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Abstract. For the resulting equation of double-curved shells, which is formed by revolu-
tion of an arbitrary in-plane meridian curve and cannot be represented analytically, there
exists no analytical approach to problem setting and solution. This paper presents the
digitalization of the meridian curve in the polar coordinate system, which forms double
number series. The double number series then can be approximated by an interpolation
function so that calculations can be performed in a similar methodology for an explicit
function. Digitalization enables the input parameters in the form of interpolation func-
tions. Procedures for the proposed selection of solution forms, formation of the kinetic
equation, and computation of coefficients for the kinetic equation from on the interpo-
lation and explicit functions are presented in the paper. The final solution is obtained by
using the program Mathematica 7.0 to solve the system of nonlinear differential equations.
Assessment of the dynamic response of the double-curved shell, especially responses with
chaotic motion, is also presented in the paper.

Keywords: closed loop multibody system, electromechanical system, singularity-free, con-
strained stabilization, post-adjusting technique.

1. INTRODUCTION

Combined or joined shells often assume the double-curved shape. The shells are
widely used in engineering, defense and space industries for application such as tanks,
aircrafts, submarines, spacecraft, rockets, . . . Shapes of the combined shells are widely
varied, and can be from conical, truncated conical, cylindrical, semi sphere depending
on the usage requirement.
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In the Ho Chi Minh City, Vietnam [1], a system of eight water towers with the shape
of trumpet shell was built. The shells were formed by combining two different inverted
truncated conical shells. The shells were subjected to hydrostatic and hydrodynamic
pressures. Empirical formulae were used in the calculation of these shells.

The natural vibration of joined triple conical containing fluid by using continuous
element method analyzed by Hien et al. [2]. Three separate equations of motion were
developed and solved for the shells which had different semi-vertex angles.

Shakouri and Kouchakzadeh [3] presented natural frequencies and mode shapes of
two joined isotropic conical shells by analytical and empirical methods and Xie et al. [4]
presented an analytic solution for free and forced vibration problem for stepwise linear
conical shells with general boundary conditions

The free vibration characteristics of laminated composite joined from conical and
cylindrical shells published by Patel et al. [5]. Kinetic equations are formulated for the
conical and cylindrical shells separately.

The variational method for the solution of the free vibration problem for joined
cylindrical-conical shells used by Qu et al. [6]. Kinetic equations are formulated for the
conical and cylindrical shells separately. Meanwhile, Kerboua and Lakis [7] used numer-
ical method to analyze the aerodynamic behavior of a combined conical-cylindrical shell.
Kinetic equations are formulated for the conical and cylindrical shells separately. Also
these authors, Kerboua and Lakis [8] presented the dynamic behavior of a rocket filled
with liquid. The rocket shell was formed by a combination of conical, cylindrical and
semi sphere shells with different radii. The kinetic equations are formulated in the form
of three separate equations for the conical, cylindrical and semi sphere shells.

Chronopoulosa et al. [9] published the solution on broadband response of a layered
conical-cylindrical-conical shell. The equations of motion are three equations for conical-
cylindrical-conical shells with different semi-vertex angles. An analytical substructure
method for the vibration analysis of conical-cylindrical-spherical combined shells in vac-
uum condition used by Chen et al. [10]. The kinetic equations are formulated in the form
of three separate equations for the conical, cylindrical and semi sphere shells.

Xie et al. [11] analyzed the free and forced vibration of ring-stiffened conical-cylindrical-
spherical shells through a semi analytic method. The kinetic equations are formulated in
the form of three separate equations for the conical, cylindrical and sphere shells. At
the same time, Moonesun et al. [12] presented an experimental analysis on the bare hull
resistance coefficient of submarine at snorkel depth. The equations of motion are four
equations for the conical-truncated conical-cylindrical-spherical shell.
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The approach adopted in this paper is to conceptualize the above mentioned com-
bined or joined shells to double-curved shells formed by an arbitrary in-plane meridian
curve, and find a solution from digitalization of input parameters. For this purpose, it is
necessary to establish the input characteristic quantities of an equation of motion, based
on the digitization of the meridian curve.

