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Abstract. This study promotes a new algorithm for estimating the water pollution prop-
agation with the primary goal of providing more reliable and high quality estimates to
decision makers. To date, the widely used variational method suffers from the large com-
putational burden which limits its application in practice. Moreover, this method, con-
sidering the initial state as a control variable, is very sensitive in specifying initial error,
especially for unstable dynamical systems. The adaptive filter (AF), proposed in this pa-
per, is aimed at overcoming these two drawbacks in the variational method: by its nature,
the AF is sequential (no large batch assimilation window used) and stable even for un-
stable dynamics, with the gain parameters as control variables. The AF, developed in this
paper, is an adaptive version of the Singular Evolutive Interpolated Kalman Filter (SEIKF).
One of the new versions of this AF is that it uses a time-varying structure of the gain of
SEIKF. To deal with the uncertainty of the system parameters and of the noise covariance,
the proposed adaptive SEIKF (ASEIKF) makes use of the covariance of reduced rank iter-
ated during assimilation process and of some pertinent gain parameters tuned adaptively
to yield the minimum prediction error for the system output. The computational burden
in implementation of the ASEIKF is reduced drastically due to applying the optimization
tool known as a simultaneous perturbation stochastic approximation algorithm, which re-
quires only two integrations of the numerical model. No iterative loop is required at each
assimilation instant as usually happens with the standard gradient descent optimization
algorithms. Data assimilation experiment, carried out by the SEIKF and ASEIKF, is imple-
mented for the Thanh Nhan Lake in Hanoi and the performance comparison between the
ASEIKF and SEIKF is given to show the high effectiveness of the proposed ASEIKF.
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1. INTRODUCTION

Kalman filter (KF) [1] is a very useful and efficient algorithm for computing the op-
timal state estimate of the dynamic system (DS) that uses measurements observed over
time. The KF is optimal only if the filtering problem at hand is linear and all the system
parameters and statistics of the entering random variables (initial condition, model and
observation errors, ...) are known exactly. Inaccuracies of the system parameters and of
the noise statistics can lead to a poor performance or even to divergence of the KF.

For data assimilation (DA) problems in geophysical systems (GEO-PhyS), described
by systems of partial differential equations, there are two great difficulties, one (D1) con-
cerns a high dimension (HD) of the discretized numerical models and the other (D2) -
uncertainties of the system parameters and noise statistics.

There are many approaches to overcome D1 which all are based on a model reduc-
tion technique. Due to very high dimensions of the error covariance matrices (ECM) in
the KF, in the Ensemble KF (EnKF) [2], for example, the ECM is approximated and repre-
sented by an ensemble of model states of the size ne. The KF formalism then is applied to
construct the EnKF. As the integration of the numerical model is very expensive in high
dimensional GEO-PhySs, in practice the ensemble size ne is limited to be of the order
O(100) which is much less than the dimension of the original system dynamics (typically
of order 107 − 108). It means that a possible maximal rank of the ECM is only equal to
ne. This can lead to missing a lot of the important directions of the system state and to
instability of the EnKF. However, due to the simplicity of this concept and relative ease of
its implementation (no derivation of a tangent linear operator (TL) or adjoint equations
(AE) and no integration backward in time), the EnKF finds its popularity in the solution
of DA problems.

Another approach, known as a Singular Evolutive Extended Kalman filter (SEEK),
is proposed in [3]. The idea, behind this filter, is to view the ECM as singular with a low
rank ne << n. The correction in the filter is projected onto certain directions forming
a linear subspace of dimension ne (Empirical Orthogonal Functions). The other version
known as a SEIKF (Singular Evolutive Interpolated Kalman Filter) [4] replaces the lin-
earization in the SEEK by an interpolation which could reduce the errors for the large
deviations. The SEIKF operates in three steps: resampling, forecasting, and assimilation.
Unlike the EnKF, where the members of the model ensemble are operated by forecasting
and assimilation, in the SEIKF, the members of the model ensemble are selected in the
main orthogonal directions of a functional space described by an approximation to the
ECM. This enhanced sampling strategy, embedded into the resampling step, and possibly
improves the filter stability and delivers rapid convergence. Thus, with the resampling
step, the SEIKF is partly trying to overcome the D2, to deal with the uncertainties in the
model error statistics. However, no any theoretical proof of stability of the SEIKF has
been established.

The adaptive filter (AF), proposed in [5], is designed for overcoming the two diffi-
culties D1 and D2 mentioned above. Here, the correction is found in a linear subspace
spanned by the most growing directions of the system dynamics (all unstable and neu-
trally stable directions). The choice of such directions is crucial since it allows to ensure
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a stability of the designed filter. Mention that the number ne of such directions is usu-
ally much less than the dimension of the system state in the GEO-PhySs, i.e. ne << n.
In terms of filter’ stability, the different parameterized stabilizing structures of the filter
gain are given in [6].

