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Abstract. Based on fundamental equations of the elasticity theory, a unified higher-order
shear deformation theory is developed for bending and free vibration analysis of func-
tionally graded (FG) microplates with porosities. The modified strain gradient theory is
employed to capture the size effects. Bi-directional series with hybrid shape functions
are used to solve the problems. Several important effects including thickness-to-material
length scale parameters, side-to-thickness ratio, and boundary conditions on the deflec-
tions and natural frequencies of FG porous microplates are investigated.
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1. INTRODUCTION

Microstructures have been applied in many engineering fields such as atomic force
microscopes, microelectromechanical systems and nano-electromechanical systems [1,2].
The recent development of functionally graded porous (FGP) materials led to a poten-
tial application, it hence requires advanced computational methods and models espe-
cially at microscales. The study on static and dynamic responses of FGP plates and
shells has attracted a number of researches with various computational methods and
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models [3–14], however, those classical elasticity models could not accurately predict re-
sponses of microstructures. Therefore, advanced computations theories with material
length scale parameters (MLSPs) have been developed with different approaches. A
number of researches has been performed for FGP microplates in which the modified
coupled stress theory (MCT) are mostly used. By considering the rotation gradient in
constitutive equations, the MCT with only one MLSP is known as the simplest theory
accounted for the size effects [15]. Owing to its simplicity, many size-dependent FGP mi-
croplate models with different shear deformation theories based on the MCT have been
developed [16–18]. By adding strain gradients into the strain energy, the modified strain
gradient theory (MST) with three MLSPs was proposed by Lam et al. [19] based on the
classical strain gradient theory of Mindlin [20, 21]. This theory is more general than the
MCT and it can be recovered by the MST if the effects of dilatation and deviatoric stretch
gradients are neglected. By its advantages, the MST has been developed for static and dy-
namic of FG microplates [17,22–25]. A brief literature review showed that although many
studies have been performed for static and dynamic analysis of FGP microplates using
different existing shear deformation plate theories and MCT, however, the investigation
based on the MST is still limited, this gap needs to be studied further.

The objective of this paper is to develop a unified framework of higher-order shear
deformation theory (HSDT) for static and free vibration analyses of FGP microplates
based on the MST. Hamilton’s principle is used to derive the governing equations of
motion, which are then solved by bi-directional series-type solutions with hybrid shape
functions. Several important effects such as, thickness-to-MLSP ratio, side-to-thickness
ratio, boundary conditions on the deflections and natural frequencies of FGP microplates
are investigated. Some results given in this paper can be used for the future references.

2. THEORETICAL FORMULATION

Consider a rectangular FGP microplate in the coordinate system (x1, x2, x3) with
sides a × b and thickness h. It is supposed that the FGP microplates are composed of
a metal-ceramic mixture and porosity density whose effective material properties can be
approximated by the following expressions [3, 26, 27]

P (x3) = (Pc − Pm)

(
2x3 + h

2h

)p

+ Pm −
β

2
(Pc + Pm) , (1)

where Pc and Pm are the properties of ceramic and metal materials, such as Young’s mod-
ulus E, mass density ρ, Poisson’s ratio ν; β is the porosity volume fraction, 0 ≤ β � 1; p
is the power-law index which is positive and x3 ∈ [−h/2, h/2] .

2.1. Modified strain gradient theory (MST)

The total potential energy of the FGP microplate is obtained by

Π = ΠU + ΠV −ΠK, (2)
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where ΠU , ΠV , ΠK are the strain energy, work done by external forces and kinetic energy
of the FGP microplates, respectively. Based on the MST, the strain energy of the system
ΠU is given by

ΠU =
∫

V
(σε + pξ + τη+ mχ)dV, (3)

where ε, χ, ξ, η are strains, symmetric rotation gradients, dilatation gradient and devi-
ation stretch gradient, respectively; σ is Cauchy stress; m, p, τ are high-order stresses
corresponding with strain gradients χ, ξ, η, respectively. The components of strain ε ij
and strain gradients ξi, ηijk, χij are defined as follows

ε ij =
1
2
(
ui,j + uj,i

)
, ξi = εmm,i , χij =

1
4
(
un,mjeimn + un,miejmn

)
, (4a)

ηijk =
1
3
(
ε jk,i + εki,j + ε ij,k

)
− 1

15
[
(ξk + 2εmk,m) δij + (ξi + 2εmi,m) δjk +

(
ξ j + 2εmj,m

)
δki
]

,
(4b)

where δij, eimn are Knonecker delta and permutation symbol, respectively; the comma in
subscript is used to indicate the partial derivative with respect to the followed variable.
The components of stress are calculated from constitutive as follows

σij = λεkkδij + 2µε ij , mij = 2µl2
1χij , pj = 2µl2

2ξ j , τijk = 2µl2
3ηijk , (5)

where λ, µ are Lamé constants; l1, l2, l3 are three MLSPs.

The work done by a transverse load q of the FGP microplates is given by

ΠV = −
∫
A

qu0
3dA. (6)

The kinetic energy of the FGP microplates ΠK is expressed by

ΠK =
1
2

∫
V

ρ (x3)
(
u̇2

1 + u̇2
2 + u̇2

3
)

dV. (7)

2.2. Unified kinematics of FGP microplates

A general HSDT kinematic of FGP microplates is derived from [28, 29] as follows

u1 (x1, x2, x3) = u0
1 (x1, x2) + Φ1 (x3) u0

3,1 + Φ2 (x3) ϕ1 (x1, x2) , (8a)

u2 (x1, x2, x3) = u0
2 (x1, x2) + Φ1 (x3) u0

3,2 + Φ2 (x3) ϕ2 (x1, x2) , (8b)

u3 (x1, x2, x3) = u0
3 (x1, x2) , (8c)

where Φ1 (x3) = HsΨ (x3)− x3, Φ2 (x3) = HsΨ (x3); u0
1, u0

2 and u0
3, ϕ1, ϕ2 are membrane

and transverse displacements, rotations around the x2- and x1-axis at the mid-surface of
FGP microplates, respectively; Hs is the transverse shear stiffness of the FGP microplates;

Ψ (x3) =

x3∫
0

f,3

µ (x3)
dx3 is a shear function; µ (x3) =

E (x3)

2 (1 + ν)
is the shear modulus; f (x3)

is a higher-order term whose first derivative satisfies the free-stress boundary condition
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at the top and bottom surfaces of the plates, i.e. f,3

(
x3 = ±h

2

)
= 0. Substituting Eq. (8)

into the strains and strain gradients in Eq. (4), the strains are obtained as follows

ε(i) = ε(0) + Φ1 (x3) ε(1) + Φ2 (x3) ε(2), ε(s) = Φ3 (x3) ε(3), (9)

where Φ3 (x3) = HsΨ,3 with Ψ,3 (x3) =
f,3 (x3)

µ (x3)
and,

ε(0) =


ε
(0)
11

ε
(0)
22

γ
(0)
12

 =


u0

1,1

u0
2,2

u0
1,2 + u0

2,1

 , ε(1) =


ε
(1)
11

ε
(1)
22

γ
(1)
12

 =


u0

3,11

u0
3,22

2u0
3,12

 ,

ε(2) =


ε
(2)
11

ε
(2)
22

γ
(2)
12

 =


ϕ1,1

ϕ2,2

ϕ1,2 + ϕ2,1

 , ε(3) =

{
γ
(0)
13

γ
(0)
23

}
=

{
ϕ1 + u0

3,1

ϕ2 + u0
3,2

}
.

