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Abstract. This paper presents a hybrid approach for multiscale topology optimization of
structures. The topological shape of both macro-structure and micro-structure are con-
currently optimized, based on the solid isotropic material with penalization (SIMP) tech-
nique in combination with finite element method (FEM). The material is assumed to have
periodically patterned micro-structures, such that the effective properties can be evalu-
ated via energy-based homogenization method (EBHM). In every iteration, the effective
properties of material are passed to the macroscopic problem, and the macroscopic be-
havior (e.g. strain energy) is transferred back to the micro-scale problem, where the unit
cell representing the micro-structure of material is determined for the next iteration. It is
found that the update process can be done separately, i.e., the sensitivity of macro-scale de-
sign variables is not required during the update of micro-scale design variables, and vice
versa. Hence, the proposal is that the macro-structure is updated by the gradient-free Pro-
portional Topology Optimization (PTO) algorithm to utilize the computational efficiency
of PTO. The micro-structure is still updated by the common gradient-based algorithm,
namely Optimality Criteria (OC). Three benchmark numerical examples are investigated,
demonstrating the feasibility and efficiency of the proposed hybrid approach.

Keywords: concurrent topology optimization, hybrid, energy-based homogenization method,
gradient-free, PTO algorithm.

1. INTRODUCTION

Since the pioneering work by Bendsøe and Kikuchi [1], topology optimization has
been attracting much attention from both the academic and industrial communities. In
short, the target is to obtain a material layout that maximizes a specified performance of
a structure, under certain constraints and given loading and boundary conditions. Early,
the layout is simply described by a discrete field of (pseudo) density that takes values of
0 or 1 to represent whether an element is voided or completely filled by material [1]. In
order to overcome the numerical issues caused by the discrete description, the (pseudo)
density is then expressed as a continuous field varying from 0 to 1 [2, 3]. Together with
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that, the Solid Isotropic Material Penalization (SIMP) method is introduced, in which
a power-law scheme is applied to interpolate the material properties with respect to the
density value. Furthermore, the intermediate densities would be penalized to tend to 0 or
1 during the optimization process. Alternatively, a rational scheme, namely the Rational
Approximation of Material Properties (RAMP) [4] can be used. Instead of density-based
approaches, there exist other methods such as the level set method [5, 6] and the phase
field method [7, 8], where the equation for evolution of level set or phase field is solved
to get the representation of material layout.

Sensitivity analysis, i.e., the derivative of the objective function and the constraint
with respect to design variables, is usually required. On the contrary, a gradient-free
approach updates the design variables without sensitivity information. However, the
early gradient-free attempts that use meta-heuristic search in combination with a dis-
crete field of pseudo density (0 or 1) has been criticized for inefficiency [9]. Recently,
the Proportional Topology Optimization (PTO) algorithm has been introduced by Biyikli
and To [10] for the problem of compliance minimization. The idea behind PTO is sim-
ple: material is distributed to each element, proportionally to the contribution of that
element in the total compliance (a measure of elastic strain energy). The PTO method
has been later further extended for multi-material problems [11] and design of Reissner-
Mindlin plates [12], demonstrating its competitiveness. An improved version of PTO
was proposed by Ref. [13]. A high-resolution yet efficient approach is also achieved by
combining PTO and meshfree analysis, as reported in Ref. [14]. Besides PTO, there exist
some other interesting gradient-free algorithms such as the cellular automata [15], the
derivative-free level set method [16], and the Kriging-based material field series expan-
sion [17]. Indeed, compared to the majority of gradient-based approaches, the number of
works on gradient-free topology optimization is still very limited. Hence, further explo-
ration on this area is needed.

Recently, attraction has been paid for concurrent topology optimization of both ma-
terial and structure. In short, this is a two-scale approach, in which the structural lay-
out (macroscopic level) is determined simultaneously with the material micro-structure,
see e.g. [18–21]. The assumption would include linear elastic behavior and the periodic
repetition of micro-structure within the macro-level structure. Homogenization scheme
is employed to evaluate the effective material property. An instruction on numerical
implementation of homogenization could be found in [22]. The concept of two-scale
topology optimization has been so far employed in various types of problems, for e.g.,
design of elastic structures [18–20], heat-conductive structures [23, 24], thermo-elastic
structures [25, 26], etc. When the orientation of micro-structure and/or the existence of
multiple types of micro-structures are taken into account [21, 27, 28], attention should be
paid for the connectivity between the micro-structures [29, 30]. Designs of porous lattice
structures without material homogenization in the micro-structure were also introduced,
based on the adaptive geometric components [31–33]. However, the development so far
generally relies on gradient-based methods. To the best knowledge of the authors, at-
tempts on application of gradient-free algorithm into multi-scale topology optimization
have not been discussed in the available literatures.
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In this paper, a hybrid approach for density-based concurrent topology optimization
of multi-scale structures is proposed. A well-known gradient-based optimizer, namely
Optimality Criteria (OC) is utilized for the update of micro design variables. For macro-
scale problem, the gradient-free Proportional Topology Optization algorithm is employed,
in order to gain the computational efficiency.

