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Abstract. Based on fundamental equations of the elasticity theory, a unified higher-order
shear deformation theory is developed for bending and free vibration analysis of func-
tionally graded (FG) microplates with porosities. The modified strain gradient theory is
employed to capture the size effects. Bi-directional series with hybrid shape functions
are used to solve the problems. Several important effects including thickness-to-material
length scale parameters, side-to-thickness ratio, and boundary conditions on the deflec-
tions and natural frequencies of FG porous microplates are investigated.
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1. INTRODUCTION

Microstructures have been applied in many engineering fields such as atomic force
microscopes, microelectromechanical systems and nano-electromechanical systems [1,2].
The recent development of functionally graded porous (FGP) materials led to a poten-
tial application, it hence requires advanced computational methods and models espe-
cially at microscales. The study on static and dynamic responses of FGP plates and
shells has attracted a number of researches with various computational methods and
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models [3-14], however, those classical elasticity models could not accurately predict re-
sponses of microstructures. Therefore, advanced computations theories with material
length scale parameters (MLSPs) have been developed with different approaches. A
number of researches has been performed for FGP microplates in which the modified
coupled stress theory (MCT) are mostly used. By considering the rotation gradient in
constitutive equations, the MCT with only one MLSP is known as the simplest theory
accounted for the size effects [15]. Owing to its simplicity, many size-dependent FGP mi-
croplate models with different shear deformation theories based on the MCT have been
developed [16-18]. By adding strain gradients into the strain energy, the modified strain
gradient theory (MST) with three MLSPs was proposed by Lam et al. [19] based on the
classical strain gradient theory of Mindlin [20,21]. This theory is more general than the
MCT and it can be recovered by the MST if the effects of dilatation and deviatoric stretch
gradients are neglected. By its advantages, the MST has been developed for static and dy-
namic of FG microplates [17,22-25]. A brief literature review showed that although many
studies have been performed for static and dynamic analysis of FGP microplates using
different existing shear deformation plate theories and MCT, however, the investigation
based on the MST is still limited, this gap needs to be studied further.

The objective of this paper is to develop a unified framework of higher-order shear
deformation theory (HSDT) for static and free vibration analyses of FGP microplates
based on the MST. Hamilton’s principle is used to derive the governing equations of
motion, which are then solved by bi-directional series-type solutions with hybrid shape
functions. Several important effects such as, thickness-to-MLSP ratio, side-to-thickness
ratio, boundary conditions on the deflections and natural frequencies of FGP microplates
are investigated. Some results given in this paper can be used for the future references.

2. THEORETICAL FORMULATION

Consider a rectangular FGP microplate in the coordinate system (x1,x7,x3) with
sides a x b and thickness h. It is supposed that the FGP microplates are composed of
a metal-ceramic mixture and porosity density whose effective material properties can be
approximated by the following expressions [3,26,27]

Pl = (o= pa) (25E0) e m - B R, 0

where P and P,, are the properties of ceramic and metal materials, such as Young’s mod-
ulus E, mass density p, Poisson’s ratio v; f8 is the porosity volume fraction, 0 < g < 1; p
is the power-law index which is positive and x3 € [-h/2,h/2] .

2.1. Modified strain gradient theory (MST)

The total potential energy of the FGP microplate is obtained by
IT=1IIy+ 11y -1k, (2)
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where Iy, Iy, Ik are the strain energy, work done by external forces and kinetic energy
of the FGP microplates, respectively. Based on the MST, the strain energy of the system
I is given by

My = /V(tfs +pG + T+ my)dV, 3)
where ¢, x, ¢, are strains, symmetric rotation gradients, dilatation gradient and devi-
ation stretch gradient, respectively; o is Cauchy stress; m, p, T are high-order stresses

corresponding with strain gradients x, ¢, 7, respectively. The components of strain ¢;;
and strain gradients &;, 77;jx, Xij are defined as follows

(”n,mjeimn + un,miejmn) ’ (4&)

IS,

Mi,j + uj,i) s gi = Smm,i 7 XZ] =

1
31‘125(

—

Gi + 2€mim) Ojk + (&j + 2€mjm) Oxi] ,

(4b)
where 6;;, €, are Knonecker delta and permutation symbol, respectively; the comma in
subscript is used to indicate the partial derivative with respect to the followed variable.
The components of stress are calculated from constitutive as follows

1 1
Tijk = 3 (&jki + €xij + €ijk) — 5 [(8k + 2€micm) 0ij +

i = Aewelij + 2ueij,  my = 2ulixii, p;=2ul3¢, Tk = 2ul3nik, (5)
where A, y are Lamé constants; /1, I, I3 are three MLSPs.

