axial displacement (u1) and the transverse displace-
ment (u3) at any point of the beam are given by

u1(x, z, t) = u(x, t)− z θ(x, t),

u3(x, z, t) = w(x, t),
(1)

where z is the distance from the midplane to the considering point; u(x, t) and w(x, t)
are, respectively, the axial and transverse displacements of the corresponding point on
the midplane, θ(x, t) is the cross-sectional rotation, t is the time variable.
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Based on the von Kármán nonlinearity, the normal strain (εxx) and the shear strains
(γxz) are given by

εxx = u1,x +
1
2

u2
3,x = u,x +

1
2

w2
,x − z θ,x ,

γxz = u1,z + u3,x = w,x − θ,
(2)

where a subscript comma is used to indicate the derivative of the variable with respect to
the spatial coordinate x, (·),x = ∂(·)/∂x.

With the assumption of linear behaviour for the beam material, the stresses are re-
lated to the strain according to{

σxx
τxz

}
=

[
E 0
0 ψG

]{
εxx
γxz

}
, (3)

where σxx and τxz are, respectively, the normal and shear stresses, G is the effective shear
modulus; and ψ is the shear correction factor, taken by 5/6 for the beams with rectangular
cross section considered herein.

Inasmuch as classical continuum mechanics is not capable of capturing the small-
size effects, development of size-dependent elasticity theories is of great importance for
analysis of microstructures The MCST with only one parameter proposed by Yang et
al. [16] is employed herewith to derive the the elastic strain energy for the microbeam as

U =
1
2

∫
V

(σ : ε + m : χ)dV, (4)

where V is the volume of the microbeam; σ and ε are, respectively, the tensors of the
stresses and strains; m is the deviatoric part of the couple stress tensor and χ is the sym-
metric curvature tensor. With the Timoshenko beam model of the present work, the elas-
tic strain energy in Eq. (4) has the following expression

U =
b
2

L∫
0

h/2∫
−h/2

(σxxεxx + τxzγxz + 2mxyχxy)dzdx, (5)

where

χxy = −1
4
(θ,x + w,xx), mxy = 2Gl2χxy, (6)

with l is the material length scale parameter.
From Eqs. (2), (3) and (6), the strain energy of the beam in Eq. (5) can be recasted in

the following form

Ub =

L∫
0

(
EIθ2

,x

2
+

EA
2

(
u2

,x + u,xw2
,x + w4

,x

/
4
)
+

GAl2

8
(
θ2

,x + 2θ,xw,xx + w2
,xx
)

+
GAψ

2
(
θ2 − 2θw,x + w2

,x
))

dx,

(7)
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where A = b × h is the cross-sectional area and I = bh3/12 is the second moment of
inertia of the beam cross section.

From Eq. (1) one can write the kinetic energy of the beam in the form

T =
ρ

2

∫
V

(
u̇2

1 + u̇2
3
)

dV =
ρA
2

L∫
0

(
u̇2 + ẇ2)dx +

ρI
2

L∫
0

θ̇2dx, (8)

with ρ is the mass density, and the over dot is used to denote the derivative of a quantity
with respect to the time variable t.

The beam is under actuation of the electrostatic force per unit length in the form
[10, 18]

q (x, t) =
ε0bV2

DC

2 (d − u3(x, t))2 . (9)

The electrical potential energy WF stored between the upper and lower electrodes is
given by [21]

WF = −
L∫

0

ε0bV2
DC

2(d − w)
dx. (10)

Furthermore, the microbeam is considered to be axially loaded by a force P. The
energy WP caused by the axial force P is given by

WP =
1
2

L∫
0

Pu2
3,xdx =

1
2

L∫
0

Pw2
,xdx. (11)

The damping effect is modelled herein by using the Rayleigh dissipation function D,
which has the following form [9]

D =
c0

2

L∫
0

(
u̇2 + ẇ2)dx, (12)

with c0 is the viscous damping coefficient.
The nonlinear differential equations of motion for the microbeam is derived by using

the Hamilton’s principle, which can be written as

δ

t2∫
t1

(T − (Ub + WP + WF + D)) = 0. (13)