It is well known that the noise covariance uncertainties in the KF enter through the
associated non-linear matrix Riccati equations. It makes a lot of problems concerning
the identifiability of the unknown noise covariance as well as analysis of stability of the
KF. As the final objective of the identification of covariance uncertainty is to approach
as precisely as possible to the optimal filter gain, in an adaptive filter a direct searching
the optimal gain is formulated with the objective to minimize the MPE (mean prediction
error) of the system output. Introducing a parameterized stabilizing gain structure, the
AF avoids the divergence and instability problems in the filter.

Mention that in the AF the control variables are chosen from some pertinent elements
of the filter gain and they are turned during the assimilation process in order to minimize
the MPE of the innovation, i.e. of the signal between the predicted output of the filter and
the observation. As the filter adapts its gain parameters, the mean square error (MSE) of
the system output converges to its minimal value. The filter output is then said to match
as closely as possible to the desired signal - the observation.

In this paper the data assimilation for estimation of the water pollution, considered
in [7], will be solved on the basis of the SEIKF and its adaptive version, i.e. adaptive
SEIKF (ASEIKF).

The main objective of this paper is to demonstrate that by considering the SEIKF
as a non-adaptive version one can improve considerably its performance by introduc-
ing the adaptive mechanism developed in [8]. Mention that in the SEIKF, the ECM is
approximated using the Riccati-like matrix equations, but done in a reduced space. The
pertinent parameters in the filter gain are tuned to better balance the uncertainty in the
predicted estimate and that of the innovation vector - the difference between the mea-
surement and its predicted estimate. As the SEIKF is approximate due to the introduced
reduced-space in the Riccati-like equations, the adaptation mechanism, proposed in this
paper, is aimed at compensating the error introduced by reduced-order approximation.
In this paper, first some theoretical aspects of the AF as well as the SEIK are outlined. The
2D hydraulic and pollution models are described and will be used to solve the transport
problem related to pollution substances. We remark that the linear 2D water pollution
problem has been studied by the semi-group methods in [9] and a unique existence of the
solution has been also given. The nonlinear 2D-Imech water pollution model has been
studied in [7]. This model allows to simulate the transport of pollution substance and
thus can be used to estimate the pollution level if the initial values for the model equa-
tions are known and the model parameters are adequately specified. Since in practice
the initial values are unknown or poorly given, one simple way is to use their estimates
is to simulate a long run of the model and compute its average values and covariances.
As these values are (not optimal) only the estimates for the initial state and the model is
always imperfect with the parameters not adequately specified, the error level becomes
larger and larger as time progresses. Data assimilation techniques allow to combine the
available measurements with the numerical model to produce more precise estimates for
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the system state when the assimilation process advances in time. By applying the AF
approach [8], an associated optimization problem will be solved for minimizing the MPE
of the system output. As a result one obtains the optimal parameters of the gain. The
algorithm is greatly simplified if the SPSA algorithm is used [10]. Mention that the tra-
ditional approach to adaptive KF is dealing with direct estimating the unknown model
and observational covariance matrices Q, R (see [11]).

2. FORMULATION OF THE 2D WATER POLLUTION PROBLEM

The study on a water pollution in this paper is based on the 2D surface flow model
which is useful to understand and predict the flow. In order to predict and simulate
the system behavior, a mathematical model with the initial and boundary conditions is
established using the Saint-Venant partial differential equations (cf., [12])
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In (1)–(3) Ω, divided by nΩ elements, is a bounded domain of R2 with the boundary
∂Ω, zb is the bottom elevation, h = z − zb is the water depth, and z is the free surface
elevation. Further, u is the average velocity in the x direction, v is the average velocity in
the y direction, g is the gravity acceleration, Kx and Ky are the Strickler coefficients in the
x and y directions, respectively.

The pollutant concentration satisfies the equation (see [13])
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)
, C = C(x, y, t) is the pollutant concentration at the time instant

t which is an element of the Hilbert spaceRC = L2(Ω), with the initial condition C(0) =
V ∈ RC, K is the conversion coefficient, S = S(x, y) is the pollution function source in
fluid, η is the diffusion coefficient.

The initial conditions for Z = (h, u, v)T and C are

Z|t=0 = (h(x, y, 0), u(x, y, 0), v(x, y, 0))T = U, C(x, y, 0) = V,

and the boundary conditions:
(i) U ·~n = Ūin(t) ∈ H1(Γ1), C(x, y, t) = C̄in(t) on the inflow boundary Γ1;

(ii) h(x, y, t) = h̄(t) ∈ H1(Γ2),
∂C
∂~n

= 0 on the outflow boundary Γ2;

(iii) U ·~n = 0,
∂C
∂~n

= 0 on the solid wall Sw, where U = (u(x, y, t), v(x, y, t)), ∂Ω =
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Γ1 ∪ Γ2 ∪ Sw is the boundary of the domain Ω, ~n = (nx, ny) is the unit normal vector
to ∂Ω.