The work done by a transverse load g of the FGP microplates is given by

Iy = — /qugdA. (6)
A

The kinetic energy of the FGP microplates Ik is expressed by

1 n
M= 5 [ o (xa) (i 43 + i) V. )
14

2.2. Unified kinematics of FGP microplates

A general HSDT kinematic of FGP microplates is derived from [28,29] as follows

up (x1,%2,x3) = uf (x1,x2) + D1 (x3) ud 1 + P2 (x3) @1 (x1,x2),, (8a)
up (x1,%2,%3) = 1 (x1,x2) + D1 (x3) u3, + P2 (x3) @2 (x1,x2),, (8b)
us (x1/x2/ X3) - ug (xlixZ) ’ (8C)

where ® (x3) = H*Y (x3) — x3, D (x3) = H'Y (x3); u, ud and u3, ¢1, 92 are membrane
and transverse displacements, rotations around the x,- and x;-axis at the mid-surface of
FGP microplates, respectively; H® is the transverse shear stiffness of the FGP microplates;

E (x3)
2(1+v)

is a higher-order term whose first derivative satisfies the free-stress boundary condition

X3
Y (x3) = / V{ﬁa) dxs is a shear function; u (x3) = is the shear modulus; f (x3)
0



Static and vibration analysis of functionally graded microplate with porosities based on higher-order shear deformation ... 39

at the top and bottom surfaces of the plates, i.e. f3 ( x3 = i—g = 0. Substituting Eq. (8)

into the strains and strain gradients in Eq. (4), the strains are obtained as follows

e = ¢ 4 @ (x3) V) + @y (x3) e, ) = D3 (x3) ), )
where @3 (x3) = HY 3 with ¥ 3 (x3) = f3 (x3) and,
p(x3)
0 1
8(11) “(1),1 551) “2,11
e = e(zg) = ”(z),z , eV = 8(212) = ”g,zz ’
7&2) un + 13, 'yg) 2u3 1,
@ (10)
€1 P11 0
(2) — @ \_ G) _ gs) g +ug,
& - 822 - 4)2,2 7 &€ - (0) - qoz + uo .
Wg) P12+ ¢2.1 V23 32
The non-zero components of dilatation gradients & = [ ¢1 & C3 } T are given by
=39+ @10V + 028 4 15810 + 5. (11)

The non-zero components of deviatoric stretch gradients #;j are given by
N = ,1(0) + (1)117(1) + q)211(2) + q>3,1(3) + @1,3,7(4) + q>2,3,1(5) + q>3’3,1(6), (12)
where 5 = [ ma22 wss 3msm 3maz2 3221 3tz 3z 3n22s 64123 |
The rotation gradients are expressed as follows
x =X+ PiaxV + Posx@ + @13ax® + Przsx® + 22x ), (13)

with xT = [ x11 x22 2x12 X33 2x13 2x23 |. The components of & 1, x can be seen
more details in Appendix A. Furthermore, the stresses and strains of FGP microplates are
related by constitutive equations as follows

‘ 011 Qu Qur 0 €11 0
=% 0opn 5=]Qn Qn 0 en p=0Q e,
012 0 0 Qs Y12 (14a)
o _Jos | _| Qs O 713 | _ ) (5)
d { 023 } [ 0 Qu Y23 Qe
mi1 i 1 00 0 0O 1( X11 )
Mmoo 0 1 0 0 0 0 XZZ
om0 01000]) e |
m=1{ 0= 2519 001 0 0 o [ Uxslox6 X/
ma3 000010 X23 (14b)
myz | i 0 0 0 0 01 1 U xi3
p1 1 00 ¢1
pP= P2 = 2}11% 010 ‘:2 = 0‘613><3§r
3 0 01 ¢3
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; - -

T11 1 00 0 O0O0OOUOO 7111
T222 01 0O0O0O0OO0O0OTUO0OTP 1222
12 0010O0O0OO0O0OTO0OTP 112
21 00O01O0O0O0O0OO0OTP 1221
o T331 . 2 000O0O1O0O0O0O00O0O0 1331 o
T Y mm (0000010000 o (- Srhoxaor, (140)
T333 00O0O0OO0OO0ODT1TO0OOQO0OTP 1333
T113 00 O0O0O0OO0ODO0OT1TTO0ODO 1113
1223 00 0O0O0OO0OO0OO0OT1TFPO 1223
L T123 L 00 O0O0OO0OO0OO OO 01 | 1123 )

where a, = 2ul5, oz = 23, 0 = 2pl5, and

E (X3) E (X3) vE (X3)
1—102’ 1—102’ 1—202"7

Qu = Q55 = Qe = = E (%) (15)