2. THE FGM ARBITRARY DOUBLE-CURVED SHELLS

2.1. Functionally graded materials (FGM)

Functionally graded material, which is often called FGM, has elastic modulus and
variable density according to the law:

E (z) = EmVm+EcVc= Em+ (Ec−Em)

(
2z + h

2h

)k

ρ (z) = ρmVm + ρcVc = ρm + (ρc − ρm)

(
2z + h

2h

)k

ν (z) = ν = const, k ≥ 0

(1)

The FGM normally consists of ceramic and metal materials for which each respective
fraction volume (k) is selected reasonably and continuously from side to side. Structures
using FGM do not often experience hot spot stresses at the interface between material lay-
ers, which may cause splitting and cracking in the material microstructure. FGM there-
fore usually has high hardness, high ductility and high thermal resistance. In practice,
FGM can be used in rocket shells and space structures. It can also be used for civil struc-
tures.

2.2. Structural model

Consider an FGM arbitrary double curved shell with thickness h, which is formed
by rotating an arbitrary in-plane curve about its axis.

According to classical shell theory and Von Karman geometric nonlinearity, the re-
lationships between the strains, bending, twisting curvatures and displacements at the
middle surface are as follows
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where ε0
ξ , ε0

θ are the normal strains, γ0
ξθ is the shear strain at the middle surface of the

shell, respectively.

Fig. 1. The arbitrary double-curved shells model in the polar coordinate system
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R0 = R sin ξ.

(3)

where χξ , χθ and χξθ are bending and twisting curvatures at the middle surface of the
shell; U is displacement in the meridian direction; V is displacement in the circumferen-
tial direction; W is displacement in the radial direction.

Assume that the in-plane curve is represented in the (ξ, R) polar coordinate system
with origin O, the distance from the origin to an arbitrary point on an in-plane curve
is called the curve radius, denoted R, the angle between R and the vertical axis passing
through O is denoted ξ, the distance from this point on the in-plane curve to the rotational
axis is denoted R0, the distance from the arbitrary point on the in-plane curve to the point
where it intersects with the rotational axis of the line perpendicular to the tangent of the
in-plane curve at the above mentioned arbitrary point, is denoted R1.

When R = R(ξ) is the function of ξ, then R0, R1 are calculated according to the
formula

R1 = R0

√
R2 + R′2/

(
R sin(ξ)− R′ cos(ξ)

)
, (4)
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in which R′ = dR/dξ, 0 ≤ ξ ≤ π.

When R = R(ξ) = const, then R′ = dR/dξ = 0 and R1 = R0/ sin(ξ).

R = R(ξ), R0 = R0(ξ), R1 = R1(ξ) are called the characteristic parameters.

Fig. 2. The double-curved shells
(as the teardrop shape)

When R is known, then R0 and R1 are also
known, according to (4). In cases where the
arbitrary double-curved shell is a combined
shell, for which the in-plane meridian curve
cannot be represented analytically formula, the
following procedure is proposed for solving
kinetic equations involving these shells.

Let us consider a arbitrary double-curved
shell, formed by a in-plane curve ACB,
rotates AB axis, go passing the points
(0, 5.908); C(π/2, 5.907); M(ξ, R); B(π, 10.976).

R(ξ) 6= 0, R0(ξ) = 0, R1(ξ) = 0 when ξ =

0, ξ = π.

In the (ξ, θ, z) polar coordinate system with origin O in the middle surface of the
shell, ξ, θ, z are displacement in the meridian, circumferential, radial direction, −h/2 ≤
z ≤ h/2.

2.3. Determination of characteristic parameters by digitilization of the meridian curve

In the case the ACB meridian curve is arbitrary, and cannot be represented by an
analytical formula, the following procedure is propose for the determination of the char-
acteristic parameters:

- Digitize the ACB meridian curve into geometrical coordinates, forming a double
number series.

