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Abstract. In this paper, there is proposed a novel damage index extracted from frequency
response of cracked Timoshenko beam under moving harmonic load using the so-called
Modal Assurance Criterion (MAC) concept. First, frequency response of a cracked Timo-
shenko beam subjected to harmonic force moving on the beam with constant speed is ob-
tained in an analytical expression. Then, a scalar characteristic like the coherence between
the frequency responses of intact and cracked beams is determined and called herein Spec-
tral Assurance Criterion (SAC). Such designed criterion is dependent upon crack parame-
ters (location and depth), the load frequency and speed as well as position on beam where
the responses have been measured. Numerical analysis shows that SAC is much more
sensitive to crack than natural frequencies and can be used as a novel damage index for
crack detection in beam using moving load. The effect of moving load frequency and
speed has been also examined with the aim to have got an indicator most adequate for the
crack detection problem.
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1. INTRODUCTION

Damage detection is a crucial problem in Structural Health Monitoring (SHM) and it
is usually accomplished by processing the data gathered from the measured vibration of
a structure under consideration [1–4]. The key to the Damage Detection Problem (DDP)
is the so-called damage index chosen as an indicator for identifying deterioration that
happened in the structure. For a long time until nowadays, the dynamical characteristics
such as natural frequencies and mode shapes acknowledged as modal parameters of a
structure have been selected as the most popular indicator for damage detection in en-
gineering structures. It is because any deterioration occurred in a structure should lead
to a change in the structure’s dynamic characteristics. However, the modal parameter-
based damage detection has faced so far with the following constraints. First, the modal
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parameters are not directly measured but they are usually extracted from the measured
response of a structure under a controlled load. So that integrated measurement and ex-
traction errors may hide the damage signature in the modal parameter indicator. Second,
while the more easily measured quantitative indicators such as natural frequencies are
weakly sensitive to local damage, the functional features such as mode shapes more sen-
sitive to damage are difficult to accurately measure. Therefore, the damage indexes that
are more sensitive to damage and could be easily measured need to be developed. Var-
ious techniques have been proposed for damage detection using response of structures
subjected to moving load [5–8] and they demonstrated an advantage of moving load used
for the damage detection. Most of works in the widespread literature on the moving load-
based damage detection used time history response to the moving load in combination
with the signal processing methods such as wavelet or Hilbert-Huang transforms. Very
little works on the moving load-based damage detection employed frequency response
of structures subjected to moving load [9, 10].

In the present study, a novel damage index extracted from frequency response of
cracked Timoshenko beam under moving harmonic load is proposed using the so-called
Modal Assurance Criterion (MAC) concept [11–21]. First, frequency response of a cracked
Timoshenko beam subjected to harmonic force moving on the beam with constant speed
is obtained in an analytical expression [22]. Then, a scalar characteristic like the coher-
ence between the frequency responses of intact and cracked beams is determined and
called herein Spectral Assurance Criterion (SAC). Such designed criterion is dependent
upon crack parameters (location and depth), the load frequency and speed as well as po-
sition on beam where the responses have been measured. Numerical analysis shows that
SAC is much more sensitive to crack than natural frequencies and can be used as a novel
damage index for crack detection in beam using moving load. The effect of moving load
frequency and speed has been also examined with the aim to have got an indicator most
adequate for the crack detection problem.

2. FREQUENCY RESPONSE OF CRACKED TIMOSHENKO BEAM
TO MOVING LOAD

Consider a uniform beam of length `; material density (ρ); elasticity (E) and shear (G)
modulus; area A = b× h and moment of inertia I = bh3/12 of cross section, subjected to
a transverse load of density p(x, t). Using the Timoshenko theory of beam

u(x, z, t) = u0(x, t)− zθ(x, t), w(x, z, t) = w0(x, t), (1)

and constituting equations

εx = ∂u0/∂x− z∂θ/∂x, γxz = ∂w0/∂x− θ, σx = Eεx, τxz = κGγxz, (2)

and Hamilton principle, the equations for free vibration of the beam can be established
as

ρAẅ0(x, t)− κGA(w′′0 − θ′) = p(x, t), ρIθ̈(x, t)− EIθ′′ − κGA(w′ − θ) = 0, (3)

Furthermore, it is assumed that the beam has been cracked at positions e and the
crack is modeled by rotational springs of stiffness K calculated from crack depth [23].
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Fig.1. Simply supported beam subjected to moving force 
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Fig. 1. Simply supported beam subjected to moving force

Therefore, conditions that must be satisfied at the crack section are

w0(e + 0, t) = w0(e− 0, t) = w0(e, t), θ′x(ej + 0, t) = θ′x(e− 0, t) = θ′x(e, t),

θ(e + 0, t) = θ(e− 0, t) + γθ′x(e, t), w′0x(ej + 0, t) = w′0x(e− 0, t) + γθ′x(e),
γ = EI/K.