Qu = 2(1+0)

Qn = Qu =

2.3. Energy principle

In order to derive the equation of motion, Hamilton’s principle is used

ot
/ " (8T1y + 811y — oTTx) dt = 0, (16)

5]

where 011y, 611y, 011k are the variations of strain energy, work done by external force
and kinetic energy, respectively. The variation of the strain energy of FGP microplates
derived from Eq. (3) as follows

oy = /A(mse + pd& + oy + mox)dA = /A [Mgo)(;s(()) 4+ MWse® 4 M@ 56
+M® 50 4 Mg))(si;(m 4 Mél)(sg(l) L Méz> 5@ 1 Méa) 523 1 Mé‘*) 52)

+ MY x @ + M ax ™ + MPax@ + MPox® + MPox @ + MP oy

M7 + MY sy ) + MPop + MY sy + MPap® + MY sy + MY op©]da,

(17)
where the stress resultants are given by
h/2 , h/2
(MO MO M) = [ (1,0, 00) 0dzs, MO = [ @50V, (182)
~h/2 ~h/2

h/2
0 1 2) +s(3) nald
(M( ),Mé ),Mé ),Mé ),Mé )) = /h/2 (1, @1, Dy, Dy 3, Do 3) pdas, (18b)
h/2
(M;(CO),MQ),M;(CZ),M?),M;(;L),Mgf)) = /h/z (1, @13, P23, D133, P23z, P2) mdxs, (18¢)

h/2
0 1 2 3 4 5 6
Mr(] ),M,(7 )’1\,11(7 ),M% ),M1(7 )’M% )/M1(7 )> — '/h/2 (1, q>1,cI>2, @3,@1/3, CI)2’3,CD3,3) I]dX3.
(18d)
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These stress resultants can be expressed in terms of the strains and its gradients (see

Appendix B for more details).

The variation of work done by transverse loads derived from Eq. (6) is given by
STy = — / g6uddA. (19)
A
The variation of kinetic energy 611k derived from Eq. (7) is calculated by
ollg = % / 0 (11,81 + 1,011y + 1130113) AV = % / [Io (1360 + udsu3 + usnd)
14 A
+ I (u§6u3, + u3,6uf + u3sus, + uf,613) (20)
+ Jo (5,6¢1 + ¢16113 1 + 113,00 + 2013 5) + K (9151 + ¢2662)
+1 (#1691 + §161 + 13092 + Pa01t3) + I (01l + 115,0115,) ] d A,

where Iy, I1, I, |1, J2, K> are mass inertias of the FGP microplates which are defined as
follows

h/2
(Io, 1y s Ju, Jo Ko) = [ (101, 0] 02, 0105, 03) pd;, (21)
3. RITZ-BASED SOLUTIONS
Based on the Ritz method, the membrane and transverse displacements, rotations

(u(l), ul, ul, 1, ¢2) of the FGP microplates can be expressed in terms of the series of ap-
proximation functions and associated values of series as follows

ny np ny np

(x1,x2) 2 Z u1;iRi1 (x1) Pj (x2), (x1,x2) E Z UiiR; P> (x2), (22a)
i=1j=1 i=1j=1
n np ny np

(x1,%2) = ) Zusz] (x2), ¢1(x,x2) =) sz; i1 (x1) Pj(x2), (22b)
i=1j=1 i=1j=1
ny np

xl/ xZ Z qu ]2 xZ) (22C)
i=1j=1

where uy;, usij, usij, xij, yi; are variables to be determined; R; (x1), P; (x2) are the shape
functions in x1-, xp-direction, respectively. As a result, five unknowns of the plate only
depend on two shape functions. It should be noted that the accuracy, convergence rates
and numerical instabilities of the Ritz solution depends on the selection of the shape
functions, which was discussed in details in [27-32]. The functions R; (x1) and P; (x2)
given in Table 1 are constructed to satisfy the boundary conditions (BCs) at the plate
edges in which two following kinematic typical BCs are considered

e Simply supported (S): u) = uJ = ¢, = 0atx; = 0,aand 1) = u} = ¢; = 0 at
Xy = 0 b.
e Clamped (C): 1! = u)

ug:q)1:g02:0atx1:O,aandxzzo,b.
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Table 1. Approximation functions of series solutions with different boundary conditions [28]

Approximation functions

Boundary conditions

R] (xl) P] (Xz)
SSSS X1 (a—xl)e’% X2 (b—xz)e’]x_TZ
CCccC X2 (a—x1)? e’]% x5 (b—x2)? e’%
SCSC x1 (a—xp)? e n X2 (b—x2)? et