(10)

The non-zero components of dilatation gradients ξ =
[

ξ1 ξ2 ξ3
]T are given by

ξ = ξ(0) + Φ1ξ(1) + Φ2ξ(2) + Φ1,3ξ(3) + Φ2,3ξ(4). (11)

The non-zero components of deviatoric stretch gradients ηijk are given by

η = η(0) + Φ1η(1) + Φ2η(2) + Φ3η(3) + Φ1,3η(4) + Φ2,3η(5) + Φ3,3η(6), (12)

where ηT =
[

η111 η222 η333 3η331 3η332 3η221 3η112 3η113 3η223 6η123
]
.

The rotation gradients are expressed as follows

χ = χ(0) + Φ1,3χ(1) + Φ2,3χ(2) + Φ1,33χ(3) + Φ2,33χ(4) + Φ2χ(5), (13)

with χT =
[

χ11 χ22 2χ12 χ33 2χ13 2χ23
]
. The components of ξ, η, χ can be seen

more details in Appendix A. Furthermore, the stresses and strains of FGP microplates are
related by constitutive equations as follows

σ(i) =

 σ11
σ22
σ12

 =

 Q11 Q12 0
Q12 Q22 0

0 0 Q66

 ε11
ε22
γ12

 = Q(i)
ε ε(i),

σ(o) =

{
σ13
σ23

}
=

[
Q55 0

0 Q44

]{
γ13
γ23

}
= Q(o)

ε ε(s),

(14a)

m =



m11
m22
m12
m33
m23
m13


= 2µl2

1


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





χ11
χ22
χ12
χ33
χ23
χ13


= αχ6I6×6χ,

p =

 p1
p2
p3

 = 2µl2
2

 1 0 0
0 1 0
0 0 1

 ξ1
ξ2
ξ3

 = αξI3×3ξ,

(14b)
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τ =



τ111
τ222
τ112
τ221
τ331
τ332
τ333
τ113
τ223
τ123



= 2µ2
3



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1





η111
η222
η112
η221
η331
η332
η333
η113
η223
η123



= αηI10×10η, (14c)

where αχ = 2µl2
1 , αξ = 2µl2

2 , αη = 2µl2
3 , and

Q11 =
E (x3)

1− v2 , Q22 =
E (x3)

1− v2 , Q12 =
vE (x3)

1− v2 , Q44 = Q55 = Q66 = µ =
E (x3)

2(1 + v)
. (15)

2.3. Energy principle

In order to derive the equation of motion, Hamilton’s principle is used∫ t2

t1

(δΠU + δΠV − δΠK)dt = 0, (16)

where δΠU , δΠV , δΠK are the variations of strain energy, work done by external force
and kinetic energy, respectively. The variation of the strain energy of FGP microplates
derived from Eq. (3) as follows

δΠU =
∫

A
(σδε + pδξ + τδη+ mδχ)dA =

∫
A

[
M(0)

ε δε(0) + M(1)
ε δε(1) + M(2)

ε δε(2)

+ M(3)
ε δε(3) + M(0)

ξ δξ(0) + M(1)
ξ δξ(1) + M(2)

ξ δξ(2) + M(3)
ξ δξ(3) + M(4)

ξ δξ(4)

+ M(0)
χ δχ(0) + M(1)

χ δχ(1) + M(2)
χ δχ(2) + M(3)

χ δχ(3) + M(4)
χ δχ(4) + M(5)

χ δχ(5)

+M(0)
η δη(0) + M(1)

η δη(1) + M(2)
η δη(2) + M(3)

η δη(3) + M(4)
η δη(4) + M(5)

η δη(5) + M(6)
η δη(6)

]
dA,

(17)
where the stress resultants are given by(

M(0)
ε , M(1)

ε , M(2)
ε

)
=
∫ h/2

−h/2
(1, Φ1, Φ2)σ(i)dx3, M(3)

ε =
∫ h/2

−h/2
Φ3σ(o)dx3, (18a)(

M(0)
ξ , M(1)

ξ , M(2)
ξ , M(3)

ξ , M(4)
ξ

)
=
∫ h/2

−h/2
(1, Φ1, Φ2, Φ1,3, Φ2,3)pdx3, (18b)(

M(0)
χ , M(1)

χ , M(2)
χ , M(3)

χ , M(4)
χ , M(5)

χ

)
=
∫ h/2

−h/2
(1, Φ1,3, Φ2,3, Φ1,33, Φ2,33, Φ2)mdx3, (18c)(

M(0)
η , M(1)

η , M(2)
η , M(3)

η , M(4)
η , M(5)

η , M(6)
η

)
=
∫ h/2

−h/2
(1, Φ1, Φ2, Φ3, Φ1,3, Φ2,3, Φ3,3) ηdx3.

(18d)
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These stress resultants can be expressed in terms of the strains and its gradients (see
Appendix B for more details).

The variation of work done by transverse loads derived from Eq. (6) is given by

δΠV = −
∫

A
qδu0

3dA. (19)

The variation of kinetic energy δΠK derived from Eq. (7) is calculated by

δΠK =
1
2

∫
V

ρ (u̇1δu̇1 + u̇2δu̇2 + u̇3δu̇3)dV =
1
2

∫
A

[
I0
(
u̇0

1δu̇0
1 + u̇0

2δu̇0
2 + u̇0

3δu̇0
3
)

+ I1
(
u̇0

1δu̇0
3,1 + u̇0

3,1δu̇0
1 + u̇0

2δu̇0
3,2 + u̇0

3,2δu̇0
2
)

+ J2
(
u̇0

3,1δϕ̇1 + ϕ̇1δu̇0
3,1 + u̇0

3,2δϕ̇2 + ϕ̇2δu̇0
3,2
)
+ K2 (ϕ̇1δϕ̇1 + ϕ̇2δϕ̇2)

+J1
(
u̇0

1δϕ̇1 + ϕ̇1δu̇0
1 + u̇0

2δϕ̇2 + ϕ̇2δu̇0
2
)
+ I2

(
u̇0

3,1δu̇0
3,1 + u̇0

3,2δu̇0
3,2
)]

dA,

(20)

where I0, I1, I2, J1, J2, K2 are mass inertias of the FGP microplates which are defined as
follows

(I0, I1, I2, J1, J2, K2) =
∫ h/2

−h/2

(
1, Φ1, Φ2

1, Φ2, Φ1Φ2, Φ2
2
)

ρdx3. (21)

3. RITZ-BASED SOLUTIONS

Based on the Ritz method, the membrane and transverse displacements, rotations(
u0