Eqs. (1)–(4) with the boundary and initial conditions are rewritten as follows (cf. [14])
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The problem we are interested in is to retrieve the fields from the observations Y =
(Zobs, Cobs) ∈ R

p
Z,C.

3. STATE-SPACE NUMERICAL DYNAMIC MODEL

The most advantage of the well-known Kalman filter (KF) is that it is written for
the input-output systems in a state-space form. This allows the solution of the KF to
be presented directly in a recursive (in time) algorithmic procedure, easy to realize in
modern computers. In this paper, we will follow a state-space approach to represent a
numerical solution of the pollution model which is in accordance with the formalism of
the SEIKF and the AF.

By applying temporal and spacial difference schemes to the continuous equations
(5), (6) on obtains a discrete numerical model with the state X(k) at time instant k := tk
composed from all values of the variables (Z, C). The solution of the numerical model
can be represented in a discrete state-space form where (k + 1 := tk + ∆T symbolizes the
next assimilation instant and ∆T is the time distance between two moments of arrival of
two successive observations). Mention usually ∆T = naδt where δt is a sampling model
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time step chosen to ensure a precision and stability of the numerical scheme used, na is a
positive integer number.

X(k + 1) = ΦX(k) + w(k), k = 0, 1, . . . (7)

where X(k) = (Z(k), C(k)) ∈ Rn
Z,C. The vector w(k) represents a model error (difference

between the solution of the continuous and discrete models), Φ is (may be nonlinear)
function modeling the transition of the system state from the time instant k to k + 1. It is
supposed that at each moment k + 1 we are given the observations

Y(k + 1) = HX(k + 1) + v(k + 1), k = 0, 1, . . . (8)

where H : Rn
Z,C ⇒ R

p
Z,C is some (possibly nonlinear) function and v(k) ∈ Rp

Z,C is the
measurement noise. Mention that the operator H may be non-linear. In this paper, the
vector Y(t+ 1) ∈ Rp

Z,C consists of observations available only at certain points in the area
of interest, hence H is a known linear operator. It is assumed that the vectors w(k), v(k),
are independent random variables of zero mean and covariance matrix Q(k) and R(k)
respectively. The objective of this paper is to estimate, as precisely as possible, the state
X(k+ 1) of the system based on the ensemble of measurements Y[0 : k+ 1] := [Y(τ), t0 ≤
τ ≤ tk + 1].

4. ADAPTIVE FILTER

Theoretically the KF is the optimal linear filter in cases where (i) the model matches
the real system perfectly, (ii) the entering noise is “white” (uncorrelated), and (iii) the co-
variances of the noise are known exactly. If the second condition is, generally speaking,
may be satisfied in practice (for the correlated noise, there exist the methods to it whiten-
ing), contrary, the first (i) and the third condition (iii) practically never hold. This leads
to a non-optimality of the estimates produced by the KF.

The second disadvantage of the KF concerns its stability. As the transition matrix
of the KF depends on the solutions of the matrix non-linear algebraic Riccati equations
(AREs), a stability of the KF depends on the solutions of the AREs. However, analysis of
the solution of the ARE is very complicated and there is no guarantee that the resulting
filter is stable. Moreover, we do not know exactly the system parameters and the noise
statistics.

Mention that all the drawbacks of the KF are also those of the SEIKF. Moreover, in
the SEIKF, a subspace of the covariance matrix is introduced which makes the problem
of analysis of the filter stability more difficult.

The AF in [6] is designed to overcome the above difficulties. A parameterized struc-
ture of the AF is chosen a-priori in such a way to ensure a stability of the filter which
does not depend on the solution the ARE. Hence the AF in some sense is free from the
spec- ification of the solution of the ARE. Its optimality is always achieved by adjusting
some pertinent parameters of the filter gain. Mention that the objective function in the AF
is quite different from what in the KF: If the KF is optimal in the probabilistic sense (the
minimum mean-square-error (MMSE) - MMS of the difference between the state estimate
and the true system state), in the AF the minimization is done in the space of realisations
(MMS of the difference between the observation and the prediction of the filter output,
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i.e. of the innovation). Since the true system state in never known, its produced esti-
mate may be non-optimal if we do not know, for example, the noise covariances since
then the objective function is unknown or poorly defined. As for the AF, one replaces
a minimization in the probability space by minimization in the space of realizations by
assuming the ergodicity: the average behavior of the system can be deduced from the
trajectory of a point. It means that a sufficiently large collection of random samples from
a process can represent the average statistical properties of the entire process. Using this
property, in the AF, the optimization is done on the basis the stochastic optimization (SA)
algorithm which uses the samples of the objective function: meanwhile the samples of
the difference between observation and prediction of the filter output are always known
and calculated at each assimilation instant.

Let X̂(k) ∈ Rn
Z,C be a posteriori state estimate at the time instant k given Y[0 : k].