The rest of the paper is organized as follows. Right after the Introduction is the
formulation of the hybrid approach for multi-scale topology optimization in Section 2.
Three numerical examples are presented and discussed in Section 3 to demonstrate the
feasibility of the proposed approach. Finally, some concluding remarks are given in Sec-
tion 4.

2. FORMULATION OF THE TWO-SCALE TOPOLOGY OPTIMIZATION

2.1. Mathematical description of the problem
The multi-scale problem being considered is sketched in Fig. 1. The goal is minimiza-

tion of the structural compliance (i.e., a measure of elastic strain energy of the macro-
structure), see Eq. (2), together with determination of the micro-structure. The micro-
structure is assumed to be periodically repeated within the macro-structure. Thus, a rep-
resentative unit cell can be considered and effective material properties can be evaluated
using homogenization technique. Mathematically, the multi-scale optimization problem
is stated as follows

Find : ρi ∈ [0, 1], ρm,j ∈ [0, 1], (i = 1, 2, 3, . . . , N) , (j = 1, 2, 3, . . . , Nm) (1)

Objective : minimize c =
∫
Ω

(ε (u))T Dε (u)dΩ = uTKu, (2)

Fig. 1. Schematic sketch of model for design of multi-scale structures
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subject to

Ku = F, (3)∫
Ωm

(ε (δum))
T Dmε (um)dΩm =

∫
Ωm

(ε (δum))
T Dmε

(
u0

m
)

dΩm, (4)

∫
Ω

ρdΩ = ∑
i

ρiVi ≤ v̄|Ω|, (5)∫
Ωm

ρmdΩm = ∑
i

ρm,iVm,i ≤ v̄m|Ωm|. (6)

Here, quantities in micro-scale are denoted with subscript “m”, while those in macro-
scale are denoted without subscript. c is the structural compliance, which should be min-
imized in the optimization process. The design variables, ρ and ρm, are pseudo densities
for macro-scale and micro-scale problems, respectively, which are defined as element-
wise constants in finite element analysis. The number of variables, N and Nm, are thus
associated with the number of elements being used for discretization of the two domains,
which in turn are denoted by Ω and Ωm. In Eq. (2), ε contains the strain components,
which are computed from displacements. The “mass constraints” in the two scales are
provided in Eq. (5) and Eq. (6), in which Vi and Vm,i are the “volume” of an arbitrary ele-
ment i (for two-dimensional domain, it is the element area) in macro- and micro-domains,
respectively. v̄ and v̄m are the required volume fractions. u, K, and F in Eq. (3), which de-
scribes equilibrium of macro-structure, are respectively the vector of nodal displacement,
the stiffness matrix and the load vector. Vector δu consist of the virtual displacements.
Eq. (4) is the equilibrium equation in the representative unit cell, arising from the energy-
based homogenization method (EBHM), which is presented in the following section.

2.2. Energy-based homogenization method
The effective macroscopic property of the material is numerically evaluated using

the energy-based homogenization method (EBHM) [20, 34], providing the link between
macro- and micro-scale problems. Within the scope of linear elasticity, homogenization
method can be applied to estimate the macroscopic effective properties of materials [35].
For higher accuracy in estimation, two further assumptions need to be fulfilled: (1) the
size of micro-structure must be much smaller than that of the bulk sample, and (2) the
micro-structure is distributed periodically within the macro-structure [20,34]. Assuming
that the micro-structure is given in a unit cell Ωm =

[
0, x0] × [

0, y0], the homogenized
elastic tensor can be written using the EBHM as follows [20, 34]

DH =
1

|Ωm|

∫
Ωm

(
ε
(
u0

m
)
− ε (um)

)T
Dm

(
ε
(
u0

m
)
− ε (um)

)
dΩm, (7)

where Dm is the locally varying elastic tensor and ε0
m is the linearly independent unit

test strain field. The strain field within the micro-structure, εm, is the solution of the
equilibrium equation with periodic boundary condition given in Eq. (4). The tensor Dm
is computed at each element (of the micro domain) using the Solid Isotropic Material
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with Penalization (SIMP) technique (see e.g. [36]) as

Dm(ρm,j) =
(

k + (1 − k)ρp
m,j

)
D0, (8)

where D0 is the elastic tensor of the base material. Here k is a small positive number to
avoid zero stiffness when ρm,j tends to 0. Parameter p is the exponent factor which helps
to penalize the intermediate densities during optimization process. In this paper, p = 3
is chosen.