The combination of S and C on the edges leads to the different BCs, in which SSSS,
SCSC, CCCC in Table 1 are chosen to investigate in this paper. Furthermore, in order
to derive characteristic equations of motion of the FGP microplates, substituting the ap-
proximations in Eq. (22) into Egs. (20), (19), (17) and then the subsequent results into Eq.
(16) lead to

Kd+Md =F, (23)

where d = [ U u uz X y }T is the displacement vector to be determined; K =
K& + KX + K¢ + K" is the stiffness matrix which is composed of those of the strains K¢,
symmetric rotation gradients KX, dilatation gradient K¢, and deviation stretch gradient
K"7; M is the mass matrix, and F is the force vector. These components are given more
details as follows
KOl &2 OB ko4 il5
T2 gé2 KB K4 K
Ké = | TKé® T K83 kB3 KBS | with{ = {e,E, x,n}, (24a)
TG4 Tgi24 TR+ g4 K45
TKE T2 TR TRH5 K55

Ml 0 M3 M4 0
0 M2 M2 0 M

M= | ™™MB ™2 M»® M* M |, (24b)
TM14 0 TM34 M44 M45
0 ™2 T™M® TM% M

F=[0 0 fo0o0], (24c)

where the components of mass matrix M, stiffness matrix K* and KX can be seen in [29].
The components of stiffness matrix K¢, K” and load vector F are give in Appendix C.

It is worth to notice that for static analysis, the static responses of the FGP microplates
can be obtained from Eq. (23) by ignoring inertia terms. For free vibration analysis, by
denoting d(t) = de™' where w is the natural frequency of the FGP microplates and
i? = —1 is imaginary unit, the natural frequencies can be derived from the following
characteristic equation: (K — w?M) d = 0.
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4. NUMERICAL RESULTS

In this section, numerical examples are carried out to investigate static and free vibra-
tion behaviours of FGP microplates with different BCs in which the Reddy’s shear func-
tion [33] f (x3) = x3 — 4x3 /3h?* is employed. They are assumed to be made of a ceramic-
metal mixture whose material properties are given as follows: Al,Os (E. = 380 GPa,
pc = 3800 kg/m>, v. = 0.3) , Al (E,, = 70 GPa, p,, = 2702kg/m> v, = 0.3). For sim-
plification purpose, all three MLSPs are assumed to have identical values I} = I, = I3 = I
and they should be determined by experimental works. For convenience, the following
normalized parameters are used in the computations

_ 10E.h3 ab _ wa? Oc
w = WU’S <2, 2) 7 w = T E (25)

Table 2. Convergence study of series solution of Al/Al,O3 FGP microplates with
different boundary conditions (a/h =10,p =5, = 0.1,h/] = o)

Number of series n = ny = np
2 4 6 8 10 12 14

Normalized center deflection
SSSS 1.1801 1.2159 1.2191 1.2182 1.2184 1.2183 1.2184
SCSC 0.7287 0.7136 0.7022 0.7016 0.7015 0.7016 0.7016
CCcCcC 0.4870 0.4863 0.4824 0.4828 0.4822 0.4827 0.4826
Normalized fundamental frequency
SSSS 3.4897 3.4630 3.4560 3.4567 3.4551 3.4574 3.4573
SCSC 5.1482 4.6407 4.6179 4.6148 4.6224 4.7171 4.7172
CCcCcC 6.0479 5.9494 5.9035 5.8888 5.8843 5.8837 5.8838

Solution

In order to verify the convergence of present solutions, Table 2 shows the transverse
center displacement and fundamental frequency of Al/Al,O3 FGP square microplates
under a sinusoidal distributed load and with a/h = 10,p = 5,8 = 0.1, h/l = oco. The
results are calculated with three types of boundary conditions (SSSS, SCSC, CCCC) and
the same number of series in x;1- and x,-direction (n; = ny = n). It is observed from
Table 2 that the solutions converge very quickly, and the number of series n = 12 can
be considered as a convergence point of the static and dynamic responses of the FGP
microplates. Thus, this number of series will be used for numerical computations.

4.1. Static analysis

In order to verify the accuracy of the present FGP microplate model in predicting
static behaviours, the first example is performed on the simply supported FG square
microplates subjected to sinusoidally distributed loads without porosity effect (f = 0).
Various values of the power-law index p, length-to-thickness ratio a/h, and thickness-
to-MLSP ratio /1/1 are considered for static responses of Al/Al,O3 FG microplates. The
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obtained results are reported in Tables 3 and 4, and compared with those derived from
Thai et al. [22], Thai et al. [25] using the MST, isogeometric approach and HSDT, Zhang
et al. [34] using the MST, Navier method and HSDT. It can be seen that there are good
agreements between the models for different BCs, material distribution and size effects,
which shows the accuracy of present approach for static behaviours.