1, u0
2, u0

3, ϕ1, ϕ2
)

of the FGP microplates can be expressed in terms of the series of ap-
proximation functions and associated values of series as follows

u0
1 (x1, x2) =

n1

∑
i=1

n2

∑
j=1

u1ijRi,1 (x1) Pj (x2) , u0
2 (x1, x2) =

n1

∑
i=1

n2

∑
j=1

u2ijRi (x1) Pj,2 (x2) , (22a)

u0
3 (x1, x2) =

n1

∑
i=1

n2

∑
j=1

u3ijRi (x1) Pj (x2) , ϕ1 (x1, x2) =
n1

∑
i=1

n2

∑
j=1

xijRi,1 (x1) Pj (x2) , (22b)

ϕ2 (x1, x2) =
n1

∑
i=1

n2

∑
j=1

yijRi (x1) Pj,2 (x2) , (22c)

where u1ij, u2ij, u3ij, xij, yij are variables to be determined; Ri (x1) , Pj (x2) are the shape
functions in x1-, x2-direction, respectively. As a result, five unknowns of the plate only
depend on two shape functions. It should be noted that the accuracy, convergence rates
and numerical instabilities of the Ritz solution depends on the selection of the shape
functions, which was discussed in details in [27–32]. The functions Ri (x1) and Pj (x2)
given in Table 1 are constructed to satisfy the boundary conditions (BCs) at the plate
edges in which two following kinematic typical BCs are considered

• Simply supported (S): u0
2 = u0

3 = ϕ2 = 0 at x1 = 0, a and u0
1 = u0

3 = ϕ1 = 0 at
x2 = 0, b.
• Clamped (C): u0

1 = u0
2 = u0

3 = ϕ1 = ϕ2 = 0 at x1 = 0, a and x2 = 0, b.
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Table 1. Approximation functions of series solutions with different boundary conditions [28]

Boundary conditions
Approximation functions

Rj (x1) Pj (x2)

SSSS x1 (a− x1) e−
jx1
a x2 (b− x2) e−

jx2
a

CCCC x2
1 (a− x1)

2 e−
jx1
a x2

2 (b− x2)
2 e−

jx2
b

SCSC x1 (a− x1)
2 e−

jx1
a x2 (b− x2)

2 e−
jx2
b

The combination of S and C on the edges leads to the different BCs, in which SSSS,
SCSC, CCCC in Table 1 are chosen to investigate in this paper. Furthermore, in order
to derive characteristic equations of motion of the FGP microplates, substituting the ap-
proximations in Eq. (22) into Eqs. (20), (19), (17) and then the subsequent results into Eq.
(16) lead to

Kd + Md̈ = F, (23)

where d =
[

u1 u2 u3 x y
]T is the displacement vector to be determined; K =

Kε + Kχ + Kξ + Kη is the stiffness matrix which is composed of those of the strains Kε,
symmetric rotation gradients Kχ, dilatation gradient Kξ , and deviation stretch gradient
Kη ; M is the mass matrix, and F is the force vector. These components are given more
details as follows

Kζ =


Kζ11 Kζ12 Kζ13 Kζ14 Kζ15

TKζ12 Kζ22 Kζ23 Kζ24 Kζ25

TKζ13 TKζ23 Kζ33 Kζ34 Kζ35

TKζ14 TKζ24 TKζ34 Kζ44 Kζ45

TKζ15 TKζ25 TKζ35 TKζ45 Kζ55

 with ζ = {ε, ξ, χ, η}, (24a)

M =


M11 0 M13 M14 0

0 M22 M23 0 M25

TM13 TM23 M33 M34 M35

TM14 0 TM34 M44 M45

0 TM25 TM35 TM45 M55

 , (24b)

F =
[

0 0 f 0 0
]T , (24c)

where the components of mass matrix M, stiffness matrix Kε and Kχ can be seen in [29].
The components of stiffness matrix Kξ , Kη and load vector F are give in Appendix C.

It is worth to notice that for static analysis, the static responses of the FGP microplates
can be obtained from Eq. (23) by ignoring inertia terms. For free vibration analysis, by
denoting d(t) = deiωt where ω is the natural frequency of the FGP microplates and
i2 = −1 is imaginary unit, the natural frequencies can be derived from the following
characteristic equation:

(
K−ω2M

)
d = 0.
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4. NUMERICAL RESULTS

In this section, numerical examples are carried out to investigate static and free vibra-
tion behaviours of FGP microplates with different BCs in which the Reddy’s shear func-
tion [33] f (x3) = x3 − 4x3

3/3h2 is employed. They are assumed to be made of a ceramic-
metal mixture whose material properties are given as follows: Al2O3 (Ec = 380 GPa,
ρc = 3800 kg/m3, vc = 0.3

)
, Al (Em = 70 GPa, ρm = 2702 kg/m3, vm = 0.3). For sim-

plification purpose, all three MLSPs are assumed to have identical values l1 = l2 = l3 = l
and they should be determined by experimental works. For convenience, the following
normalized parameters are used in the computations

w =
10Ech3

qa4 u3

(
a
2

,
b
2

)
, ω =

ωa2

h

√
ρc

Ec
. (25)

Table 2. Convergence study of series solution of Al/Al2O3 FGP microplates with
different boundary conditions (a/h = 10, p = 5, β = 0.1, h/l = ∞)

Solution
Number of series n = n1 = n2

2 4 6 8 10 12 14

Normalized center deflection
SSSS 1.1801 1.2159 1.2191 1.2182 1.2184 1.2183 1.2184
SCSC 0.7287 0.7136 0.7022 0.7016 0.7015 0.7016 0.7016
CCCC 0.4870 0.4863 0.4824 0.4828 0.4822 0.4827 0.4826

Normalized fundamental frequency
SSSS 3.4897 3.4630 3.4560 3.4567 3.4551 3.4574 3.4573
SCSC 5.1482 4.6407 4.6179 4.6148 4.6224 4.7171 4.7172
CCCC 6.0479 5.9494 5.9035 5.8888 5.8843 5.8837 5.8838

In order to verify the convergence of present solutions, Table 2 shows the transverse
center displacement and fundamental frequency of Al/Al2O3 FGP square microplates
under a sinusoidal distributed load and with a/h = 10, p = 5, β = 0.1, h/l = ∞. The
results are calculated with three types of boundary conditions (SSSS, SCSC, CCCC) and
the same number of series in x1- and x2-direction (n1 = n2 = n). It is observed from
Table 2 that the solutions converge very quickly, and the number of series n = 12 can
be considered as a convergence point of the static and dynamic responses of the FGP
microplates. Thus, this number of series will be used for numerical computations.

4.1. Static analysis

In order to verify the accuracy of the present FGP microplate model in predicting
static behaviours, the first example is performed on the simply supported FG square
microplates subjected to sinusoidally distributed loads without porosity effect (β = 0).
Various values of the power-law index p, length-to-thickness ratio a/h, and thickness-
to-MLSP ratio h/l are considered for static responses of Al/Al2O3 FG microplates. The
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obtained results are reported in Tables 3 and 4, and compared with those derived from
Thai et al. [22], Thai et al. [25] using the MST, isogeometric approach and HSDT, Zhang
et al. [34] using the MST, Navier method and HSDT. It can be seen that there are good
agreements between the models for different BCs, material distribution and size effects,
which shows the accuracy of present approach for static behaviours.