(4)

Under the Fourier transformation equations (3) become

ρAω2W(x, ω) + κGA(W ′′ −Θ′) = P(x, ω), ρIω2Θ(x, ω) + EIΘ′′ + κGA(W ′ −Θ) = 0,
(5)

where

W(x, ω) =

∞∫
−∞

w0(x, t)e−iωtdt, Θ(x, ω) =

∞∫
−∞

θ(x, t)e−iωtdt, P(x, ω) =

∞∫
−∞

p(x, t)e−iωtdt,

and conditions at crack positions (4) get the form

W0(e + 0, ω) = W0(e− 0, ω) = W0(e, ω), Θ′x(ej + 0, ω) = Θ′x(ej − 0, ω) = Θ′(ej, ω),

Θ(e + 0, ω) = Θ(e− 0, ω) + γ Θ′x(e, ω), W ′0x(e + 0, ω) = W ′0x(e− 0, ω) + γ Θ′x(e, ω).
(6)

First, let’s consider homogeneous equations

ρAω2W0(x, ω) + κGA(W ′′0 −Θ′) = 0,

ρIω2Θ(x, ω) + EIΘ′′ + κGA(W ′0 −Θ) = 0,
(7)

general solution of which, as shown in [22], can be represented in the form

W0(x) = C1 cosh k1x + C2 sinh k1x + C3 cos k2x + C4 sin k2x,

Θ0(x) = r1C1 sinh k1x + r1C2 cosh k1x + r2C3 sin k2x− r2C4 cos k2x,

k1 =

√
(
√

α2 + 4β− α)/2, k2 =

√
(
√

α2 + 4β + α)/2,

r1 = (ρω2/κGk1 + k1), r2 = (ρω2/κGk2 − k2),

α = (ρω2/E) (1 + E/κG) , β = (ρω2/E)
(
ρω2/κG− A/I

)
.

(8)
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Particularly, solution (8) satisfying the conditions W0(0) = 0, W ′0(0) = 1, Θ0(0) =
1, Θ′0(0) = 0 is

Sw(x) = S1 sinh k1x + S2 sin k2x, Sθ(x) = r1S1 cosh k1x− r2S2 cos k2x, (9)

S1 = (r2 + k2)/(r1k2 + r2k1), S2 = (r1 − k1)/(r1k2 + r2k1) (10)
Using obtained above solution, general solution of homogeneous Eq. (7) satisfying

conditions (6) at cracks is represented by

Wc
0(x, ω) = C1W1(k1, x) + C2W2(k1, x) + C3W3(k2, x) + C4W4(k2, x),

Θc
0(x, ω) = C1Θ1(k1, x) + C2Θ2(k1, x) + C3Θ3(k2, x) + C4Θ4(k2, x),

(11)

where
W1(x) = cosh k1x + γL1(e)Kw(x− e), W2(x) = sinh k1x + γL2(e)Kw(x− e),

W3(x) = cos k2x + γL3(e)Kw(x− e), W4(x) = sin k2x + γL4(e)Kw(x− e),

Θ1(x) = r1 sinh k1x + γL1(e)Kθ(x− e), Θ2(x) = r1 cosh k1x + γL2(e)Kθ(x− e),

Θ3(x) = r2 sin k2x + γL3(e)Kθ(x− e), Θ4(x) = −r2 cos k2x + γL4(e)Kθ(x− e),

Kw(x) =
{

0, if x < 0
Sw(x), if x ≥ 0 K′w(x) =

{
0, if x < 0
S′w(x), if x ≥ 0

Kθ(x) =
{

0, if x < 0
Sθ(x), if x ≥ 0 K′θ(x) =

{
0, if x < 0
S′θ(x), if x ≥ 0

(12)

L1(x) = k1r1 cosh k1x, L2(x) = k1r1 sinh k1x,

L3(x) = k2r2 cos k2x, L4(x) = k2r2 sin k2x.
(13)

Now, suppose that the transverse load is a harmonic force P0eiΩt moving on the beam
with constant speed v, that means

p(x, t) = P0eiΩtδ(x− vt). (14)

So, the right-hand side of Eq. (5) can be calculated as

P(x, ω) = P̄0 exp{iΩ̄x}, P̄0 = P0/v, Ω̄ = (Ω−ω)/v, (15)

that allows one to find a particular solution of Eq. (5) in the form

Wp(x, ω) = Dw exp{iΩ̄x}, Θp(x, ω) = Dθ exp{iΩ̄x}, (16)

with
Dw = P̄0(EIΩ̄2 − ρIω2 + κGA)/D, Dθ = P̄0κGAiΩ̄/D,

D = [(EIΩ̄2 − ρIω2)(κGAΩ̄2 − ρAω2)− κGA2ρω2].
(17)