Introduce the following class of filters for solving the filtering problem (7)-(8)

X̂(k + 1) = ΦX̂(k) + K(k + 1)ζ(k + 1), (9)

where Φ is the transition matrix,

ζ(k + 1) = Y(k + 1)− HX̂(k + 1/t), (10)

here X̂(t + 1/t) = ΦX̂(t), H is a known observation operator, X̂(k + 1/t) is a one step
predictor for X(k + 1), K(k + 1) is an (n× p) gain matrix.

It is well known that under standard ergodic conditions, relative the joint process
(X(k), Y(k)), after some transition period the gain K(k) becomes a constant K(∞). In [6]
it is proposed to search an optimal gain K as a solution to the following optimization
problem 

J[K]→ minK

J[K] = E[Ψ(ζ(k)]

Ψ(ζ(k) =< ζ(k), ζ(k) >Σ= ζT(k)Σζ(k)

(11)

In (11) E(.) denotes the mathematical expectation, ζT is the transpose of ζ, Σ is a weight
matrix which is symmetric, non-negative, definite. The AF thus is optimal in the MPE
(Minimum Prediction Error) sense since ζ(t) is a one step prediction error for the system
outputs. For simplicity, in the further, let Σ = I where I is the identity operator.

Due to the stochastic character of the gain estimate, instability of the resulting filter
may happen during the optimization process. To avoid such instability, it is proposed
to choose a parameterized structure for the gain, i.e. K := K(θ). The optimal filter is
obtained by solving the following optimization problem

J[K]→ min
θ

E[Ψ(ζ(k))], Ψ(ζ(k)) := ||ζ(k)||2,

ζ(k) = Y(k)− HΦX̂(k− 1) = Y(k)− HΦ[X̂(k− 1/k− 2) + K(θ)ζ(k− 1)].
(12)

In (12), Ψ(ζ(k)) is a sample cost function. As seen from the equation for ζ(k), the value
of ζ(k) is always known since Y(k) and HΦX̂(k − 1) are available. By introducing the
objective function J[K] (12) one wants to minimize the variance of the innovation process
ζ(k). Parameterizing K = K(θ) by some vector of parameters θ, the objective function
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(12) is a function of θ which is chosen for ensuring a stability of the filter. For example,
the filter gain can be chosen in the form (see [8]),

Ka f (k; θ) = PrΘKe(k), (13)

where Pr is a matrix of dimensions n× ne, ne is the number of all unstable and neutrally
stable eigenvectors (or singular vectors) of the transition matrix Φ, Θ = diag (θ1, . . . , θne)
- diagonal matrix with the diagonal elements θi ∈ (1− εi, 1 + εi), εi ∈ (0, 1) is a function
of the absolute value of the ith eigenvalue, εi → 0 as |λi| → ∞, εi → 1 as |λi| → 1.

Comment 4.1. In (13), Ke(k) has the meaning of the gain of the filter in a reduced space
R[Le], Le ∈ Rne×ne , ne < n. More precisely, if instead of the full system state X(k) one
wants to estimate only a reduced state Xe(k) (of the less dimension). For example, we
are interested in estimating only some components of X(k), (Xe(k) = LeX(k)), then one
can construct a reduced-order filter having the gain Ke(k) for producing the estimate
X̂e(k) and reconstruct the estimate for the full state X̂(k) as X̂e(k) = L+

e X̂e(k) where L+
e

is the pseudo-inverse of Le. For more details, see [5]. For the SEIKF, the matrix Ke(k) is
equivalent to the matrix Ge(k) in the formulas (28)–(29) in the next section.

Applying the SPSA optimization algorithm yields the following recursive equation
for estimating θ [10]

θ(k + 1) = θ(k)− G(k + 1)∇θ(k)Ψ(ζ(k + 1)), k = 0, 1, 2 . . . (14)

In (14), ∇θ(k)Ψ is the gradient of the sample cost function Ψ with respect to (w.r.t.) θ

evaluated at the point θ(k); G(k) is a factor ensuring convergence of the algorithm (it may
be a matrix or scalar variable). It is seen that we replace the problem of minimization in
probabilistic space (average) by minimization along the system trajectory if we assume
that the system possesses the ergodicity property. This simplifies too much the solution
of the considered optimization problem.

Substituting θ(k), computed from (14), into the gain Ka f (t; θ(k)) in (13), one obtains
the following equation for the AF (see [6])

X̂(k + 1) = ΦX̂(k) + Ka f (t; θ(k))ζ(k + 1) = ΦX̂(k) + PrΘ(k)Ke(k)ζ(k + 1). (15)

5. ADAPTIVE SEIK FILTER (ASEIKF)

In this section we describe the AF whose non-adaptive version is based on the SEIKF
[4]. As reviewed in the Introduction, the main characteristics of the SEIKF concerns about
the resampling procedure : the members of the model ensemble are selected in the main
orthogonal directions of a functional space, described by an approximation to the ECM.