Table 3. Normalized transverse center displacements of FGP microplates under sinusoidal load
(B =0, SSSS)

h/l
0 20 10 5 2 1

5 0.5 Present 05177  0.4957 04411 03065 0.1011  0.0292
MST [22] 05176  0.4965 0.4426 03098 0.1018  0.0303

RPT [34] 0.5198 0.4983 04435 03086  0.0997  0.0293

IGA [25] 05177  0.4975 04457 03153 0.1045 0.0310

1 Present 0.6688  0.6387 05625 03860 0.1226  0.0353
MST [22] 0.6688  0.6399 05670  0.3908  0.1252  0.0369

RPT [34] 0.6688 0.6396 05658 0.3879  0.1223  0.0357

IGA [25] 0.6688 0.6412 05709 03977 0.1286  0.0378

2 Present 08672  0.8261  0.7256  0.5021  0.1521  0.0442
MST [22] 0.8671 0.8292 0.7332 05021  0.1580  0.0460

RPT [34] 0.8671  0.8286  0.7313 0.4980 0.1544  0.0447

IGA [25] 08671  0.8307 0.7379  0.5107  0.1627  0.0475

4 Present 1.0411 09899  0.8681  0.6024  0.1898  0.0552
MST [22] 1.0409 09977 0.8875 0.6159 0.1964  0.0573

RPT [34] 1.0408 09967 0.8843 0.6095  0.1921  0.0558

IGA [25] 1.0409 09994 0.8927 0.6263  0.2034  0.0597

10 Present 1.2279 11681  1.0282  0.7443  0.2455  0.0728
MST [22] 1.2276  1.1811 1.0609 0.7548  0.2510  0.0743

RPT [34] 12269 11790  1.0557  0.7455 0.2454  0.0724

IGA [25] 12276 11829  1.0668 0.7678  0.2614  0.0781

10 0.5 Present 0.4538 0.4361 03884 0.2747  0.0895  0.0263
MST [22] 0.4537 0.4355 03887 0.2723  0.0884  0.0260

1 Present 0.5890  0.5646  0.5003 03479  0.1106  0.0322
MST [22] 05890 0.5640 0.5004 0.3453 0.1095  0.0320

2 Present 07572  0.7258  0.6426  0.4463  0.1418  0.0412
MST [22] 0.7573  0.7253  0.6439  0.4446  0.1407  0.0409

4 Present 0.8814 0.8475 0.7588  0.5404 0.1797  0.0531
MST [22] 0.8815 0.8480 0.7614 05405 0.1784  0.0526

10 Present 1.0086 09739  0.8808  0.6497  0.2325  0.0707
MST [22] 1.0087 09755 0.8879 0.6535 0.2298  0.0694

a/h p Theory
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Table 4. Normalized transverse center displacements of FGP microplates under sinusoidal load
witha/h =10

h/l
0 20 10 5 2 1

cccc 05 Present 01755 0.1677 0.1488 0.1032  0.0331  0.0099
MST [22] 0.1747 0.1675 0.1492 0.1042 0.0340  0.0100

IGA [25] 0.1773 - 0.1521  0.1068 0.0349 0.0103

1 Present 02271  0.2165 0.1909 0.1306  0.0412 0.0121
MST [22] 0.2261 0.2163 0.1951 0.1349 0.0419  0.0123

IGA [25]  0.2295 - 0.1915 0.1318 0.0430 0.0126

2 Present 02936  0.2794 0.2456 0.1673  0.0529  0.0158
MST [22] 0.2922  0.2794 02472 0.1694 0.0532  0.0155

IGA [25]  0.2967 - 0.2517 01733  0.0547  0.0159

5 Present 03631 0.3452 0.3047 0.2124 0.0706  0.0211
MST [22] 0.3609 0.3466 0.3100 0.2182  0.0712  0.0209

IGA [25] 0.3676 - 0.3161 0.2233 0.0734 0.0216

10 Present 0.4068 0.3873 0.3436 0.2437 0.0838  0.0252
MST [22] 0.4041 0.3893 0.3582 0.2523  0.0854  0.0254

BCs p Theory

IGA [25] 0.4121 - 0.3510 0.2584 0.0884  0.0265

SCSC 0.5 Present 0.2585  0.2477  0.2198 0.1514 0.0477 0.0139
IGA [25] 0.2472 - 0.2122  0.1492 0.0488 0.0144