Table 3. Normalized transverse center displacements of FGP microplates under sinusoidal load
(β = 0, SSSS)

a/h p Theory
h/l

0 20 10 5 2 1

5 0.5 Present 0.5177 0.4957 0.4411 0.3065 0.1011 0.0292
MST [22] 0.5176 0.4965 0.4426 0.3098 0.1018 0.0303
RPT [34] 0.5198 0.4983 0.4435 0.3086 0.0997 0.0293
IGA [25] 0.5177 0.4975 0.4457 0.3153 0.1045 0.0310

1 Present 0.6688 0.6387 0.5625 0.3860 0.1226 0.0353
MST [22] 0.6688 0.6399 0.5670 0.3908 0.1252 0.0369
RPT [34] 0.6688 0.6396 0.5658 0.3879 0.1223 0.0357
IGA [25] 0.6688 0.6412 0.5709 0.3977 0.1286 0.0378

2 Present 0.8672 0.8261 0.7256 0.5021 0.1521 0.0442
MST [22] 0.8671 0.8292 0.7332 0.5021 0.1580 0.0460
RPT [34] 0.8671 0.8286 0.7313 0.4980 0.1544 0.0447
IGA [25] 0.8671 0.8307 0.7379 0.5107 0.1627 0.0475

4 Present 1.0411 0.9899 0.8681 0.6024 0.1898 0.0552
MST [22] 1.0409 0.9977 0.8875 0.6159 0.1964 0.0573
RPT [34] 1.0408 0.9967 0.8843 0.6095 0.1921 0.0558
IGA [25] 1.0409 0.9994 0.8927 0.6263 0.2034 0.0597

10 Present 1.2279 1.1681 1.0282 0.7443 0.2455 0.0728
MST [22] 1.2276 1.1811 1.0609 0.7548 0.2510 0.0743
RPT [34] 1.2269 1.1790 1.0557 0.7455 0.2454 0.0724
IGA [25] 1.2276 1.1829 1.0668 0.7678 0.2614 0.0781

10 0.5 Present 0.4538 0.4361 0.3884 0.2747 0.0895 0.0263
MST [22] 0.4537 0.4355 0.3887 0.2723 0.0884 0.0260

1 Present 0.5890 0.5646 0.5003 0.3479 0.1106 0.0322
MST [22] 0.5890 0.5640 0.5004 0.3453 0.1095 0.0320

2 Present 0.7572 0.7258 0.6426 0.4463 0.1418 0.0412
MST [22] 0.7573 0.7253 0.6439 0.4446 0.1407 0.0409

4 Present 0.8814 0.8475 0.7588 0.5404 0.1797 0.0531
MST [22] 0.8815 0.8480 0.7614 0.5405 0.1784 0.0526

10 Present 1.0086 0.9739 0.8808 0.6497 0.2325 0.0707
MST [22] 1.0087 0.9755 0.8879 0.6535 0.2298 0.0694
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Table 4. Normalized transverse center displacements of FGP microplates under sinusoidal load
with a/h = 10

BCs p Theory
h/l

0 20 10 5 2 1

CCCC 0.5 Present 0.1755 0.1677 0.1488 0.1032 0.0331 0.0099
MST [22] 0.1747 0.1675 0.1492 0.1042 0.0340 0.0100
IGA [25] 0.1773 - 0.1521 0.1068 0.0349 0.0103

1 Present 0.2271 0.2165 0.1909 0.1306 0.0412 0.0121
MST [22] 0.2261 0.2163 0.1951 0.1349 0.0419 0.0123
IGA [25] 0.2295 - 0.1915 0.1318 0.0430 0.0126

2 Present 0.2936 0.2794 0.2456 0.1673 0.0529 0.0158
MST [22] 0.2922 0.2794 0.2472 0.1694 0.0532 0.0155
IGA [25] 0.2967 - 0.2517 0.1733 0.0547 0.0159

5 Present 0.3631 0.3452 0.3047 0.2124 0.0706 0.0211
MST [22] 0.3609 0.3466 0.3100 0.2182 0.0712 0.0209
IGA [25] 0.3676 - 0.3161 0.2233 0.0734 0.0216

10 Present 0.4068 0.3873 0.3436 0.2437 0.0838 0.0252
MST [22] 0.4041 0.3893 0.3582 0.2523 0.0854 0.0254
IGA [25] 0.4121 - 0.3510 0.2584 0.0884 0.0265

SCSC 0.5 Present 0.2585 0.2477 0.2198 0.1514 0.0477 0.0139
IGA [25] 0.2472 - 0.2122 0.1492 0.0488 0.0144

1 Present 0.3349 0.3200 0.2823 0.1917 0.0591 0.0171
IGA [25] 0.3201 - 0.2724 0.1886 0.0602 0.0176

2 Present 0.4318 0.4126 0.3643 0.2480 0.0769 0.0221
IGA [25] 0.4133 - 0.3513 0.2425 0.0768 0.0223

5 Present 0.5256 0.5055 0.4540 0.3218 0.1059 0.0311
IGA [25] 0.5086 - 0.4389 0.3118 0.1035 0.0306

10 Present 0.5849 0.5646 0.5118 0.3720 0.1280 0.0382
IGA [25] 0.5685 - 0.4961 0.3604 0.1246 0.0375

Moreover, in order to investigate effects of porosity β, material parameter p, side-to-
thickness ratio a/h, size effects h/l and boundary conditions on the static responses of
FGP microplates, Table 5 presents the normalized center transverse displacements with
various configurations. The variations of center deflections with respect to a/h and h/l
are also plotted in Fig. 1. It can be seen that the transverse displacements increase with
increase of the p and h/l. The graph in Fig. 1(b) reveals that the deflections vary gradu-
ally for h/l ≤ 10 and from h/l = 25 the curves become flatter and the results tend to be
closed to those obtained from the classical theory (h/l = ∞), which explains that the size
effects on deflections of FGP microplates are not significant from h/l > 25.
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Table 5. Normalized transverse center displacements of FGP square microplates under sinusoidal
load with different boundary conditions

BCs a/h β p
h/l

∞ 10 5 2 1

SSSS 10 0.1 0.5 0.5111 0.4342 0.3025 0.0962 0.0280
1 0.6947 0.5831 0.3964 0.1218 0.0351
2 0.9578 0.7987 0.5365 0.1622 0.0464
5 1.2183 1.0372 0.7244 0.2345 0.0687
10 1.3565 1.1739 0.8523 0.2968 0.0891

0.2 0.5 0.5822 0.4903 0.3356 0.1043 0.0301
1 0.8456 0.6983 0.4610 0.1361 0.0387
2 1.3214 1.0690 0.6800 0.1909 0.0536
5 1.9318 1.5884 1.0391 0.3052 0.0870
10 2.1828 1.8440 1.2843 0.4187 0.1231