5.1. SEIKF algorithm
Let the numerical model, resulting from discretization of the system (7), be repre-

sented as
Xk = Fk−1(Xk−1) + wk, (16)

where the vector Xk ∈ Rn
Z,C and wk ∈ Rn

Z,C are the state and model error at the time in-
stant Tk; Fk−1(·) is a (generally nonlinear) function modeling the transition of the system
state from time Tk−1 to time Tk. The function Fk−1(·) can include other external known
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variables (not expressed here). In (16) the model error wk is a temporally uncorrelated
sequence of zero mean and covariance Qk.

At each time instant Tk we are given the observation

Yk = Hk(Xk) + vk. (17)

It is supposed that the measurements are available only at certain points of the area.
Thus, Yk is composed of the measures of pollutant concentration at certain mesh points.

Comment 5.1. The time instant Tk+1 = Tk + ∆Tk corresponds to the assimilation instant
(arrival of observation) which is different to the time instant tk′+1 = t′k + δt where δt
denotes a sampling time step in derivative approximation.

The AF based on the SEIKF (Singular Evolutive Interpolated Kalman filter) is de-
noted as ASEIKF. The original SEIKF consists of three stages (cf., [7]): resampling, fore-
cast and correction, preceded by the initialization.

Consider the filtering problem for k = 0, 1, 2, . . . , N. At k = 0, let X̂0 be the sys-
tem estimate and P0 be its error covariance matrix (ECM) for the initial state X0. These
statistics can be obtained by using a sequence of historical data or, more practically, by a
preliminary simulation study: a long sequence of states X̃1, . . . X̃N is generated by solving
Eqs. (9). The statistics X̂0, P0 are estimated by

X̂0 = (1/N)
N

∑
j=1

X̃j, P̃0 = (1/N)
N

∑
j=1

(X̃j − X̂0)(X̃j − X̂0)
T, (18)

here xT denotes the transpose of x.
Originally the SEIKF has been proposed for solving the data assimilation problems

in the systems of very high dimensions (n ≈ O(107)−O(108) for many geophysical sys-
tems). As the KF, for such systems, the SEIKF cannot be applied due to its prohibitive cost
if the full covariance space is used. This difficulty is overcome by reducing the dimension
of the ECM by its projection onto a low dimensional subspace.

Consider the main three stages in the SEIKF. At the assimilation instant Tk, let Pk be
the prediction ECM. Let k = 0.

• Sampling stage. For a given k, let Pk be of the rank r << n where r is the rank
of Pk. Suppose that the true ECM of the system forecast is P̃k. Consider the
eigen-decomposition of P̃k,

P̃k =
n

∑
j=1

λjZjZT
j ,

where λ1 ≥ · · · ≥ λn are the eigenvalues of P̃k, arranged in decreasing order,
and Z1, . . . , Zn are the corresponding (normalized) eigenvectors. The sequence
of eigenvalues usually decreases to zero very fast so that one may retain only
the first r terms in the above sum, yielding an approximate ECM of the rank r
for P̃k, i.e.

Pk =
r

∑
j=1

λjZjZT
j .
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The matrix Pk can be expressed in the factorized form Pk = LkUkLT
k where

Pk = LkUkLT
k , Lk = [Z1 · · · Zr], (19)

and Uk is the diagonal matrix with diagonal elements λ1, . . . , λr.
• Forecast stage. This stage is aimed at forecasting the system state and computing

the forecast error, based on the model equation and the knowledge of previous
system state. At the time instant Tk−1, assume that we are given the estimate
X̂k−1. Let Ωk−1 be a r× (r + 1) matrix such that its row vectors are orthonormal
and have components summing to zero. For the algorithm for constructing a
such matrix , see [4]. With Ω(i)

k−1 - the ith column of Ωk−1, one defines

Xi
k−1 = X̂k−1 +

√
rŁk−1U−1/2

k−1 Ω(i)
k−1. (20)

The set {Xi
k−1, i = 1, . . . , r + 1} may be viewed as samplings of the estimated

distribution for the system state at the time instant Tk−1, as far as the second
order statistics are concerned. The samplings of the forecast for the system state
at the next time instant Tk are

Xi
k/k−1 = Fk−1(Xi

k−1). (21)

From (21) we have

X̂k/k−1 =
1

r + 1

r+1

∑
i=1

Xi
k/k−1 =

1
r + 1

r+1

∑
i=1
Fk−1(Xi

k−1). (22)

In the further, for simplicity, we introduce the notation

X̂k/k−1 := F̂k−1(X̂k−1). (23)

• Correction stage. This stage takes into account the information, provided by the
observation, to obtain a new more accurate estimate of the state vector Xk and
update the associated ECM.