1 Present 03349 03200 0.2823 0.1917 0.0591 0.0171
IGA [25]  0.3201 - 0.2724  0.1886  0.0602  0.0176

2 Present 04318 0.4126 0.3643 0.2480 0.0769  0.0221
IGA [25]  0.4133 - 03513 0.2425 0.0768  0.0223

5 Present 05256  0.5055  0.4540 0.3218 0.1059 0.0311
IGA [25]  0.5086 - 0.4389 0.3118 0.1035 0.0306

10 Present 0.5849 0.5646 0.5118 03720 0.1280 0.0382
IGA [25]  0.5685 - 04961 03604 0.1246  0.0375

Moreover, in order to investigate effects of porosity B, material parameter p, side-to-
thickness ratio a/h, size effects /] and boundary conditions on the static responses of
FGP microplates, Table 5 presents the normalized center transverse displacements with
various configurations. The variations of center deflections with respect to a/h and h/1
are also plotted in Fig. 1. It can be seen that the transverse displacements increase with
increase of the p and /1. The graph in Fig. 1(b) reveals that the deflections vary gradu-
ally for h/1 < 10 and from h /I = 25 the curves become flatter and the results tend to be
closed to those obtained from the classical theory (1/] = o), which explains that the size
effects on deflections of FGP microplates are not significant from h /1 > 25.
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Table 5. Normalized transverse center displacements of FGP square microplates under sinusoidal
load with different boundary conditions

h/l
() 10 5 2 1

SSSS 10 0.1 0.5 0.5111 0.4342 0.3025 0.0962 0.0280
0.6947 0.5831 0.3964 0.1218 0.0351
0.9578 0.7987 0.5365 0.1622 0.0464
1.2183 1.0372 0.7244 0.2345 0.0687
10 1.3565 1.1739 0.8523 0.2968 0.0891

0.2 0.5 0.5822 0.4903 0.3356 0.1043 0.0301
0.8456 0.6983 0.4610 0.1361 0.0387
1.3214 1.0690 0.6800 0.1909 0.0536
1.9318 1.5884 1.0391 0.3052 0.0870
10 2.1828 1.8440 1.2843 0.4187 0.1231

SCSC 10 0.1 0.5 0.2906 0.2449 0.1662 0.0512 0.0149
0.3939 0.3278 0.2177 0.0653 0.0187
0.5436 0.4503 0.2971 0.0882 0.0249
0.7016 0.5956 0.4110 0.1301 0.0373
10 0.7870 0.6844 0.4904 0.1641 0.0483

0.2 0.5 0.3305 0.2758 0.1841 0.0552 0.0159
0.4781 0.3909 0.2525 0.0729 0.0206
0.7462 0.5979 0.3749 0.1033 0.0288
1.1042 0.9064 0.5905 0.1675 0.0476
10 1.2676 1.0785 0.7459 0.2348 0.0674

CCCC 10 0.1 0.5 0.1969 0.1640 0.1100 0.0335 0.0101
0.2663 0.2191 0.1439 0.0426 0.0128
0.3682 0.3012 0.1962 0.0573 0.0164
0.4827 0.4036 0.2735 0.0844 0.0244
10 0.5480 0.4671 0.3281 0.1070 0.0315

0.2 0.5 0.2233 0.1842 0.1216 0.0362 0.0104
0.3219 0.2603 0.1664 0.0475 0.0135
0.5018 0.3975 0.2462 0.0676 0.0210
0.7550 0.6090 0.3888 0.1106 0.0313
10 0.8832 0.7357 0.4969 0.1526 0.0440

BCs a/h B p

g1 N = Q1 N = Q1 N = a1 N = g1 N =

g N =




Static and vibration analysis of functionally graded microplate with porosities based on higher-order shear deformation ... 47

o

Deflection
Deflection

N

0545

30 35 40 45 50
p h/l

(a) SSSS ®) p=5

Fig. 1. Variation of normalized center deflection with respect the power index p
and thickness-to-length scale /1 of FGP microplates (8 = 0.2,a/h = 10)

4.2. Free vibration analysis

In order to study the accuracy of present solutions in predicting vibration responses,
Tables 6 and 7 provide the fundamental frequencies of Al/Al,O3 FGP microplates with-
out porosity effects (B = 0) in which the solutions are computed for various configura-
tions. The obtained results are compared with those derived from Thai et al. [22] and
Thai et al. [25] based on the MST, IGA and HSDT, Zhang et al. [34] based on the MST and
Navier procedure and a refined HSDT. It can be seen that there is no discrepancy between
models. The fundamental frequencies decrease with the increase of p as expected.