SCSC 10 0.1 0.5 0.2906 0.2449 0.1662 0.0512 0.0149
1 0.3939 0.3278 0.2177 0.0653 0.0187
2 0.5436 0.4503 0.2971 0.0882 0.0249
5 0.7016 0.5956 0.4110 0.1301 0.0373
10 0.7870 0.6844 0.4904 0.1641 0.0483

0.2 0.5 0.3305 0.2758 0.1841 0.0552 0.0159
1 0.4781 0.3909 0.2525 0.0729 0.0206
2 0.7462 0.5979 0.3749 0.1033 0.0288
5 1.1042 0.9064 0.5905 0.1675 0.0476
10 1.2676 1.0785 0.7459 0.2348 0.0674

CCCC 10 0.1 0.5 0.1969 0.1640 0.1100 0.0335 0.0101
1 0.2663 0.2191 0.1439 0.0426 0.0128
2 0.3682 0.3012 0.1962 0.0573 0.0164
5 0.4827 0.4036 0.2735 0.0844 0.0244
10 0.5480 0.4671 0.3281 0.1070 0.0315

0.2 0.5 0.2233 0.1842 0.1216 0.0362 0.0104
1 0.3219 0.2603 0.1664 0.0475 0.0135
2 0.5018 0.3975 0.2462 0.0676 0.0210
5 0.7550 0.6090 0.3888 0.1106 0.0313
10 0.8832 0.7357 0.4969 0.1526 0.0440
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Fig. 1. Variation of normalized center deflection with respect the power index p
and thickness-to-length scale h/l of FGP microplates (β = 0.2, a/h = 10)

4.2. Free vibration analysis

In order to study the accuracy of present solutions in predicting vibration responses,
Tables 6 and 7 provide the fundamental frequencies of Al/Al2O3 FGP microplates with-
out porosity effects (β = 0) in which the solutions are computed for various configura-
tions. The obtained results are compared with those derived from Thai et al. [22] and
Thai et al. [25] based on the MST, IGA and HSDT, Zhang et al. [34] based on the MST and
Navier procedure and a refined HSDT. It can be seen that there is no discrepancy between
models. The fundamental frequencies decrease with the increase of p as expected.

Table 6. Normalized fundamental frequencies ω = ωh
√

ρc/Ec of Al/Al2O3 FGP square
microplates (β = 0, a/h = 10, SSSS)

p Theory
h/l

∞ 10 5 2 1

0 Present 0.0577 0.0615 0.0726 0.1250 0.2283
MST [22] 0.0577 0.0619 0.0729 0.1254 0.2297
RPT [34] 0.0577 0.0619 0.0730 0.1258 0.2309
IGA [25] 0.0577 0.0617 0.0725 0.1240 0.2268

0.5 Present 0.0490 0.0529 0.0626 0.1099 0.2035
MST [22] 0.0490 0.0529 0.0633 0.1110 0.2047
RPT [34] 0.0489 0.0529 0.0632 0.1113 0.2057
IGA [25] 0.0490 0.0528 0.0629 0.1098 0.2023
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p Theory
h/l

∞ 10 5 2 1

1 Present 0.0441 0.0475 0.0574 0.1014 0.1884
MST [22] 0.0442 0.0479 0.0577 0.1024 0.1896
RPT [34] 0.0442 0.0480 0.0578 0.1028 0.1907
IGA [25] 0.0442 0.0478 0.0573 0.1013 0.1873

2 Present 0.0401 0.0431 0.0520 0.0926 0.1722
MST [22] 0.0401 0.0435 0.0523 0.0930 0.1722
RPT [34] 0.0401 0.0435 0.0524 0.0933 0.1731
IGA [25] 0.0401 0.0434 0.0520 0.0918 0.1698
MST [22] 0.0377 0.0404 0.0477 0.0822 0.1508
RPT [34] 0.0377 0.0405 0.0478 0.0825 0.1514
IGA [25] 0.0377 0.0403 0.0474 0.0810 0.1482

10 Present 0.0364 0.0388 0.0452 0.0757 0.1360
MST [22] 0.0363 0.0387 0.0451 0.0761 0.1384
RPT [34] 0.0364 0.0388 0.0453 0.0764 0.1390
IGA [25] 0.0364 0.0387 0.0449 0.0750 0.1359

Table 7. Normalized fundamental frequencies of Al/Al2O3 FGP square microplates
(β = 0, a/h = 10, CCCC and SCSC)

BCs p Theory
h/l

∞ 20 10 5 2 1

CCCC 0.5 Present 8.4735 8.6614 9.1920 11.0307 18.9020 35.1640
IGA [25] 8.4405 - 9.1227 10.8954 19.0701 35.1215

1 Present 7.6782 7.8132 8.3908 10.0530 17.6636 32.3192
IGA [25] 7.6251 - 8.2766 9.9597 17.6422 32.6292

2 Present 6.9176 7.1106 7.5746 9.0783 15.9206 28.8231
IGA [25] 6.8944 - 7.4923 9.0367 16.0977 29.8609

5 Present 6.4231 6.5519 6.9710 8.3300 13.9971 25.9460
IGA [25] 6.3722 - 6.8823 8.2026 14.3324 26.4157

10 Present 6.1199 6.2784 6.6505 7.8617 13.0441 23.9971
IGA [25] 6.1039 - 6.5602 7.7407 13.2706 24.2754

SCSC 0.5 Present 6.7197 6.8676 7.2931 8.7900 15.6599 29.0008
IGA [25] 6.9031 - 7.4556 8.8961 15.5600 28.6567

1 Present 6.0650 6.2057 6.6094 8.0210 14.4368 26.8247
IGA [25] 6.2329 - 6.7605 8.1283 14.3915 26.6161

2 Present 5.4955 5.6222 5.9858 7.2578 13.0467 24.2396
IGA [25] 5.6405 - 6.1230 7.3744 13.1146 24.3082

5 Present 5.1361 5.2381 5.5323 6.5758 11.4606 21.0871
IGA [25] 5.2361 - 5.6429 6.7021 11.6480 21.4179

10 Present 4.9452 5.0338 5.2903 6.2080 10.5865 19.3316
IGA [25] 5.0254 - 5.3868 6.3288 10.7777 19.6645
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Table 8. Normalized fundamental frequencies of Al/Al2O3 FGP square microplates

BCs a/h β p
h/l

∞ 10 5 2 1

SSSS 10 0.1 0.5 4.8469 5.2465 6.2753 11.1444 20.5884
1 4.2815 4.6668 5.6497 10.2161 19.0334
2 3.7640 4.1238 4.9947 9.1029 16.9999
5 3.4574 3.6783 4.4653 7.8075 14.4907

10 3.3327 3.5350 4.1840 7.0993 12.8651
0.2 0.5 4.7972 5.2009 6.1126 11.1001 20.1158

1 4.1121 4.5268 5.5541 10.0543 19.0057
2 3.4064 3.7713 4.7471 8.9419 16.8823
5 2.9323 3.2158 3.9832 7.3159 13.7288