Let T be a ((r + 1) × r) matrix with orthonormal and zero column sums.
Introduce 1

Lk =
(

X1
k/k−1 · · ·Xr+1

k/k−1

)
T, (24)

Uk/k−1 = (rTTT)−1 + (LT
k Lk)

−1(LT
k Q̄kLk)(LT

k Lk)
−1. (25)

Here, Q̄k is the cumulative model ECM, at the moment Tk. In the experiment in the next
Section, Hk is a linear operator Hk(Xk) = HkXk. Using the matrix identity, the above
right hand side is invertible if Uk− is assumed to be non-singular,

U−1
k = U−1

k/k−1 + ŁT
k HT

k R−1
k HkŁk, (26)

1One example of T is defined by the formula (40) in [7].
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Rk is the measurement ECM at the time instant k. The formula for the correction stage in
the SEIKF has the following form

X̂k = X̂k/k−1 + Kseik(k)(Yk −HkX̂k/k−1)

= F̂k−1(X̂k−1) + Kseik(k)(Yk −HkF̂k−1(X̂k−1)),
(27)

where
Kseik(k) = Gk = LkUkLT

k HT
k R−1

k = LkGe(k), (28)

Ge(k) := UkLT
k HT

k R−1
k . (29)

For k < N the procedure returns to the sampling stage subject to k := k + 1. Otherwise,
stop.

Mention that the matrix Ge(k) has a meaning of the gain of a reduced-order filter if
we want to construct a filter for estimating the reduced-order state xe(k) (xe(k) ∈ Rne ).

5.2. ASEIKF
According to the AF in [6], based on the SEIKF, described above, one can write out

here the ASEIKF. In the ASEIKF, the gain is of the following form

Ka f (k; θ(k)) = Pr(k)Θ(k)Ge(k), (30)

Pr(k) = Lk, (31)

where Θe(k) is the diagonal matrix with diagonal elements θ1, . . . , θne . The diagonal el-
ements θ1, . . . , θne are positive, 1− εi ≤ θi ≤ 1 + εi where εi ∈ (0, 1) is a function of the
absolute value of the λi - ith eigenvalue (or singular value) of the transition matrix Φ (for
a linear dynamical system).

From (31) it is seen that the matrix Lk plays the role of the projecting operator Pr in
the AF (Section 4). In the ASEIKF, θ := (θ1, . . . , θne)

T will be updated by the algorithm
in Subsection 5.2 to minimize the MPE of the system outputs. This allows to improve
the performance of the SEIKF algorithm. Mention that we will apply two versions of the
ASEIKF, one is ASEIKF(0) with the gain Ka f 0 := Ka f (0; θ(k)), and another is ASEIKF(k)
with Ka f k := Ka f (k; θ(k)). The gain Ka f 0 in the ASEIKF(0) is based on the constant initial
gain Kseik(0) calculated in the SEIKF at T0 whereas in the ASEIKF(k) is based on the time-
varying gain Kseik(k) of the SEIKF.

Comment 5.2. It is interesting to reveal that from the structure of the SEIKF it is found
from (30)–(31) that the operator Lk is identified to the projecting operator Pr(k). As the
columns of Lk are the main directions of the sample ECM, the linear space, spanned by
the columns of Lk, in some sense is close to (but not the same) the subspace spanned
by all unstable and neutrally stable eigenvectors (most growing directions) of the system
dynamics. It is clear that, from the stability point of view of the SEIKF, by its construction,
there is no guarantee of stability of the SEIKF, contrary to that established for the AF.

5.3. ASEIKF algorithm
The algorithm for the ASEIK is written as follows:
• Step 0: k = 1;
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• Step 1: Calculate L0 by the equation (19), U0 is the diagonal matrix with diagonal
elements λ1, . . . , λr of matrix P0 defined by the formula (18);
• Step 2: Calculate Xi

k−1 by the formula (20);
• Step 3: Calculate Xi

k/k−1 by the formula (21);
• Step 4: Calculate X̂k/k−1 using (22);
• Step 5: Calculate Lk using (24);
• Step 6: Calculate Uk/k−1 using (25);
• Step 7: Calculate U−1

k using (26) and then obtain the inverse matrix Uk;
• Step 8: Calculate the gain by (30), K(k; θ(k)) = LkΘ(k)Ge(k) where Θ(k) is

diagonal with the diagonal elements θi(k), i = 1, . . . , ne where θi(k) is the ith

component of θ(k) and θ(k) is updated by SPSA algorithm (see [10]):
– Step 8.1: θ(k + 1) = θ(k)− αkg(θ(k));
– Step 8.2: g(θ(k)) = [g1(θ(k), . . . , gne(θ(k)))]

T;

– Step 8.3: gi(θ(k)) =
Ψ(ζ, θ(k) + ckδk)−Ψ(ζ, θ(k)− ckδk)

2ckδk
;

where δk = (δk1 , . . . , δkne
)T, δki can be chosen as random variable having the

symmetric Bernoulli distribution assuming two values 1 and −1 with the
same probability 1/2.