- Evenly approximate the double number series into an interpolation function, so
that calculations on the interpolation function can be performed as for an explicit func-
tion.

a) For the ACB meridian curve, it is possible to set up the double number series of geo-
metrical coordinates (ξ, R).

list={{0,5.90897},{0.0649777,5.90958},{0.132254,5.91059},{0.195582,5.91047},
{0.280464,5.90973},{0.371283,5.90906},{0.433353,5.90886},{0.497255,5.90881},
{0.587523,5.90891},{0.675951,5.90898},{0.766849,5.90898},{0.851104,5.90894},
{0.949757,5.90891},{1.0494,5.90897},{1.1252,5.90897},{1.19354,5.90899},
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{1.24661,5.90899},{1.3153,5.90888},{1.37959,5.90876},{1.45888,5.90882},
{1.54026,5.90889},{1.5708,5.90786},{1.61311,5.904},{1.67338,5.89488},
{1.72718,5.88516},{1.77877,5.87619},{1.84242,5.86781},{1.9039,5.86494},
{1.94151,5.86678},{2.00821,5.87876},{2.07057,5.90228},{2.15489,5.95585},
{2.23341,6.03095},{2.31172,6.13351},{2.38915,6.26621},{2.44201,6.37738},
{2.52024,6.57742},{2.58733,6.78778},{2.65771,7.05398},{2.70281,7.25337},
{2.74161,7.44578},{2.78567,7.6912},{2.8419,8.05273},{2.89255,8.4335},
{2.93024,8.75725},{2.98845,9.34354},{3.03023,9.86392},{3.04787,10.1238},
{3.05755,10.2781},{3.06938,10.4686},{3.08002,10.6275},{3.08789,10.7259},
{3.09755,10.8212},{3.10809,10.8972},{3.11789,10.9436},{3.12903,10.9688},
{ξ,10.9767}}.

Evenly approximate the “list” double number series, set up interpolation function
by command in Mathematica 7.0:

R(ξ) = Interpolation [list, ξ]

R(ξ) = InterpolatingFunction[{{0, 3.14159}},<>][ξ]
(5)

b) For R0 = R(ξ) sin(ξ), it is possible to set up the double number series of geometrical
coordinates (ξ, R0).

data={{0,0},{0.0649777,0.383721},{0.132254,0.779422},{0.195582,1.14863},
{0.280464,1.63582},{0.371283,2.14388},{0.433353,2.48122},{0.497255,2.81859},
{0.587523,3.27531},{0.675951,3.69689},{0.766849,4.10006},{0.851104,4.44358},
{0.949757,4.80556},{1.0494,5.12381},{1.1252,5.33199},{1.19354,5.49346},
{1.24661,5.60119},{1.3153,5.71708},{1.37959,5.80108},{1.45888,5.87186},
{1.54026,5.90613},{1.5708,5.90786},{1.61311,5.89871},{1.67338,5.86389},
{1.72718,5.81334},{1.77877,5.74956},{1.84242,5.65268},{1.9039,5.54256},
{1.94151,5.46824},{2.00821,5.32527},{2.07057,5.18037},{2.15489,4.96844},
{2.23341,4.75474},{2.31172,4.52559},{2.38915,4.28249},{2.44201,4.10637},
{2.52024,3.82896},{2.58733,3.57252},{2.65771,3.28165},{2.70281,3.08147},
{2.74161,2.8994},{2.78567,2.68005},{2.8419,2.3774},{2.89255,2.07862},
{2.93024,1.83712},{2.98845,1.42534},{3.03023,1.09616},{3.04787,0.947415},
{3.05755,0.862824},{3.06938,0.755321},{3.08002,0.653971},{3.08789,0.57572},
{3.09755,0.476487},{3.10809,0.365009},{3.11789,0.259418},{3.12903,0.13774},
{ξ,0}}.

Evenly approximate the “data” double number series set up interpolation function
by command in Mathematica 7.0

R0(ξ) = Interpolation [data, ξ]

R0(ξ) = InterpolatingFunction[{{0, 3.14159}},<>][ξ]
(6)
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c) For R1 = R0

√
R2 + R′2/

(
R sin(ξ)− R′ cos(ξ)

)
, it is possible to set up the double num-

ber series of geometrical coordinates (ξ, R1).