10 2.8148 3.0352 3.6550 6.4101 11.7388
SCSC 10 0.1 0.5 6.6598 7.2591 8.7147 15.3799 28.4118

1 5.8920 6.4631 7.9308 14.1016 26.1753
2 5.1741 5.6891 7.0084 12.5850 23.7134
5 4.7171 5.1198 6.1693 10.9865 20.3606

10 4.5305 4.8659 5.7523 9.9342 18.2235
0.2 0.5 6.5990 7.1277 8.5988 15.1299 28.1844

1 5.6709 6.2750 7.7094 14.0535 26.0222
2 4.6990 5.2527 6.6405 12.5620 23.6336
5 4.0124 4.4345 5.5079 10.2385 19.2228

10 3.8229 4.1489 4.9977 8.8931 16.4769
CCCC 10 0.1 0.5 8.3865 9.1064 11.0009 18.7157 35.0700

1 7.4713 8.1995 9.9376 17.5254 32.1417
2 6.5451 7.2033 8.8372 15.7657 28.6778
5 5.8837 6.1920 7.8150 13.3725 23.7300

10 5.6264 6.1831 7.3008 12.0451 21.4739
0.2 0.5 8.3202 9.1037 11.0001 18.6797 34.9638

1 7.1684 7.9717 9.7343 17.3071 32.1207
2 5.9501 6.6362 8.3403 15.2109 28.4556
5 5.0257 5.6144 6.9379 11.9968 20.3562

10 4.7414 5.2673 6.3223 10.5215 19.6228

The effect of p on the natural frequencies of Al/Al2O3 FGP microplates is also plot-
ted in Fig. 2(a) for h/l = 1, 2, 5, 10, 20, a/h = 10 and β = 0.2. There exist large deviations
of these curves, which indicate significant size effects. Moreover, the variations of fun-
damental frequencies with respect to h/l are displayed in Fig. 2(b). It is observed that
the results decrease with the increase of h/l up to h/l = 10 and then the curves become
flatter which indicates the size effects can be neglected.
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Fig. 2. Variation of normalized fundamental frequencies with respect the power index p and
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Van-Thien Tran, Van-Hau Nguyen, Trung-Kien Nguyen, Thuc P. Vo 

 14 

  
(a) SSSS (b)  

 
Fig. 3. Variation of normalized fundamental frequencies with respect the power index  and thickness-to-MLSP 

ratio  ( , )  

  

(a)  (b) SSSS 

Fig. 4. Size effect of the MCT and MST for the normalised fundamental frequencies with respect to the length 
scale-to-thickness ratio  ( , , ) 

The effect of  on the natural frequencies of Al/Al2O3 FGP microplates is also plotted in Fig. 3a 
for ,  and . There exist large deviations of these curves, which 
indicate significant size effects. Moreover, the variations of fundamental frequencies with respect to 

 are displayed in Fig. 3b. It is observed that the results decrease with the increase of  up to 
 and then the curves become flatter which indicates the size effects can be neglected.  

In order to study further the size effects of vibration problems, Fig. 4 illustrates the ratio of 
fundamental frequencies computed from the MST over the MCT, which is expressed with respect to  

, , ,  and different boundary conditions. It can be observed that the MST 
with three MLSPs produces frequencies larger than the MCT with one MLSP, especially when the 

5p =

p
/h l / 10a h = 0.2b =

5p =

/h l 0.2b = 5p = / 10a h =

p
/ 1,2,5,10,20h l = / 10a h = 0.2b =

/h l /h l
/ 10h l =

/h l 5p = 0.2b = / 10a h =

(a) p = 5

Van-Thien Tran, Van-Hau Nguyen, Trung-Kien Nguyen, Thuc P. Vo 

 14 

  
(a) SSSS (b)  

 
Fig. 3. Variation of normalized fundamental frequencies with respect the power index  and thickness-to-MLSP 

ratio  ( , )  

  

(a)  (b) SSSS 

Fig. 4. Size effect of the MCT and MST for the normalised fundamental frequencies with respect to the length 
scale-to-thickness ratio  ( , , ) 

The effect of  on the natural frequencies of Al/Al2O3 FGP microplates is also plotted in Fig. 3a 
for ,  and . There exist large deviations of these curves, which 
indicate significant size effects. Moreover, the variations of fundamental frequencies with respect to 

 are displayed in Fig. 3b. It is observed that the results decrease with the increase of  up to 
 and then the curves become flatter which indicates the size effects can be neglected.  

In order to study further the size effects of vibration problems, Fig. 4 illustrates the ratio of 
fundamental frequencies computed from the MST over the MCT, which is expressed with respect to  

, , ,  and different boundary conditions. It can be observed that the MST 
with three MLSPs produces frequencies larger than the MCT with one MLSP, especially when the 

5p =

p
/h l / 10a h = 0.2b =

5p =

/h l 0.2b = 5p = / 10a h =

p
/ 1,2,5,10,20h l = / 10a h = 0.2b =

/h l /h l
/ 10h l =

/h l 5p = 0.2b = / 10a h =

(b) SSSS

Fig. 3. Size effect of the MCT and MST for the normalised fundamental frequencies with respect
to the length scale-to-thickness ratio h/l (β = 0.2, p = 5, a/h = 10)

In order to study further the size effects of vibration problems, Fig. 3 illustrates the
ratio of fundamental frequencies computed from the MST over the MCT, which is ex-
pressed with respect to h/l, p = 5, β = 0.2, a/h = 10 and different boundary conditions.
It can be observed that the MST with three MLSPs produces frequencies larger than the
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MCT with one MLSP, especially when the Static and vibration analysis of functionally
graded microplate with porosities based on higher-order shear deformation and modi-
fied strain gradient theory microplate thickness is close to the MLSP. It emphasizes the
importance of the consideration of three components e.g. the dilatation, deviatoric stretch
and symmetric part of rotation gradient tensor in the MST rather than only the symmetric
part of rotation gradient tensor in the MCT when dealing with microplates. As expected,
by increasing the size scale, the difference between the theories is decreased.