• Step 9: Update X̂k by the formula (27);
• Step 10: Set k := k + 1;
• Step 11: if k < Nstep go to step 2, Else: Stop.

Comment 5.3. The positive scalar sequences αk, ck must satisfy certain conditions.

6. NUMERICAL EXPERIMENT ON 2D WATER POLLUTION PROBLEM BASED
ON SEIKF AND ASEIKF

The 2D water pollution (5), (6) model is solved by applying a cell centered finite
volume method (see [12]), accompanied by an explicit scheme in time. The two filters
SEIKF and ASEIKF in Subsection 5.2 are implemented to estimate the concentration of
the Thanh Nhan lake in Hanoi, Vietnam.

6.1. Configuration of the Thanh Nhan lake
The Thanh Nhan Lake of Hanoi has the surface area of about 8.1 ha and the water

volume of about 162000 m3. For the hydro properties of the lake, see [7]. In this paper,
the indicator BOD5, showing the oxygen quantity needed for bacterium in oxygen reac-
tions of organic substances in water, is used. The geographical data are divided into two
groups, one contains the boundary points and the other - the points in the inside area.
The data set is determined by the unstructured grid with 1964 triangular cells and 1058
nodes. Fig. 1(a) shows the unstructured grid. The substance enters into the lake uniquely
by the inflow gate Γ1 (called gate-in, in the inflow boundary). The data, concerning dis-
charges and substance contents in the inflow and outflow gates, are:
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- The discharges in and out of the lake are 2100 m3 per day-night. On the gate-in
Γ1 the boundary values of Ūin = u.nx + v.ny are generated by the program with u =
0.00174 m/s and v = −0.00164 m/s.

- The content of BOD5 in the gate Γ1 into the lake is equal to the measurement value
24 mg/l.

Fig. 1. (a) The unstructured grid of the lake; (b) The initial concentration Cre f (0) of the reference
model R2; (c) The initial concentration C̄ of 4 models R1

3, R2
3, R3

3, R4
3; (d) The absolute difference

in percentage between the initial concentration C̄ of 4 models R1
3, R2

3, R3
3, R4

3 and Cre f (0) of the
reference model R2 with the scale from 5 to 50

On the boundary SW and the gate-out, there are the conditions of concentration and

velocity
∂C
∂n

∣∣∣∣
SW∪Γ2

= 0, U.~n
∣∣∣
SW

= 0 where ~n is the unit normal vector to the outflow

boundary. The locations of the gates Γ1 and Γ2 are shown in the Fig. 1(b).
The data for the Thanh Nhan lake model are given in Table 1.
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Table 1. Data 1 of the model

Kx, Ky η K Time step(s) h
∣∣
Γ2

(m)

30.6 1.7e−6 −4.05E−6 0.2 4

In order to estimate the effects of ASEIKF let us introduce the Absolute Difference
Percent (ADP) as a measure of the difference between two variables a and b

ADP(a, b) =
|a− b| ∗ 100
|b| . (32)

6.2. Experiment setup
The experiment, reported here, is of the type “twin-experiment”. A randomly chosen

state is used to start the numerical model run based on Eqs. (5)–(6). First the sequence of
the true states and of the observations are generated as follows:

6.2.1. Simulation of true states and observations
- The run R1: During the first time period P1 := [T(0), T(1)], T(0) = 0 s, T(1) =

300 s, the pollution sources, located at several points in the interior of the lake, are not
activated. This run is denoted as R1. The time-averaged concentration state, produced
during from the time period [T(0), T(1)], will be denoted as C̄ and described by Fig. 1(c).
C̄ will serve as the estimate for the initial concentration in the SEIKF and ASEIKF.

- The run R2 begins from t = T(1). The period P2 is defined as P2 := [T(1), T(2)],
T(2) = T(1) + 12 s. This run R2 is initialized by the state at the end of the run R1.
At the moment T(1) the pollution source (with the concentration 5 mg/l) is activated
continuously and the model is running over the period P2.

- Reference model denoted by R2 and observations: The ensemble of states, gener-
ated during the run R2, serves as a sequence of the true states (or reference). The state
values of R2 are denoted by Zre f , Cre f . The values of Z(T(1)) and C(T(1)) in the run
R1 will be considered as the initial values in this reference model R2 and denoted by
Zre f (0), Cre f (0). The initial concentration field Cre f (0) is described by Fig. 1(b).

For testing example, the measurements are at 0.2 s, 0.6 s, 1.0 s (one per 0.4 s) after
the time moment T(1). At these time instants and on some observation points located on
the middle lake, the measurement values are extracted from the reference and served as
observations Zobs, Cobs to be used in the data assimilation experiment.