2.3. Sensitivity analysis with respect to micro-scale design variables
The (macro-scale) global stiffness matrix K in Eq. (2) is assembled from the element

stiffness matrix as follows

K =
∫
Ω

(ε (δu))T Dε (u)dΩ =
N

∑
i=1

Ke,i, (9)

where N is the number of elements and the stiffness matrix of element i, Ke,i, is given by

Ke,i =
∫

Ωe,i

(ε (δu))T D(ρi) (ε (u))dΩ, (10)

in which ε is the strain tensor and D(ρi) is the elastic tensor with respect to the (pseudo)
density. Applying the SIMP technique, D(ρi) is calculated as

D(ρi) =
(
k + (1 − k)ρp

i

)
DH, (11)

where DH is the homogenized elastic tensor of the base material (see Eq. (7)).
Sensitivity analysis with respect to micro design variable ρm,j gives [20]

∂c
∂ρm,j

= −uT ∂K
∂ρm,j

u = −
∫
Ω

(ε (u))T ∂D
∂ρm,j

ε (u)dΩ (12)

in which
∂D

∂ρm,j
=

(
k + (1 − k)ρp

i

) ∂DH

∂ρm,j
. (13)

From Eq. (7), we have

∂DH

∂ρm,j
=

1
|Ωm|

∫
Ωm

(
ε
(
u0

m
)
− ε (um)

)T ∂Dm

∂ρm,j

(
ε
(
u0

m
)
− ε (um)

)
dΩm. (14)

Using Eq. (8), the derivative of tensor Dm with respect to ρm,j is computed by

∂Dm

∂ρm,j
= p (1 − k) ρ

p−1
m,j D0. (15)

The sensitivity in Eq. (12) is an integral being evaluated in the macro domain. And sen-
sitivity has to be calculated for every micro-scale design variable. This process could be
costly in terms of computer memory and computational time. The Matlab code given in
Ref. [20] is highly effective when elements (of both domains) take the shape of a square
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with unit length. However, for more general cases, when design domains with more com-
plicated shape are involved, an efficient procedure is required. It is noted that Eq. (12)
has the same form with Eq. (2), in which the elastic tensor D is replaced by the tensor
∂D

∂ρm,j
. Due to symmetry, D for two-dimensional problems can be decomposed by

D =

D11 0 0
0 0 0
0 0 0

+

 0 D12 0
D12 0 0

0 0 0

+

 0 0 D13
0 0 0

D13 0 0


+

0 0 0
0 D22 0
0 0 0

+

0 0 0
0 0 D23
0 D23 0

+

0 0 0
0 0 0
0 0 D33

 .

(16)

The same decomposition applies for
∂D

∂ρm,j
. Therefore, it is recommended to store each

element stiffness matrix (of the macro domain) by 6 parts corresponding to 6 components
of D. Once all the element stiffness matrices are evaluated, the derivative of stiffness

matrix with respect to micro-scale design variable,
∂K

∂ρm,j
, can be efficiently calculated.

It is also noticed that in Eq. (12), no sensitivity information of macro densities is
required. Hence, sensitivity analysis of micro variables is independent from that of macro
variables. In other words, the update of macro densities and the update of micro densities
can be done separately. Actually, the sensitivity information is only needed during the
update of design variables, e.g. by using the well-known Optimality Criteria (OC) [36,
37]. Therefore, sensitivity analysis of macro densities is not necessary if a gradient-free
algorithm is employed for macro-structure.

The authors are aware that currently, multiple micro-structures have been consid-
ered. However, the purpose of the current research is to demonstrate the feasibility of
introducing gradient-free approach into the two-scale topology optimization. Therefore,
we would like to keep the problem as simple as possible. Nevertheless, multiple micro-
structures will be included in future works.