Eq. (13) leads to a system two nonlinear differential equations of motion. However,
a closed-form solution for such nonlinear equations is very difficult to derive. In the
present work, finite element method is adopted to derive a discretized equation of mo-
tion and to compute the vibration characteristics of the microbeam. To this end, a finite
element formulation is derived in the next section.
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3. FINITE ELEMENT FORMULATION

A finite element formulation is formulated in this Section for constructing the dis-
cretized equation of motion and computing nonlinear vibration characteristics of the
beam. To this end, the beam is assumed to be divided into a number of two-node beam
elements with length le. The displacements u0, w0 of a point on the beam mid-axis and
the cross-sectional rotation θ in Timoshenko beam theory are independent, and linear
functions can be adopted to interpolate them from their nodal values. The beam ele-
ment formulated from the linear interpolation, however encounters the shear-locking
problem [25]. To avoid the shear-locking problem, the displacements and rotation are
interpolated from their nodal values by using the hierarchical functions as follows [26]

u = N1u1 + N2u2, θ = N1θ1 + N2θ2 + N3θ3, w = N1w1 + N2w2 + N3w3 + N4w4, (14)

where u1, u2, θ1, θ2, w1, w2 are the degrees of freedom at nodes 1 and 2; θ3, w3, w4 are the
additional degrees of freedom; and N1, N2, N3 and N4 are the linear, quadratic, and cubic
forms of the hierarchical shape functions with the following forms [27]

N1 =
1
2
(1 − ξ), N2 =

1
2
(1 + ξ), N3 = (1 − ξ2), N4 = ξ(1 − ξ2), (15)

with ξ =
2x
le

− 1 being the natural coordinate (with le is the initial element length).

A Timoshenko beam element can be formulated from the interpolation (14) and (15).
To make the element more efficient, Tessler and Dong [28] proposed a method by con-
straining the shear strain to be constant, γxz = const. The method allows to express w3

and w4 in term of θi (i = 1, . . . , 3), and the interpolation (14), (15) deduces to the following
forms [26]

u = N1u1 + N2u2 = hu, θ = N1θ1 + N2θ2 + N3θ3 = hθθ,

w = N1w1 + N2w2 +
le

8
N3(θ1 − θ2) +

le

6
N4θ3 = hw + hwθ,

(16)

where
u =

{
u1, u2

}T ,

θ =
{

θ1, θ2, θ3
}T ,

w =
{

w1, w2
}T ,

h =
{

N1, N2
}

,

hθ =
{

N1, N2, N3
}

,

hw =

{
le

8
N3, − le

8
N3,

le

6
N4

}
.

(17)

Differentiating in Eq. (16) with respect to x gives

u,x = bu, θ,x = bθθ, w,x = bw + bwθ, w,xx = cwθ, (18)
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with

b = h,x, bθ = hθ,x, bw = hw,x, cw = bw,x. (19)

Using the above interpolations, one can write the expression of strain energy in
Eq. (7) in the following form

Ub =
neB

∑ Ue
b =

neB

∑
le∫

0

(
EI(bθθ)2

2
+

EA
2

(
(bu)2 + (bu)(bw + bwθ)2 + (bw + bwθ)4

/
4
)

+
GAl2

8
(
(bθθ)2 + 2(bθθ)(cwθ) + (cwθ)

)
+

GAψ

2
(
(hθθ)2 − 2(hθθ)(bw + bwθ) + (bw + bwθ)2))dx,

(20)
with neB is the total number of elements used to discretize the beam.

The kinetic energy of the beam in Eq. (8) can now be rewritten as

T =
neB

∑ Te =
neB

∑

ρA
2

le∫
0

(
(hu̇)2 + (hẇ + hwθ̇)2)dx +

ρI
2

le∫
0

(hθ θ̇)2dx

. (21)

Finally, the work done by the electric force in Eq. (10), the energy WP in Eq. (11) and
the damping mechanism D in Eq. (12) are also written in the forms

WF =
neB

∑ We
F =

neB

∑
le∫

0

−ε0bV2
DC

2 (d − hw − hwθ)
dx, (22)

WP =
neB

∑ We
P =

neB

∑
1
2

L∫
0

P(bw + bwθ)2dx, (23)