table={{0,1.34482×1014,{0.0649777,6.16569},{0.132254,5.98688},
{0.195582,5.87599},{0.280464,5.87589},{0.371283,5.89534},{0.433353,5.90457},
{0.497255,5.90928},{0.587523,5.91108},{0.675951,5.90952},{0.766849,5.90867},
{0.851104,5.90856},{0.949757,5.90887},{1.0494,5.90927},{1.1252,5.90898},
{1.19354,5.90906},{1.24661,5.90885},{1.3153,5.90837},{1.37959,5.90853},
{1.45888,5.90897},{1.54026,5.90841},{1.5708,5.90811},{1.61311,5.9103},
{1.67338,5.91537},{1.72718,5.91693},{1.77877,5.91253},{1.84242,5.89525},
{1.9039,5.862},{1.94151,5.83209},{2.00821,5.75929},{2.07057,5.66947},
{2.15489,5.5213},{2.23341,5.35493},{2.31172,5.15818},{2.38915,4.93052},
{2.44201,4.75469},{2.52024,4.46402},{2.58733,4.18547},{2.65771,3.85976},
{2.70281,3.63032},{2.74161,3.41827},{2.78567,3.15992},{2.8419,2.80173},
{2.89255,2.44744},{2.93024,2.15962},{2.98845,1.65912},{3.03023,1.25092},
{3.04787,1.06786},{3.05755,0.974476},{3.06938,0.868067},{3.08002,0.790277},
{3.08789,0.75436},{3.09755,0.729609},{3.10809,0.723564},{3.11789,0.779872},
{3.12903,1.06505},{ξ,0.}}.

Evenly approximate the “table” double number series set up interpolation function
by command in Mathematica 7.0

R1(ξ) = Interpolation [table, ξ]

R1(ξ) = InterpolatingFunction[{{0, 3.14159}},<>][ξ]
(7)

The input characteristic quantities R = R(ξ), R0 = R0(ξ), R1 = R1(ξ), when partici-
pating in the calculation are given as follows:

With R(ξ), for the “list” double number series and the formula (5).

With R0(ξ), for the “data” double number series and the formula 6).

With R1(ξ), for the “table” double number series and the formula (7).

2.4. Observations

a) In the (ξ, R) polar coordinate system, according to [13]

ds2 = dR2 + R2dξ2, tan µ = R/
dR
dξ

,

where ds is differential length, µ is angle between tangent to curve R = R(ξ).

Formula (4) is established based on these formulas at the [13].

b) To computation the “list” double number series, follow these two steps:
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- Use an exclusive command in AutoCAD to automatically display the geometrical
coordinates on an in-plane curve in the in-plane coordinates.

- Use an exclusive command in Mathematica 7.0 for the double number series in the
in-plane coordinates to convert to the double number series in polar coordinate system,
which is named “list”.

c) To computation the “data” double number series and “table” double number series,
based on “list” double number series and the formulas for determining R0, R1.

3. THE EQUATION OF MOTION

In this study, the classical shell theory and Von Karman geometric nonlinearity were
used to obtain the equation of motion and the nonlinear dynamic response of the FGM
double-curved shells (as the teardrop shape).

The stress-strain relations of the FGM teardrop-shaped double-curved shells includ-
ing the thermal effect are defined by the Hooke law

σξ =
E (z)

1− ν2

[
ε0

ξ + νε0
θ − z

(
χξ + νχθ

)]
− E (z) α (z)∆T (z)

1− ν
,

σθ =
E (z)

1− ν2

[
ε0

θ + νε0
ξ − z

(
χθ + νχξ

)]
− E (z) α (z)∆T (z)

1− ν
,

σξθ =
E (z)
1 + ν

(
γ0

ξθ − zχξθ

)
.

(8)

Environment temperature is assumed to be uniformly raised from initial value Ti, at
which the shell is thermal stress free, to final one Tj and temperature change ∆T = Tj− Ti

is independent to thickness variable.