2.4. The gradient-free Proportional Topology Optimization (PTO) algorithm
Originally proposed by Biyikli and To [10], the PTO algorithm is an inner loop that

distributes material into elements proportionally to the contribution of each element into
the objective function (here, the objective is the compliance of the macroscopic structure).
The flowchart that describes PTO subroutine can be seen in Ref. [38]. At the start of the
inner loop, the target amount of material (TM) is set based on the “mass constraint” (see
Eq. (5)). The density value of every element e (of the macro domain) is then distributed by

ρ̂e = RM
ce

∑ne
i=1 ciVi

, (17)
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in which Vi and ci and are the area and compliance value of element i, respectively. In
order to avoid the well-known checkerboard issue (which is characteristic to density-
based topology optimization), a filter is applied as

ρe =
∑ wejρ̂j

∑ wej
, (18)

where wej is the weight value, being evaluated based on the distance between the centers
of element e and element j. For more details, please refer to Refs. [10, 12, 38]. RM in
Eq. (17) is the remaining material, which is starting as RM = TM and is updated by
RM = RM − ∑ ρeVe. The PTO stops when RM reaches a very small value, e.g. RM =
0.001 TM. After the loop, the density values are determined by

ρt+1 = αρt + (1 − α)ρPTO. (19)

Here ρPTO is the density calculated by PTO loop. α plays the role of a coefficient that
controls how the densities in the last iteration, ρt, and ρPTO affect the densities in current
iteration, ρt+1. Obviously, α = 0 means that history values has no effect, while no update
occurs in case α = 1.

3. NUMERICAL EXAMPLES

Fig. 2. Illustration of initial designs for
macro- and micro-structure. The design do-
main for macro-structure depends on the
example being considered. The design do-
main for micro-structure in all examples is

a square domain of size 0.1 × 0.1 mm

Three benchmark examples are investi-
gated to demonstrate the feasibility of the pro-
posed approach. Without loss of generaility,
the material properties are taken as follows:
Young’s modulus E = 1 MPa and Poisson ra-
tion ν = 0.3. For finite element mesh, the four-
node quadrilateral element is used. In all ex-
amples, the unit cell for micro-structure is a
square domain of size 0.1× 0.1 mm, and is uni-
formly discretized by 60 × 60 elements.

The initial designs for macro-structure
and micro-structure are as follows (see Fig. 2
for illustration):

- Initial design for Macro-structure: the value of every design variable is assigned
equally to the volume fraction of macro-structure.

- Initial design for Micro-structure: a circular region at the center of the design do-
main is left voided, while the design variables outside the voided region are assigned
as 1.

In this paper, “the proposed hybrid approach” refers to the employment of gradient-
free PTO for macro-scale problem and the gradient-based OC for micro-scale problem.
The “complete gradient-based approach” means that OC is used for both scales, which is
based on the description in Ref. [20].

The same stopping criteria are used for the Hybrid approach and the Complete
gradient-based approach. Commonly in the literatures, it is required that the difference
(absolute value) of any arbitrary design variable between the current iteration and the
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previous iteration must not exceed a given tolerance (1 % in this paper). The requirement
is here applied for both micro- and macro-scale problems.

3.1. Cantilever beam

Fig. 3. Schematic sketch of model for design
of a cantilever beam

In this example, the design of a cantilever
beam being subject to point load at the mid-
dle point of the free end, see Fig. 3, is investi-
gated. A mesh of 60 × 30 elements is used for
the beam.

Keeping the volume fraction for the
macroscopic beam as 40%, three cases of vol-
ume fraction for the microscopic unit cell are
considered: a) 40%, b) 60% and c) 100%. As
depicted in Fig. 4, the macroscopic designs are
quite similar in all three cases, although the
compliance value decreases with respect to the increment of micro-structure volume frac-
tion, as reported in Table 1. The micro-structure is symmetric about the x- and y-axes.
When volume fraction of micro-structure is 100%, the problem is equivalent to the one-
scale problem that considers only the macroscopic structure. Indeed, the two-scale for-
mulation is an extension of the traditional compliance minimization problem, in which

Fig. 4. Topological results obtained by hybrid approach for three values of volume fraction of
micro-structure: a) 40%, b) 60% and c) 100%
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the design of cellular micro-structures is enabled. Also, it is observed in Table 1 that
the hybrid approach is more efficient, in the sense that it gives lower value of compli-
ance and lower elapsed time. The benefit gained is obviously from the utilization of the
gradient-free PTO algorithm for the macroscopic problem. The designs obtained by com-
plete gradient-based approach have similar shape with those by the hybrid method and
thus, they are not presented for brevity.