D =
neB

∑ De =
neB

∑
c0

2

L∫
0

(
(hu̇)2 + (hẇ + hwθ̇)2)dx. (24)

Substituting Eqs. (20)–(24) into Eq. (13), then performing integration over the to-
tal beam length results in the following matrix form for the Galerkin residual equa-
tion [25] as

neB

∑ (meq̈e + ceq̇e + keqe − fe) = 0. (25)

In the above equation, me, ce and ke denote the mass, damping and stiffness matrices
of the element, respectively; q̇e and q̈e are, respectively, the vectors of the nodal velocities
and nodal accelerations of the element; fe is the element vector of the external force.
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It is convenient to split the element mass, damping and stiffness matrices into sub-
matrices as follows

me
(7×7)

=

 muu muθ muw
mT

uθ mθθ mθw
mT

uw mT
θw mww

 , ce
(7×7)

=

 cuu cuθ cuw
cT

uθ cθθ cθw
cT

uw cT
θw cww

 ,

ke
(7×7)

= kb
e

(7×7)
+ kP

e
(7×7)

, ke
(7×7)

=

 kuu kuθ kuw
kT

uθ kθθ kθw
kT

uw kT
θw kww

 , kP
e

(7×7)
=

 0 0 0
0 kP

θθ kP
θw

0
(

kP
θw

)T
kP

ww

 .

(26)

The sub-matrices of in the above equations are calculated by respectively twice dif-
ferentiating the kinetic, damping and strain energies of the element as follows

muu
(2×2)

=
∂2Te

∂u2 , mθθ
(3×3)

=
∂2Te

∂θ2 , mww
(2×2)

=
∂2Te

∂w2 ,

muθ
(2×3)

=
∂2Te

∂u∂θ
, muw

(2×2)
=

∂2Te

∂u∂w
, mθw

(3×2)
=

∂2Te

∂θ∂w
,

(27)

cuu
(2×2)

=
∂2De

∂u2 , cθθ
(3×3)

=
∂2De

∂θ2 , cww
(2×2)

=
∂2De

∂w2 ,

cuθ
(2×3)

=
∂2De

∂u∂θ
, cuw

(2×2)
=

∂2De

∂u∂w
, cθw

(3×2)
=

∂2De

∂θ∂w
,

(28)

and

kb
uu

(2×2)
=

∂2Ue
b

∂u2 , kb
θθ

(3×3)
=

∂2Ue
b

∂θ2 , kb
ww

(2×2)
=

∂2Ue
b

∂w2 ,

kb
uθ

(2×3)
=

∂2Ue
b

∂u∂θ
, kb

uw
(2×2)

=
∂2Ue

b
∂u∂w

, kb
θw

(3×2)
=

∂2Ue
b

∂θ∂w
,

kP
θθ

(3×3)
=

∂2We
P

∂θ2 , kP
θw

(3×2)
=

∂2We
P

∂θ∂w
, kP

ww
(2×2)

=
∂2We

P
∂w2 .

(29)

Finally, the element force vector resulted from Eq. (22) is

fe
(7×1)

=
{

0 0 fw
e
}T , fw

e
(2×1)

= hTq(x, t), (30)

where the electrostatic force q(x, t) defined by Eq. (9) is a function of the current trans-
verse displacement w(x, t). It is worthy to emphasize that, in addition to the large deflec-
tion, the dependence of the force upon the displacement are two sources of nonlinearity
of the problem. As can be seen from in Eq. (25) that the highest order of the functions un-
der the integral symbol is six, thus four Gauss points are necessary to use for computing
the integrals exactly.
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The obtained mass, damping, stiffness matrices and nodal force vector of the ele-
ment are assembled into the corresponding structural matrices and vector, and then the
discretized nonlinear equation of motion for the microbeam can be constructed as follows

MD̈ + CḊ + KD − F = 0. (31)

In the above equation D, Ḋ and D̈ are, respectively, the structural vectors of the nodal
displacements, nodal velocities and nodal accelerations; M, C, K denote the structural
mass, damping and stiffness matrices, respectively; F is the structural vector force vector;
In order to solve the nonlinear equation of motion (31), the Newton–Raphson iterative
procedure is employed herein in combination with the Newmark method. In the case
of static analysis, the acceleration and velocity vectors D̈ and Ḋ are set to zeros, and the
nodal displacement vector D is computed by using the iterative method only.