Table 6. Normalized fundamental frequencies w = wh+/p./E; of Al/Al,O3 FGP square
microplates (8 = 0, a/h = 10,SSSS)

N h/l
P eory oo 10 5 2 1

0 Present 00577 00615 00726 01250  0.2283
MST[22] 00577 00619 00729 01254 02297

RPT [34] 00577 00619 00730 01258  0.2309

IGA [25] 00577 00617 00725 01240  0.2268

0.5 Present 00490 00529 00626 01099  0.2035
MST[22] 00490 00529 00633 01110  0.2047

RPT [34] 00489 00529 00632 01113 02057

IGA [25] 0.0490 0.0528 0.0629 0.1098 0.2023
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" h/l
P fheory 0 10 5 2 1
1 Present 0.0441 0.0475 0.0574 0.1014 0.1884
MST [22] 0.0442 0.0479 0.0577 0.1024 0.1896
RPT [34] 0.0442 0.0480 0.0578 0.1028 0.1907
IGA [25] 0.0442 0.0478 0.0573 0.1013 0.1873
2 Present 0.0401 0.0431 0.0520 0.0926 0.1722
MST [22] 0.0401 0.0435 0.0523 0.0930 0.1722
RPT [34] 0.0401 0.0435 0.0524 0.0933 0.1731
IGA [25] 0.0401 0.0434 0.0520 0.0918 0.1698
MST [22] 0.0377 0.0404 0.0477 0.0822 0.1508
RPT [34] 0.0377 0.0405 0.0478 0.0825 0.1514
IGA [25] 0.0377 0.0403 0.0474 0.0810 0.1482
10 Present 0.0364 0.0388 0.0452 0.0757 0.1360
MST [22] 0.0363 0.0387 0.0451 0.0761 0.1384
RPT [34] 0.0364 0.0388 0.0453 0.0764 0.1390
IGA [25] 0.0364 0.0387 0.0449 0.0750 0.1359
Table 7. Normalized fundamental frequencies of Al/Al,O3 FGP square microplates
(B=0,a/h =10,CCCC and SCSC)
h/l
BCs p Theory
0 20 10 5 2 1
CCCC 0.5 Present 84735 8.6614 9.1920 11.0307 18.9020 35.1640
IGA [25]  8.4405 - 9.1227 10.8954 19.0701 35.1215
1 Present 7.6782 7.8132 8.3908 10.0530 17.6636 32.3192
IGA [25] 7.6251 - 82766  9.9597  17.6422  32.6292
2 Present 69176 7.1106 7.5746  9.0783 159206 28.8231
IGA [25] 6.8944 - 74923  9.0367  16.0977  29.8609
5 Present  6.4231 6.5519 6.9710 83300 13.9971 25.9460
IGA [25] 6.3722 - 6.8823  8.2026  14.3324  26.4157
10 Present 6.1199 6.2784 6.6505 7.8617  13.0441 23.9971
IGA [25] 6.1039 - 6.5602  7.7407  13.2706 24.2754
SCSC 0.5 Present 6.7197 6.8676 7.2931 87900  15.6599  29.0008
IGA [25] 6.9031 - 74556  8.8961  15.5600 28.6567
1 Present  6.0650 6.2057 6.6094  8.0210 14.4368 26.8247
IGA [25] 6.2329 - 6.7605  8.1283 143915 26.6161
2 Present 54955 5.6222 59858  7.2578  13.0467 24.2396
IGA [25] 5.6405 - 6.1230 73744 13.1146 24.3082
5 Present  5.1361 5.2381 55323  6.5758 11.4606 21.0871
IGA [25] 5.2361 - 56429  6.7021  11.6480 21.4179
10  Present 49452 5.0338 5.2903 6.2080 10.5865 19.3316
IGA [25] 5.0254 - 53868 6.3288  10.7777  19.6645
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Table 8. Normalized fundamental frequencies of Al/Al,O3 FGP square microplates

h/l
) 10 5 2 1
SSSS 10 0.1 0.5  4.8469 5.2465 6.2753 11.1444 20.5884

BCs a/h B p

1 4.2815 4.6668 5.6497 10.2161 19.0334

2 3.7640  4.1238 4.9947 9.1029 16.9999

5 3.4574 3.6783 4.4653 7.8075 14.4907

10 3.3327  3.5350 4.1840 7.0993 12.8651

0.2 05 47972 5.2009 6.1126 11.1001 20.1158
1 41121 4.5268 5.5541 10.0543 19.0057

2 3.4064  3.7713 4.7471 8.9419 16.8823

5 2.9323 3.2158 3.9832 7.3159 13.7288

10 2.8148 3.0352 3.6550 6.4101 11.7388

SCSC 10 0.1 0.5 6.6598 7.2591 8.7147 15.3799 28.4118
1 5.8920 6.4631 7.9308 14.1016 26.1753

2 5.1741 5.6891 7.0084 12.5850 23.7134

5 4.7171 5.1198 6.1693 10.9865 20.3606

10 4.5305 4.8659 5.7523 9.9342 18.2235

0.2 0.5 6.5990 7.1277 8.5988 15.1299 28.1844
1 5.6709 6.2750 7.7094 14.0535 26.0222