Table 1. Comparison on compliance value and elapsed time between the current hybrid and the
complete gradient-based approach

Volume fraction of micro-structure Hybrid Complete gradient-based

40%
Compliance 507.6708 551.6993

Iterations 74 115
Time [s] ∼ 718 ∼ 1316

60%
Compliance 290.0475 314.4254

Iterations 47 76
Time [s] ∼ 455 ∼ 784

100%
Compliance 87.9629 95.2080

Iterations 47 102
Time [s] ∼ 457 ∼ 1086

It is noted that in Table 1, the advantage of unit square element is not taken into
account. When that advantage is exploited, as in Ref. [20], computational time for the
problem being considered can be much reduced. However, a mesh of unit square el-
ements is generally not achievable in case of domains with complicated geometry. In
other words, the advantage (of unit square element) is no longer applicable in such cases.
This issue motivates further research on efficient numerical procedure for problems that
involve design domains with general geometrical shapes.

3.2. Curved beam
The problem of a curved beam being subject to a point load, as sketched in Fig. 5

is investigated in this example. For numerical analysis, 2500 four-node quadrilateral ele-
ments are used for discretization, see also Fig. 5.

The topological designs for macro- and micro-structures, given that both volume
fractions are 40%, are depicted in Fig. 6. It is observed that the micro-structure is not
symmetric and thus the homogenized elastic tensor clearly displays anisotropic property.
In both cases, complete gradient-based and hybrid approaches, the designs for micro-
structure are obtained by the OC algorithm. They are almost identical. However, differ-
ences are clearly observed in the macro-structure. The design by the gradient-free PTO
algorithm in the hybrid approach has less details but its performance is better (demon-
strated by lower value of compliance). Also, the elapsed time by the hybrid approach is
smaller.
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Fig. 5. a) Model, and b) The mesh of 2500 elements of the curved beam being subject to point load

Fig. 6. Topological results for the curved beam obtained by: a) Complete gradient-based ap-
proach, and b) Hybrid approach. Volume fraction is 40% for both macro- and micro-scale domains

3.3. Hollow disc being tangentially loaded
The design of a hollow disc being subject to tangential loads is considered in the third

example, as shown in Fig. 7. For numerical analysis, a uniform mesh of 6400 four-node
quadrilateral elements (40 elements along the radial direction and 1600 elements along
the circumferential direction) is employed.

A comparison between the complete gradient-based approach and the proposed hy-
brid approach is presented in Fig. 8. Again, the performance of hybrid approach is better
in terms of computational time and value of objective function. Although the two compli-
ance values are just slightly different, the macroscopic designs are distinctive, especially
in the region near the hole.
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Fig. 7. Model of the hollow disc being tangentially loaded

Fig. 8. Topological results for the hollow disc obtained by: a) Complete gradient-based approach,
and b) Hybrid approach. Volume fraction is 40% for both macro- and micro-scale domains

4. CONCLUSIONS

The hybrid approach for multi-scale topology optimization of structures is proposed
and verified in this paper. The design of macro-structure is conducted by the gradient-
free PTO algorithm. For micro-structure, a gradient-free scheme is currently not avail-
able. Therefore, the design of micro-structure still relies on the gradient-based OC tech-
nique. The sensitivity analysis of each micro-scale design variable requires an evalua-
tion of integral over the macro domain, which is costly. An efficient procedure is thus
introduced, which is suitable for domains with complicated geometry (instead of just
rectangular domains as in Ref. [20]).

Compared to the procedure that employs OC for both scales, the current hybrid ap-
proach generally offers the following advantages:

- Lower computational time;
- Lower value of structural compliance (objective function).
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The above efficiency is obviously from the application of PTO in macro-scale prob-
lem. This is consistent with the previous works [10, 12, 14].

For each particular problem, the micro-structure may be symmetric or not. Never-
theless, the homogenized elastic tensor is generally not isotropic. This would suggest the
necessity to further consider material orientation as design variables [21, 28].

The extension of PTO for the micro-structure is still an open issue. For that purpose,
it is necessary to evaluate the contribution of each micro-scale design variable in the ob-
jective function. This would be a challenging but interesting topic for future research.
Indeed, the current results would facilitate the research on Complete gradient-free ap-
proach (using PTO) for the two-scale topology optimization. It can be expected that more
benefits could be gained when PTO is employed in both micro- and macro-scale designs.
Increasing the computational efficiency when domains with complicated geometries are
involved is also an important issue to investigate.
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