5. CONCLUSIONS

A unified higher-order shear deformation theory and modified strain gradient the-
ory have been developed in this paper for static and free vibration analyses of func-
tionally graded porous microplates. The equations of motion are derived from Hamil-
ton’s principle and series-type approximation with exponential shape functions. Numer-
ical examples are presented to investigate effects of side-tothickness ratio, thickness-to-
material length scale parameter ratio and boundary conditions on the deflections and
natural frequencies of FGP microplates. The obtained results show that the size effects
lead to an increase in the stiffness of the FGP microplates, consequently it decreases
their transverse displacements and increases their natural frequencies. Significant dif-
ferences of the present theory and modified couple stress theory are observed when the
microplate thickness and MLSP is the same dimension, it shows that the dilatation and
deviatoric stretch should be accounted for computations of microplates. The present the-
ory is found to be accurate and efficient in predicting static and dynamic behaviours of
FGP microplates.
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APPENDIX A

The non-zero components of dilatation gradients in Eq. (11) are defined by
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The non-zero components of deviatoric stretch gradients ηijk in Eq. (12) are given by

η111 = ε11,1 −
1
5
(ξ1 + 2ε11,1 + γ12,2 + γ13,3) ,

η222 = ε22,2 −
1
5
(ξ2 + 2ε22,2 + γ12,1 + γ23,3) ,

(A.2a)

η333 = −1
5
(ξ3 + γ13,1 + γ23,2) ,

η112 = η211 = η121 =
1
3
(ε11,2 + γ12,1)−

1
15

(ξ2 + γ12,1 + 2ε22,2 + γ23,3) ,
(A.2b)

η113 = η311 = η131 =
1
3
(γ13,1 + ε11,3)−

1
15

(ξ3 + γ13,1 + γ23,2) , (A.2c)
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η221 = η122 = η212 =
1
3
(γ12,2 + ε22,1)−

1
15

(ξ1 + 2ε11,1 + γ12,2 + γ13,3) , (A.2d)
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These components can be expressed in terms of the displacements as follows
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The components of rotation gradients in Eq. (13) are expressed as follows
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APPENDIX B

The stress resultants of the FGP microplates are expressed in terms of the strains and
its gradients as follows
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where the stiffness components of the FGP microplates are defined as follows



58 Van-Thien Tran, Van-Hau Nguyen, Trung-Kien Nguyen, Thuc P. Vo

(Aε, Bε, Dε, Hε
s, Bε

s, Dε
s) =

∫ h/2

−h/2

(
1, Φ1, Φ2

1, Φ2
2, Φ2, Φ1Φ2

)
Q(i)

ε dx3, Aε
s =

∫ h/2

−h/2
Φ2

3Q(o)
ε dx3,(

Aξ , Bξ , Bξ
s , Bξ , Bξ

s

)
=
(

Aξ , Bξ , Bξ
s , Bξ , Bξ

s

)
I3×3 =

∫ h/2

−h/2
(1, Φ1, Φ2, Φ1,3, Φ2,3) αξ I3×3dx3,(

Dξ , Dξ
s , Oξ , Pξ

s

)
=
(

Dξ , Dξ
s , Oξ

, Pξ
s

)
I3×3 =

∫ h/2

−h/2
Φ1 (Φ1, Φ2, Φ1,3, Φ2,3) αξ I3×3dx3,(

Hξ
s , Fξ

s , Jξ , Dξ , Dξ
s , Hξ

s

)
=
(

Hξ
s , Fξ

s , Jξ , Dξ , Dξ
s , Hξ

s

)
I3×3 =

∫ h/2

−h/2

(
Φ2

2, Φ2Φ1,3, Φ2Φ2,3, Φ2
1,3, Φ1,3Φ2,3, Φ2

2,3

)
αξ I3×3dx3,(

Aη , Bη , Bη
s , Aη

s , Bη , Bη
s , Aη

s

)
=
(

Aη , Bη , Bη
s , Aη

s , Bη , Bη
s , Aη

s

)
I10×10 =

∫ h/2

−h/2
(1, Φ1, Φ2, Φ3, Φ1,3, Φ2,3, Φ3,3) αηI10×10dx3,(

Dη , Dη
s , Dη

ts, Oη , Pη
s , Qη

s

)
=
(

Dη , Dη
s , Dη

ts, Oη
, Pη

s , Qη
s

)
I10×10 =

∫ h/2

−h/2
Φ1 (Φ1, Φ2, Φ3, Φ1,3, Φ2,3, Φ3,3) αηI10×10dx3,(

Hη
s , Dη

hs, Fη
s , Jη , Fη

hs

)
=
(

Hη
s , Dη

hs, Fη
s , Jη , Fη

hs

)
I10×10 =

∫ h/2

−h/2
Φ2 (Φ2, Φ3, Φ1,3, Φ2,3, Φ3,3) αηI10×10dx3,(

Hη
ts, Fη

ts, Jη
hs, Rη

)
=
(

Hη
ts, Fη

ts, Jη
hs, Rη

)
I10×10 =

∫ h/2

−h/2
Φ3 (Φ3, Φ1,3, Φ2,3, Φ3,3) αηI10×10dx3,(

Dη , Dη
s , Dη

ts, Hη
s , Dη

hs, Hη
ts

)
=
(

Dη , Dη
s , Dη

ts, Hη
s , Dη

hs, Hη
ts

)
I10×10

=
∫ h/2

−h/2

(
Φ2

1,3, Φ1,3Φ2,3, Φ1,3Φ3,3, Φ2
2,3, Φ2,3Φ3,3, Φ2

3,3

)
αηI10×10dx3,(

Aχ, Bχ, Bχ
s , B

χ
, B

χ

s , Bχ
s

)
=
(

Aχ, Bχ, Bχ
s , B

χ
, B

χ

s , Bχ
s

)
I6×6 =

∫ h/2

−h/2
(1, Φ1,3, Φ2,3, Φ1,33, Φ2,33, Φ2) αχI6×6dx3,(

Dχ, Dχ
s , Eχ, Eχ

s , Fχ
s

)
=
(

Dχ, Dχ
s , Eχ, Eχ

s , Fχ
s

)
I6×6 =

∫ h/2

−h/2
Φ1,3 (Φ1,3, Φ2,3, Φ1,33, Φ2,33, Φ2) αχI6×6dx3,(

Hχ
s , Gχ

s , Iχ, Jχ
)
=
(

Hχ
s , Gχ

s , Iχ, Jχ
)

I6×6 =
∫ h/2

−h/2
Φ2,3 (Φ2,3, Φ1,33, Φ2,33, Φ2) αχI6×6dx3,(

D
χ

, D
χ

s , Kχ
s , H

χ

s , Lχ, Hχ
s

)
=
(

D
χ

, D
χ

s , Kχ
s , H

χ

s , Lχ, Hχ
s

)
I6×6

=
∫ h/2

−h/2

(
Φ2

1,33, Φ1,33Φ2,33, Φ1,33Φ2, Φ2
2,33, Φ2,33Φ2, Φ2

2

)
αχI6×6dx3.