2 4.6990  5.2527 6.6405 12.5620 23.6336

5 4.0124  4.4345 5.5079 10.2385 19.2228

10 3.8229 4.1489 4.9977 8.8931 16.4769

cccc 10 0.1 0.5 8.3865 9.1064 11.0009 18.7157  35.0700
1 74713 8.1995 9.9376 17.5254 32.1417

2 6.5451 7.2033 8.8372 15.7657  28.6778

5 5.8837  6.1920 7.8150 13.3725 23.7300

10 5.6264 6.1831 7.3008 12.0451 21.4739

0.2 0.5 8.3202 9.1037 11.0001 18.6797  34.9638
1 7.1684 7.9717 9.7343 17.3071 32.1207

2 5.9501 6.6362 8.3403 15.2109 28.4556

5 5.0257  5.6144 6.9379 119968  20.3562

10 47414  5.2673 6.3223 10.5215 19.6228

The effect of p on the natural frequencies of Al/Al,O3 FGP microplates is also plot-
ted in Fig. 2(a) for h/1 = 1,2,5,10,20,a/h = 10 and B = 0.2. There exist large deviations
of these curves, which indicate significant size effects. Moreover, the variations of fun-
damental frequencies with respect to /1/I are displayed in Fig. 2(b). It is observed that
the results decrease with the increase of /1/I up to h/l = 10 and then the curves become
flatter which indicates the size effects can be neglected.
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Fig. 2. Variation of normalized fundamental frequencies with respect the power index p and
thickness-to-MLSP ratio /1 (a/h = 10,8 = 0.2)
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Fig. 3. Size effect of the MCT and MST for the normalised fundamental frequencies with respect
to the length scale-to-thickness ratio h /1 ( = 0.2,p = 5,a/h = 10)

In order to study further the size effects of vibration problems, Fig. 3 illustrates the
ratio of fundamental frequencies computed from the MST over the MCT, which is ex-
pressed with respect to h/I,p = 5,8 = 0.2,a/h = 10 and different boundary conditions.
It can be observed that the MST with three MLSPs produces frequencies larger than the
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MCT with one MLSP, especially when the Static and vibration analysis of functionally
graded microplate with porosities based on higher-order shear deformation and modi-
fied strain gradient theory microplate thickness is close to the MLSP. It emphasizes the
importance of the consideration of three components e.g. the dilatation, deviatoric stretch
and symmetric part of rotation gradient tensor in the MST rather than only the symmetric
part of rotation gradient tensor in the MCT when dealing with microplates. As expected,
by increasing the size scale, the difference between the theories is decreased.

5. CONCLUSIONS

A unified higher-order shear deformation theory and modified strain gradient the-
ory have been developed in this paper for static and free vibration analyses of func-
tionally graded porous microplates. The equations of motion are derived from Hamil-
ton’s principle and series-type approximation with exponential shape functions. Numer-
ical examples are presented to investigate effects of side-tothickness ratio, thickness-to-
material length scale parameter ratio and boundary conditions on the deflections and
natural frequencies of FGP microplates. The obtained results show that the size effects
lead to an increase in the stiffness of the FGP microplates, consequently it decreases
their transverse displacements and increases their natural frequencies. Significant dif-
ferences of the present theory and modified couple stress theory are observed when the
microplate thickness and MLSP is the same dimension, it shows that the dilatation and
deviatoric stretch should be accounted for computations of microplates. The present the-
ory is found to be accurate and efficient in predicting static and dynamic behaviours of
FGP microplates.
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APPENDIX A

The non-zero components of dilatation gradients in Eq. (11) are defined by
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The non-zero components of deviatoric stretch gradients 7;;x in Eq. (12) are given by
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These components can be expressed in terms of the displacements as follows
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The components of rotation gradients in Eq. (13) are expressed as follows
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APPENDIX B

The stress resultants of the FGP microplates are expressed in terms of the strains and

its gradients as follows
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where the stiffness components of the FGP microplates are defined as follows
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APPENDIX C

The components of stiffness matrix K¢, K" and load vector F are defined as follows
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