4. NUMERICAL RESULTS

The numerical results on vibration analysis of the Timoshenko microbeam in MEMS
are reported in this section. Otherwise stated, a clamped-clamped microbeam made of
silicon with the following properties [9] is employed in all the computations.

E = 169 GPa, ρ = 2332 kg/m3, ν = 0.06. (32)

For the element model, a mesh of 8 equal elements is used in all the computations
reported the below. The following dimensionless parameters are introduced for the fun-
damental frequency, the material length scale and the maximum deflection, respectively

µ = ω1

√
ρAL4

EI
, η =

l2AG
EI

, Wmax = max
(u3

d

)
, (33)

with ω1 is the fundamental natural frequency. The constraints for clamped-clamped
boundaries are: u = w = θ = 0 at x = 0, L.

4.1. Verification

The derived beam element is firstly verified in this sub-section by comparing the
obtained result in the present work with the published dada. In Tables 1 and 2, the
static and dynamic pull-in voltages obtained in this paper are compared with that of
Refs. [10, 11, 22]. The static pull-in voltages in these tables are obtained for a microbeam
with the following material and geometric data: E = 169 GPa, ν = 0.06, b = 50 µm, h =
3 µm, η = 0. Different values for the total beam length L (µm), the air-gap d (µm) and
the P/A (MPa) are considered in the tables. It can be seen from the tables that for all
the considered beam length, air gap, axial force and the damping coefficient the static
and dynamic pull-in voltages obtained herein agree well with the results of the cited
references. It is worthy to note that the results of Ref. [11] are also based on the finite
element method, while that of Refs. [10,22] are used the finite difference method and the
3D MEMCAD model, respectively. The difference in the result obtained herein with that
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of the cited references is caused by the different beam theories and methods used in the
studies. It is noted that the Euler–Bernoulli beam theory was adopted in Ref. [10].

Table 1. Comparison of static pull-in voltages for an air gap d = 1 µm

Sources
L = 250 µm L = 350 µm

P/A = −25 P/A = 0 P/A = 100 P/A = −25 P/A = 0 P/A = 100

Ref. [10] 33.04 39.13 58.84 13.27 20.36 36.99
Ref. [22] 33.70 39.50 56.90 13.80 20.30 35.40
Present 33.11 39.59 58.32 12.88 20.20 36.52

Table 2. Comparison of dynamic pull-in voltages

d(µm) Sources
P/A = −25 MPa P/A = 0 P/A = 100 MPa

c0 = 0.325 c0 = 1.3 c0 = 0.4 c0 = 1.6 c0 = 0.55 c0 = 2.2

1 Ref. [11] 32.3 33.1 38.8 39.6 56.8 58.3
Present 32.5 33.2 38.9 39.7 57.0 58.4

2 Ref. [11] 93.2 96.2 110.4 113.3 160.6 165.6
Present 95.8 98.1 113.0 115.5 163.0 167.1

 

 (33) 

with  is the fundamental natural frequency. The constraints for clamped-clamped boundaries 
are: u = w = q  = 0 at x = 0, L. 

4.1. Verification 

The derived beam element is firstly verified in this sub-section by comparing the obtained 
result in the present work with the published dada. In Tables 1 and 2, the static and dynamic 
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damping coefficient the static and dynamic pull-in voltages obtained herein agree well with the 
results of the cited references. It is worthy to note that the results of Ref. [11] finite element 
method are also based on the finite element method, while that of Refs. [10], [22] are used the 
finite difference method and the 3D MEMCAD model, respectively. The difference in the result 
obtained herein with that of the cited references is caused by the different beam theories and 
methods used in the studies. It is noted that the Euler-Bernoulli beam theory was adopted in 
Ref. [10].  
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with an axial force P = −0.0009 N
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The curve of frequency parameter µ versus the applied voltage of the microbeam
with an axial force P = −0.0009 N is shown in Fig. 2 for a microbeam with L = 210 µm,
b = 100 µm, d = 1.18 µm, h = 1.5 µm and η = 0. For the sake of comparison, the result of
Ref. [9] obtained by the Galerkin method is also depicted in the figure. The figure shows a
good agreement between the finite element method base result of the present work with
that of Ref. [9]. In addition, as seen from the figure, the frequency parameter steadily
decreases with increasing the applied voltage and it becomes zero at the pull-in voltage.