Suppose the shell has thickness varying on the meridional direction, i.e. h = h(ξ),
the force and moment resultants of the FGM teardrop-shaped double-curved shells are
expressed in term of the stress components through the thickness as

(
Nij, Mij

)
=

h/2∫
−h/2

σij [1, z]dz, (ij = ξ, θ, ξθ) . (9)

Introduction of Eq. (8) into Eq. (9) gives the constitutive relations as

Nξ =
E1h

1− ν2

(
ε0

ξ + νε0
θ

)
− E2h2

1− ν2

(
χξ + νχθ

)
− Φ0

1− ν
,

Nθ =
E1h

1− ν2

(
ε0

θ + νε0
ξ

)
− E2h2

1− ν2

(
χθ + νχξ

)
− Φ0

1− ν
,

Nξθ =
E1h

2 (1 + ν)
γ0

ξθ
− E2h2

1 + ν
χξθ

.

(10)
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Mξ =
E2h2

1− ν2

(
ε0

ξ + νε0
θ

)
− E3h3

1− ν2

(
χξ + νχθ

)
− Φ1

1− ν
,

Mθ =
E2h2

1− ν2

(
ε0

θ + νε0
ξ

)
− E3h3

1− ν2

(
χθ + νχξ

)
− Φ1

1− ν
,

Mξθ =
E2h2

2 (1 + ν)
γ0

ξθ
− E3h3

1 + ν
χξθ

.

(11)

where
(
E1h, E2h2, E3h3) = h/2∫

−h/2

E (z)
(
1, z, z2)dz, in which

E1 = Em +
Ec − Em

κ + 1
, E2 =

(Ec − Em) κ

2 (κ + 1) (κ + 2)
,

E3 =
Em

12
+ (Ec − Em)

(
1

κ + 3
− 1

κ + 2
+

1
4κ + 4

)
,

(12)

and

(Φ0, Φ1) =

h/2∫
−h/2

E (z)α (z)∆T (z) [1, z]dz. (13)

The nonlinear equation of motion of the teardrop-shaped double-curved shells based
on classical shell theory is given by

R0
∂Nξ

∂ξ
+ R

∂Nξθ

∂θ
+

∂R0

∂ξ

(
Nξ − Nθ

)
− ρ1RR0

∂2U
∂t2 = 0, (14)

R
∂Nθ

∂θ
+ R0

∂Nξθ

∂ξ
+ 2

∂R0

∂ξ
Nξθ − ρ1RR0

∂2V
∂t2 = 0, (15)

1
R2

∂2Mξ

∂ξ2 +
2

RR0

∂2Mξθ

∂ξ∂θ
+

1
R2

0

∂2Mθ

∂θ2 +
2

R2R0

∂R0

∂ξ

∂Mξ

∂ξ

− 1
R2R0

∂R0

∂ξ

∂Mθ

∂ξ
+

1
RR2

0

∂R0

∂ξ

∂Mξθ

∂θ
+

1
R2R0

∂2R0

∂ξ2

(
Mξ −Mθ

)
+

Nθ

R1
+

Nξ

R
+ Nξχξ + 2Nξθχξθ + Nθχθ + q− ρ1

∂2W
∂t2 − 2ρ1ε

∂W
∂t

= 0.

(16)

in which q is an external pressure load uniformly distributed on the outer surface of the
shell,

ρ1 =

h/2∫
−h/2

ρ (z)dz,

ρ (z) is calculated according to the formula (1), ρ1 = (ρm +
ρc − ρm

κ + 1
)h, ε is the damping

coefficient.
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The FGM teardrop-shaped double-curved shells are assumed to be fixed along the
meridian direction, for which the boundary conditions are

U = V = W = 0,
∂W
∂ξ

= 0 when ξ = 0, ξ = π. (17)

4. THERMAL LOADS

Environment temperature is assumed to be uniformly raised from initial value Ti to
final one Tj and temperature variation ∆T = Tj − Ti is independent to thickness. In this
case, the thermal parameters Φ0, Φ1 can be expressed

Φ0 = φ0∆Th, Φ1 = φ1∆Th2, (18)

where

φ0 = Emαm +
1

κ + 1
(Emαcm + Ecmαm) +

1
2κ + 1

Ecmαcm,

φ1 =

(
1

κ + 2
− 1

2κ + 2

)
(Emαcm + Ecmαm) +

(
1

2κ + 2
− 1

4κ + 2

)
Ecmαcm.

(19)

In this case, the temperature through the thickness is governed by the one dimen-
tional Fourier equation of steady-state heat conduction established in curvilinear coordi-
nate system whose origin is the center of the teardrop shell (in the Fig. 2).