Therefore, general solution of Eq. (5) satisfying conditions (6) is

W(x, ω) = C1W1(k1, x) + C2W2(k1, x) + C3W3(k2, x) + C4W4(k2, x) + Wp(x, ω),

Θ(x, ω) = C1Θ1(k1, x) + C2Θ2(k1, x) + C3Θ3(k2, x) + C4Θ4(k2, x) + Θp(x, ω).
(18)

Substituting expressions (18) to given boundary conditions, for example,

W(0, ω) = 0, Θ′(0, ω) = 0, W(L, ω) = 0, Θ′(L, ω) = 0,
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in case of simply supported beams, one can find the constants C1, C2, C3, C4 as

C1 = (r2k2Dw − iΩ̄Dθ)/(r1k1 − r2k2), C3 = (r1k1Dw − iΩ̄Dθ)/(r2k2 − r1k1)

C2 = [W4(k2, L)Qθ −Θ′4(k2, L)Qw)]/∆, C4 = [Θ′2(k1, L)Qw −W2(k1, L)Qθ)]/∆,

Qw = [Wp(L, ω) + C1W1(k1, L) + C3W3(k2, L)],

Qθ = [Θ′p(L, ω) + C1Θ′1(k1, L) + C3Θ′3(k2, L)],

∆ = W2(k1, L)Θ′4(k2, L)−W4(k2, L)Θ′2(k1, L).

(19)

It is not difficult to verify that natural frequencies of the beam can be found from
equation

∆ = W2(k1, L)Θ′4(k2, L)−W4(k2, L)Θ′2(k1, L) = 0. (20)

Thus, frequency response of the simply supported beam subjected to moving har-
monic load has been conducted in the form (18) with constants C1, C2, C3, C4 determined
in (19). Modules of the response components are acknowledged as deflection and slope
spectrums

Sw(x, ω) = |W(x, ω)| , Sθ(x, ω) = |Θ(x, ω)| , (21)

that would be examined below in dependence upon crack parameters.

3. MODAL ASSURANCE CRITERION AND ITS APPLICATION

The modal assurance criterion (MAC) was proposed first to check orthogonality and
consistency of predicted and measured mode shape vectors [11, 12] and then employed
for model updating and structural damage monitoring [13, 14]. Since the criterion is in-
sensitive to small changes in the compared mode shapes, it was extended for detecting
structural damages based on the changes in natural frequencies and termed by Multi-
ple Damage Location Assurance Criterion (MDLAC) [15, 16]. Nevertheless, either MAC
or MDLAC provide only particular and limited information on the damaged structure
condition, therefore, more fruitful assurance criterions were developed for flexibility [17]
or frequency response function [18] matrices. While the latter criterion is formulated by
comparison of the frequency response functions at the same frequency, because of shifted
natural frequencies and vibration phase due to damage the authors of works [19–21] pro-
posed the so-called frequency domain assurance criterions that compare the responses
at different frequencies. To the authors’ better knowledge, no similar assurance criterion
conducted from frequency responses of beams under moving load has been reported in
the literature.

As well-known, so-called assurance criterion between two signals (vectors) {Sj, j =
1, . . . , N} and {Qj, j = 1, . . . , N} is determined as

H(S, Q) =

( N

∑
k=1

SkQk

)2

/

(
N

∑
k=1

S2
k ×

N

∑
k=1

Q2
k

)1/2

. (22)

Accordingly, two signals are considered as similar or strongly correlated if the coeffi-
cient between them is about unique and its deviation from unique provides a measure of
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the signal’s dissimilarity. In this case the coherence coefficient is termed hereby similarity
index of two signals.

If the compared signals are frequency response spectrums of cracked and intact
beams, both measured at position x, the coefficient would describe the change of the
responses due to crack. Therefore, the coherence coefficient calculated for cracked and
intact frequency responses as

SAC(e, a, x) =


(

N

∑
k=1

S0
(
ωj, x

)
Sc
(
ωj, x, e, a

))2

(
N

∑
k=1

S2
0
(
ωj, x

)
×

N

∑
k=1

S2
c
(
ωj, x, e, a

))


1/2

, (23)

can be acknowledged as spectral assurance criterion (SAC) like the frequency domain
assurance criterion [21]. The SAC is examined below in dependence upon not only the
crack parameters but also the moving load ones and it would be shown that the criterion
provides a novel useful indicator for crack detection using distributed sensor in combi-
nation with moving load.