4.2. Numerical results

The effects of the material length scale and the axial force on the vibration of the
clamped-clamped microbeam are investigated in this subsection. The static pull-in volt-
age is the minimum voltage at which the fundamental frequency of the microbeam be-
comes zero. In addition, the dynamic pull-in voltage is the smallest voltage that the gap
between the two microbeam and the electrode will approach zero after a sufficiently large
period of time.

The influence of the axial force on the frequency parameter and static pull-in volt-
age of the microbeam is illustrated in Fig. 3, where the applied voltage VDC versus the
fundamental frequency parameter µ is depicted for η = 0, L = 250 µm, b = 50 µm, v =
0.06, E = 169/(1 − v2) GPa, d = 1 µm, h = 3 µm. As can be seen from the figure, both
the frequency and the static pull-in voltage are decreased by increasing the compressive
axial force, and they are increased by the tensile axial force. This result can be explained
by the fact that the addition of a compressive axial force leads to a decrease of the beam
flexural stiffness, while the tensile axial force results in an increase of the beam bending
rigidity as in case of the macro beams [29].
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The effects of the length scale parameter on the frequency parameters and static pull-
in voltages of the microbeam are illustrated in Fig. 4, where the applied voltage versus
the fundamental frequency parameter of the microbeam is shown for various values of
the material length scale parameter η. At a given value of the VDC voltage, as can be seen
from Fig. 4, the frequency parameter µ and the static pull-in voltage increase by increas-
ing the material length scale. The results in the figure reveal that the material length scale
parameter has an important role on the fundamental frequency of the microbeam, and
the frequency parameter is significantly underestimated when the microsize effect is ig-
nored. Furthermore, the pull-in voltage corresponding to a zero fundamental frequency
of the microbeam is also increased by the increase of the tensile axial force and the scale
parameter η.

Finally, the curves for the relationship between the maximum deflection with the
pull-in time are respectively illustrated in Figs. 5 and 6 for different values of the axial
force and the material length scale parameter for the beam with L = 250 µm, b = 50 µm,
h = 3 µm, d = 1 µm, E = 169 GPa, ν = 0.06, and c0 = 1.6 kg/s.m. The stated data of the
microbeam have been taken from Refs. [9,10,22], and the material length scale parameter
η = 0 is used for Fig. 5, and P/A = −25 MPa is for Fig. 6. Fig. 5 shows that the time
necessary for the deflection to attain the maximum value decreases by increase of tensile
force. Similar to the effect of the axial force, the time at which the deflection attained
the maximum value tends to be decreased by the increase of the material length scale
parameter. It should be emphasized that the time value corresponding to Wmax = 1 is the
pull-in time at which the gap between the microbeam and the electrode becomes zero.
This time is generally decreased with the decrease of the dynamic pull-in voltage.
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5. CONCLUSIONS

The vibration of Timoshenko microbeams with an axial force under electric actuation
in MEMS has been studied by using a nonlinear finite element procedure. Based on the
modified couple stress theory and the von Kármán geometric nonlinearity, a two-node
beam element was formulated and used to construct the discretized equation of motion.
To avoid the shear-locking problem, the hierarchical functions have been employed to
interpolate the displacement field. Using the derived beam element, the vibration char-
acteristics, including the fundamental frequency and the maximum deflection, have been
computed for the silicon microbeam with clamped-clamped ends by using the Newton-
Raphson based iterative procedure in combination with the Newmark method. The influ-
ence of the applied voltage, the axial force as well as the mirosize effect on the vibration
behaviour of the microbeam has been studied in detail. It can be concluded from the nu-
merical investigations that both the axial force and the microsize efect have a significant
influence on the vibration frequencies and the pull-in voltages of the microbeam. The
fundamental frequencies are underestimated by ignoring the microsize effect, while the
beam deflections are overestimated when ignoring this effect.
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