5. THE RESULTING EQUATIONS BASED DISPLACEMENT

5.1. The preselected solutions

The FGM teardrop-shaped double-curved shells has two singularities, which are
points with R0(ξ) = 0, at ξ = ξ0 = 0, ξ = ξ1 = π, therefore, singular integrals may
appear in the coefficient calculation for the kinetic equations. The preselected solutions
must satisfy the boundary conditions, so that the singular integrals will converge and
become computable. In addition, the preselected solutions must contain hidden function
dependencies t, which can be determined during the solution process.

U = u sin
mπ(ξ − ξ0)

α0
sin

nθ

2

V = v sin
mπ(ξ − ξ0)

α0
cos

nθ

2

W = w sin2 mπ(ξ − ξ0)

α0
sin

nθ

2


(20)

in which α0 = ξ1 − ξ0; u, v, w are hidden funtions, with dependency t.
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Using the preselected solutions (20), satisfied the boundary conditions, we have the
integrals to calculate the coefficients of the solution equations being converge and singu-
lar as

U = V = W = 0 when ξ = ξ0 = 0, ξ = ξ1 = π,
∂W
∂ξ

= 0 when ξ = ξ0 = 0, ξ = ξ1 = π.

5.2. The resulting equations

To set up the resulting solutions based displacements, replacing Eq. (20) in Eqs. (2),
(3), substituting the found strains into the corresponding expressions, we have the force
and the moment resultants. The force and moment resultants are substituted into Eqs.
(14), (15), (16) to get three equations containing u, v, w, ξ, θ, t. Applying the Galerkin
method to convert the differential equation of motion in the form of partial differential to
the ordinary differential, we get

α11u + α12v + α13w + α14w2 − au′′ = 0,

β11u + β12v + β13w + β14w2 − bv′′ = 0,

λ11u + λ12v + λ13w + λ14w2 + λ21uw + λ22vw + λ23w3 + m1∆Tφ0w

+ m2∆Tφ0 + m3q−m4w′ − cw′′ = 0,

(21)

where: αij, βij, λij, mi, a, b, c are constants; φ0 is the thermal parameter, considered here as
in the case of uniform thermal transfer and in the case of thermal transfer through the
thickness; q = q (t) is a harmonic load.

6. EXAMPLE

Investigate the dynamic response of the FGM teardrop-shaped double-curved shell
of revolution with constant thickness as Fig. 2, subject to uniform thermal load and dis-
tributed harmonic load, with κ = 3, 0 ≤ ξ ≤ π, 0 ≤ θ ≤ 2π. The characteristic parameters
of the shell: R = R(ξ), R0 = R(ξ) sin(ξ), R1 = R1 = R0

√
R2 + R′2/

(
R sin(ξ)− R′ cos(ξ)

)
,

according to Section 2.3. The input data given in the SI are as follows:

Em = 70.109 N/m2, Ec = 380.109 N/m2, ρm = 2702kg/m3, ρc = 3800 kg/m3, κ = 3,

ν = 0.3, h = 0.018 m, m = 3, n = 1, ρ1 = [ρm + (ρc − ρm) / (κ + 1)] h, q = Q cos [ωt] ,

αm = 23.10−6 0C−1, αc = 7.4.10−6 0C−1, Km = 204 W/mK, Kc = 10.4 W/mK,

φ0 = Emαm +
1

κ + 1
(Emαcm + Ecmαm) +

1
2κ + 1

Ecmαcm,

φ1 =

(
1

κ + 2
− 1

2κ + 2

)
(Emαcm + Ecmαm) +

(
1

2κ + 2
− 1

4κ + 2

)
Ecmαcm.
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With the above input data, after applying the program automatically calculate the
coefficients of the resulting equation (15). Eq. (15) has the form:

-3.669660120341877×1010 u[t]+2.923862676648991×108 w[t]+9.468902703961835

×107 w[t]2-188.08106641091916 ro1*u′′[t]==0

-5.463981860570105×1010 v[t]+6.281564792003205×1010 w[t]-1.161251563614549

×109 w[t]2-188.08106641091916 ro1*v′′[t]== 0

2.67171698248182 q-1.494969450673264×107 u[t]+2.134768974881463×109 v[t]