4. NUMERICAL ANALYSIS

First, for validation of the above theoretical development, the changes in the three
lowest natural frequencies of a simply supported beam due to crack are computed and
the obtained results are provided in Fig. 2, where the ratios of cracked frequencies to in-
tact ones are presented. Obviously, the crack-induced changes in natural frequencies are
the same as given in Ref. [22]. Namely, crack at the beam middle creates maximal change
in the odd frequencies and makes no effect on the even ones. Moreover, the variations
are symmetrical about the middle of the beam with symmetric boundary conditions.
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Fig. 2. Variation of natural frequencies due to crack location and depth 

Next, for spectral analysis of moving load-induced response let’s introduce the following parameters: 

𝜔01 – fundamental frequency of undamaged beam; 𝑉𝑐 = 𝜔01𝐿/𝜋 – critical speed of moving load; 

dimensionless frequency and speed 𝜔̅ = 𝜔/𝜔01 and 𝑣 = 𝑉/𝑉𝑐. The moving harmonic load is called 

resonant if load frequency equals to natural frequency, Ω = 𝜔01. So, the midspan deflection spectrum, 

( ) ( / 2, )wS W L = , computed for undamged beam in various load speeds and frequencies are shown in 

Fig. 3, where three cases of load frequency: (a) constant force, Ω = 0; (b) one third resonant load, Ω =
𝜔01/3 and (c) resonant load, Ω = 𝜔01 are provided. Recalling the results obtained by the authors in [8,9] 

we can see also in Fig. 3 that under moving harmonic load dominant vibration components of the beam 

response are vibrations with the load frequency and eigenfrequency called herein forced mode and 

eigenmode respectively. Amplitudes of the vibration components are strongly dependent upon speed of the 

moving load. Namely, the forced mode of vibration is dominant for the load moving at low speed, while the 

(b) Second frequency
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Fig. 2. Variation of natural frequencies due to crack location and depth

Next, for spectral analysis of moving load-induced response let’s introduce the fol-
lowing parameters: ω01 – fundamental frequency of undamaged beam; Vc = ω01L/π
– critical speed of moving load; dimensionless frequency and speed ω̄ = ω/ω01 and
v = V/Vc. The moving harmonic load is called resonant if load frequency equals to nat-
ural frequency, Ω = ω01. So, the midspan deflection spectrum, Sw(ω) = |W(L/2, ω)|,
computed for undamaged beam in various load speeds and frequencies are shown in
Fig. 3, where three cases of load frequency: (a) constant force, Ω = 0; (b) one third reso-
nant load, Ω = ω01/3 and (c) resonant load, Ω = ω01 are provided. Recalling the results
obtained by the authors in [8, 9] we can see also in Fig. 3 that under moving harmonic
load dominant vibration components of the beam response are vibrations with the load
frequency and eigenfrequency called herein forced mode and eigenmode respectively.
Amplitudes of the vibration components are strongly dependent upon speed of the mov-
ing load. Namely, the forced mode of vibration is dominant for the load moving at low
speed, while the eigenmode gets to be prevalent at the high speed of the load. Evidently,
the amplitude of resonant vibration mode is highest, and it is rapidly reduced for increas-
ing load speed.
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Fig. 3. Midspan deflection spectrums for uncracked simply supported beam
in various frequency and speed of moving load

Finally, the spectral assurance criterion determined by Eq. (23) is numerically exam-
ined in dependence upon crack and load parameters, and results of the computation are
displayed in Figs. 4–6, where given graphs demonstrate SAC as function of crack loca-
tion for various crack depth, moving load speed and frequency. The effect of the position
on beam where the responses have been measured is also investigated.
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Fig. 6. Spectral assurance criterion versus crack position in different crack depth
and measuring locations Ω = ω01, v = 0.245Vc, damp = 0.05

5. CONCLUSIONS

Thus, a novel damage index, called spectral assurance criterion (SAC), has been in-
troduced and examined in the present paper. It is extracted from frequency response
of cracked Timoshenko beam subjected to moving harmonic load using the well-known
concept of modal assurance criterion.

The analytical expression obtained for the frequency response allows thoroughly ex-
amining the damage index in dependence upon not only crack location and depth but
also the moving load parameters such as frequency and speed as well as position on
beam where the response is measured.

As a quantitative feature, like natural frequencies of a structure under considera-
tion but much more sensitive to crack than the natural frequencies, SAC shows to be a
promising novel indicator for structural crack identification.

It has been shown a significant effect of moving load speed on SAC’s sensitivity to
crack, while the moving load frequency and the position on beam where the frequency
response is measured make no effect on the crack-induced change in the SAC.

Though the novel damage index, SAC, has been proposed for beam structures under
moving load, it can be developed further for more complicate structures such as frames
which allow consistent measurements of frequency responses in both intact and damaged
structure conditions.
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