(B.2)

APPENDIX C

The components of stiffness matrix Kξ , Kη and load vector F are defined as follows

Kξ11
ijkl = Aξ

(
T33

ik S00
jl + T22

ik S11
jl

)
, Kξ12

ijkl = Aξ
(

T13
ik S20

jl + T02
ik S31

jl

)
,

Kξ13
ijkl = Bξ

(
T33

ik S00
jl + T13

ik S20
jl + T02

ik S31
jl + T22

ik S11
jl

)
,

Kξ14
ijkl = Bξ

s

(
T33

ik S00
jl + T22

ik S11
jl

)
, Kξ15

ijkl = Bξ
s

(
T13

ik S20
jl + T02

ik S31
jl

)
,

Kξ22
ijkl = Aξ

(
T11

ik S22
jl + T00

ik S33
jl

)
, Kξ23

ijkl = Bξ
(

T31
ik S02

jl + T11
ik S22

jl + T20
ik S13

jl + T00
ik S33

jl

)
,

Kξ24
ijkl = Bξ

s

(
T31

ik S02
jl + T20

ik S13
jl

)
, Kξ25

ijkl = Bξ
s

(
T11

ik S22
jl + T00

ik S33
jl

)
,

Kξ33
ijkl = Dξ

(
T33

ik S00
jl + T00

ik S33
jl + T31

ik S02
jl + T02

ik S31
jl + T13

ik S20
jl + T20

ik S13
jl + T11

ik S22
jl + T22

ik S11
jl

)
+ Dξ

(
T22

ik S00
jl + T20

ik S02
jl + T02

ik S20
jl + T00

ik S22
jl

)
,

Kξ34
ijkl = Dξ

s

(
T33

ik S00
jl + T31

ik S02
jl + T22

ik S11
jl + T20

ik S13
jl

)
+ Dξ

s

(
T22

ik S00
jl + T20

ik S02
jl

)
,

Kξ35
ijkl = Dξ

s

(
T13

ik S20
jl + T11

ik S22
jl + T02

ik S31
jl + T00

ik S33
jl

)
+ Dξ

s

(
T02

ik S20
jl + T00

ik S22
jl

)
,

Kξ44
ijkl = Hξ

s T33
ik S00

jl + Hξ
s T22

ik S11
jl + Hξ

s T22
ik S00

jl , Kξ45
ijkl = Hξ

s T13
ik S20

jl + Hξ
s T02

ik S31
jl + Hξ

s T02
ik S20

jl ,

Kξ55
ijkl = Hξ

s T00
ik S33

jl + Hξ
s T11

ik S22
jl + Hξ

s T00
ik S22

jl ,
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Kη11
ijkl = Aη

(
22T33

ik S00
jl − 11T31

ik S02
jl − 11T13

ik S20
jl + 18T11

ik S22
jl + 72T22

ik S11
jl

)
/25,

Kη12
ijkl = 2Aη

(
−11T13

ik S20
jl − 11T02

ik S31
jl + 18T11

ik S22
jl + 18T22

ik S11
jl

)
/25,

Kη13
ijkl = Bη

(
22T33

ik S00
jl − 11T31

ik S02
jl − 33T13

ik S20
jl + 54T11

ik S22
jl − 22T02

ik S31
jl + 108T22

ik S11
jl

)
/25,

Kη25
ijkl = Bη

s

(
72T11

ik S22
jl + 22T00

ik S33
jl − 11T02

ik S31
jl − 11T20

ik S13
jl + 18T22

ik S11
jl

)
/25− Aη

s

(
7T02

ik S11
jl + 11T00

ik S13
jl

)
/25,

Kη33
ijkl = Dη

(
22T33

ik S00
jl − 33T31

ik S02
jl − 33T13

ik S20
jl + 162T11

ik S22
jl + 162T22

ik S11
jl + 22T00

ik S33
jl − 33T02

ik S31
jl − 33T20

ik S13
jl

)
/25,

−Qη
s

(
11T00

ik S13
jl + 11T13

ik S00
jl + 11T31

ik S00
jl + 11T00

ik S31
jl + 21T02

ik S11
jl + 21T11

ik S02
jl + 21T11

ik S20
jl + 21T20

ik S11
jl

)
/25,

+
(

Hη
ts + 2Fη

ts + Dη
) (

18T22
ik S00

jl − 7T20
ik S02

jl − 7T02
ik S20

jl + 18T00
ik S22

jl + 100T11
ik S11

jl

)
/25 + 18Hη

ts

(
T11

ik S00
jl + T00

ik S11
jl

)
/25,

Kη34
ijkl = Dη

s

(
22T33

ik S00
jl − 33T31

ik S02
jl − 11T13

ik S20
jl + 54T11

ik S22
jl − 22T20

ik S13
jl + 108T22

ik S11
jl

)
/25

−Qη
s

(
11T13

ik S00
jl + 21T11

ik S02
jl

)
/25 +

(
Hη

ts + Jη
hs + Fη

ts + Dη
s

) (
18T22

ik S00
jl − 7T20

ik S02
jl + 50T11

ik S11
jl

)
/25

− Fη
hs

(
14T20

ik S11
jl + 11T31

ik S00
jl + 7T11

ik S20
jl

)
/25 + 18Hη

isT11
ik S00

jl /25,

Kη35
ijkl = Dη

s

(
108T11

ik S22
jl + 54T22

ik S11
jl + 22T00

ik S33
jl − 33T02

ik S31
jl − 11T20

ik S13
jl − 22T13

ik S20
jl

)
/25

−Qη
s

(
21T02

ik S11
jl + 11T00

ik S13
jl

)
/25 +

(
Hη

ts + Jη
hs + Fη

ts + Dη
s

) (
18T00

ik S22
jl − 7T02

ik S20
jl + 50T11

ik S11
jl

)
/25

− Fη
hs

(
14T11

ik S20
jl + 11T00

ik S31
jl + 7T20

ik S11
jl

)
/25 + 18Hη

isT00
ik S11

jl /25,

Kη44
ijkl = Hη

s

(
22T33

ik S00
jl − 11T31

ik S02
jl − 11T13

ik S20
jl + 18T11

ik S22
jl + 72T22

ik S11
jl

)
/25 + 18Hη

isT11
ik S00

jl /25

+
(

Hη
is + 2Jη

hs + Hη
s

) (
18T22

ik S00
jl + 25T11

ik S11
jl

)
− Fη

hs

(
11T31

ik S00
jl + 7T11

ik S20
jl + 11T13

ik S00
jl + 7T11

ik S02
jl

)
/25,

Kη45
ijkl = Hη

s

(
36T11

ik S22
jl + 36T22

ik S11
jl − 22T13

ik S20
jl − 22T02

ik S31
jl

)
/25− 14Fη

hs

(
T02

ik S11
jl + T11

ik S20
jl

)
/25

+
(

Hη
ts + 2Jη

hs + Hη
s

) (
25T11

ik S11
jl − 7T02

ik S20
jl

)
/25,

Kη55
ijkl = Hη

s

(
72T11

ik S22
jl + 22T00

ik S33
jl − 11T02

ik S31
jl − 11T20

ik S13
jl + 18T22

ik S11
jl

)
/25 + 18Hη

tsT00
ik S11

jl /25

+
(

Hη
ts + 2Jη

hs + Hη
s

) (
18T00

ik S22
jl + 25T11

ik S11
jl

)
/25− Fη

hs

(
11T00

ik S13
jl + 7T02

ik S11
jl + 11T00

ik S31
jl + 7T20

ik S11
jl

)
/25,

(C.1b)
fij =

∫ a

0

∫ b

0
qXiYjdx1dx2, (C.1c)

Trs
ik =

∫ a

0

∂r Ri

∂xr
1

∂sRk
∂xs

1
dx1, Srs

jl =
∫ a

0

∂r Pj

∂xr
2

∂sPl
∂xs

2
dx2. (C.1d)
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