-5.919802087392517×109 w[t]+7407511.373038583 u[t]*w[t]-3.080572966132525

×108 v[t]*w[t]+7.564727344231719×108 w[t]2-9.816228016791746×108 w[t]3

-0.022843735714297597∆T*φ 0+0.053460156519092084 w[t] * ∆T * φ 0

-36.23386685849541 ε*ro1*w′[t]- 18.116933429247705 ro1*w′′[t]==0

Case 1:

φ0 = 4.81357.106, ro1 = 53.577, ε = 12.4, ∆T = Tc − Tm = −10, Q = 106, ω = 2.4.

With the initial condition: u(0) = v(0) = w(0) = 0, u′ (0) = v′ (0) = w′ (0) = 0.

Apply Mathematica 7.0 program to solve the nonlinear differential equation system,
we have.

  
Fig. 3. Amplitude u(t) varies at time t(0, 0.24)              
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Fig. 3. Amplitude u(t) varies at time t(0, 0.24)
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Fig. 5. Amplitude v(t) varies at time t(0, 0.24)    
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Fig. 7. Amplitude w(t) varies at time t(0, 0.24)                  

  Fig. 7. Amplitude w(t) varies at time t(0, 0.24)
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Fig. 8. Phase plan w′ (t)− 500w (t)

The maximum value of displacements varies at the t(0, 0.64).

u = 8.72641.10−6 m, v = 0.000916314 m, w = 0.000606869 m.

Value of displacement bounded over time t; u have signs of chaotic motion, the phase
curves intersected complex, v, w vibrate with small amplitudes in groups, not harmonic
vibration, vibrate with decreasing amplitudes.

Case 2:

φ0 = 4.81357.106, ro1 = 53.577, ε = −0.8, ∆T = Tc − Tm = 85.6, Q = 106, ω = 2.4.

With the initial condition: u(0) = v(0) = w(0) = 0, u′ (0) = v′ (0) = w′ (0) = 0.

Apply Mathematica 7.0 program to solve the nonlinear differential equation system,
we have.
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Fig. 9. Amplitude u(t) varies at time t(0, 0.064)         
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Fig. 10. Phase plan u′ (t)− 5000u (t)

The maximum value of displacements varies at the t(0, 0.64).

u = 0.000036486 m, v = 0.00215424 m, w = 0.000214712 m.
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Fig. 12. Phase plan v′ (t)− 500v (t)
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Fig. 13. Amplitude w(t) varies at time t(0, 0.064)           
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  Fig. 14. Phase plan w′ (t)− 500w (t)

The value of the displacement increases with time t; u, v, w show signs of chaotic
motion, the phase curves intersected, arranged in the cross loops, not harmonic vibration,
vibrated with bounded amplitudes.

Discussion: Because the corresponding published works could not be found for com-
parison. The reliability of the algorithm and the calculation program can be illustrated
by choosing a simple structure that is the spherical shell, constant thickness, subjected
to mechanical - thermal loads, and solved by two methods: meridian curve digitaliza-
tion and analytical methods. The results of Eq. (21) by these two methods are completely
coincidental, the method of meridian curve digitalization solves the problem of double-
curved shells with arbitrary meridian curve, and the analytical method is are not. That is
the reason proposed method of meridian curve digitalization presented in this paper.

7. CONCLUSIONS

In this paper, the followings are presented and discussed:

- Seting up the resulting equation, solving the problem of nonlinear dynamics of the
FGM teardrop-shaped double-curved shell with constant thickness, subject to thermal
load and harmonic load.
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- Proposing a method for setting the characteristic parameters for the double-curved
shell with arbitrary meridian curve for using in the calculation of the coefficients of the
solution equation.

- Proposing preselected solutions, such that the fixed boundary conditions can be
satisfied, and the singular integrals converge and are computable.

- Found the dynamic response, including the dynamic response at singular points,
shown observation on special signs of the dynamic response.

- The method of setting characteristic parameters by digitizing the meridian curve
can be applied to solve a wider range of problems for combined shells in general.
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