6.2.2. Data assimilation experiment
For this example, we will introduce the following 4 different models denoted by

R1
3, R2

3, R3
3, R4

3. In these 4 models all data assimilation experiments start from t = T(1)
and are carried out over the period P2 (initialized by the values Z̄ = Z(T(1)), C̄) and the
pollution source (with the concentration 5 mg/l) is activated continuously. The Absolute
Difference Percent (ADP) between the initial concentration value C̄ (used in the 4 models
R1

3, R2
3, R3

3, R4
3) and that Cre f (0) of the reference is described by Fig. 1(d) with the scale

from 5 to 50.
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- The Model running without correction denoted by R1
3: The numerical model is

running from T(1) to the end of the period P2 without using the observations. This
DA experiment is denoted as DA−Model. This no-assimilation experiment produces the
estimates denoted as (Zno−ass, Cno−ass);

- The model running with SEIKF denoted by R2
3: This numerical model is running

from T(1) to the end of the period P2 using the observations in correction process by
SEIKF. The SEIKF is running to assimilate the observations (this experiment is denoted
as DA− SEIKF).

- The model running with ASEIKF(k) denoted by R3
3: This model is running in the

period P2 using the observations in correction process by adaptive version ASEIKF(k) of
the SEIKF with the time-varying gain Gk of the SEIKF.

- The model running ASEIKF(0) denoted by R4
3: This model is running in the period

P2 using the observations in correction process by adaptive version ASEIKF(0) of the
SEIKF with the constant gain G0 - the gain of the SEIKF at T0.

6.3. Numerical results
We will test the simulation concentration differences of the models R2, R1

3, R2
3, R3

3, R4
3

at 4 points P1 − P4, where their locations are shown on Fig. 1(b). The ADP between the
initial concentration condition C̄ used in the 4 filters R1

3, R2
3, R3

3, R4
3 and that Cre f (0) used in

the reference model R2 makes the differences in their produced results (see Figs. 2, 6, 7).

Fig. 2. Time period [0, 12s] (starting from T(1)): BOD concentration at the points P1 and P4 (a, c);
The ADP between 4 runs R1

3, R2
3, R3

3, R4
3 and R2 at the points P1 and P4 (b, d)
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Figs. 2(a) and 2(c) show the BOD concentration at the points P1 and P4. In these
figures the simulation results of the reference model R2 and those of the model without
correction R1

3 are shown by the curves with the blue dash two dots and dark red dash
types, respectively. It is easy to see that the curves of the model R1

3 are the most far from
the reference curves, comparing with other curves of the models R2

3, R3
3, R4

3 (i.e., by the
SEIKF, ASEIKF(k), ASEIKF(0)). One sees that the curves of the model R3

3, R4
3 with the

ASEIKF(0), ASEIKF(k) (see yellow and green color curves in Figs. 2(a, c)) are the most
close to the reference curves. Figs. 2(b, d), 3(c), 3(d) show the ADP between 4 runs R1

3, R2
3,

R3
3, R4

3 and R2 at the points P1, P4, P2 and P3. One sees that for the time period [T(1), T(2)],
the assimilation allows to reduce significantly the estimation ADP (compare the ADP
produced by the model without correction (see dark red dash curves in Figs. 2(b, d),
3(c, d)) with those generated by the other filters). The values of ADP are much less in the
ASEIKF(0), ASEIKF(k) compared to those with the SEIKF. The ASEIKF(k) have produced
the best estimates for the system states. It means that the adaptation has proved to be
very an efficient tool for improving the performance of the non-adaptive filters.

Fig. 3. Time period [0, 12s] (starting from T(1)): Evolution of the cost function J (a); The Average
ADP between 4 runs R1

3, R2
3, R3

3, R4
3 and R2 (b); The ADP between 4 runs R1

3, R2
3, R3

3, R4
3 and R2 at

the points P2 and P3 (c, d)

During the assimilation period [0, 12s] (starting from T(1)), the evolution of the time
average of the sample cost functions J = Φ[ζ(k)] (squares of the Euclidean norm of the
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innovation) is depicted in Fig. 3(a). It is clear that the cost function is highest (see dark
red dash curve) for the model without correction and the adaptation allows to better
minimize the prediction error for the system outputs in the ASEIKF(0) and ASEIKF(k).
The lowest prediction error is produced by the ASEIK(0) and ASEIKF(k). For this period
time, the averaged ADP between 4 runs R1

3, R2
3, R3

3, R4
3 and R2 are shown in Fig. 3(b). One

sees that for the time period [T (1), T (2)], the assimilation allows to reduce significantly
the estimation ADP (compare the ADP values produced by the model without correction
(see dark red dash curves with the ADP values more than 35) with those generated by
the other filters). It is also easy to see that the lowest ADP values are produced by the
ASEIKF(0), ASEIKF(k).

Figs. 4, 5 show concentration ADP between the produced estimates of 4 runs R2
3, R3

3,
R4

3, R1
3 and the reference model R2 (with the percentage scales from 0.5 to 5.5 for the

different filters ASEIKF(k), ASEIKF(0), SEIKF and the percentage scales 5 to 50 for the

Fig. 4. Concentration estimation ADP between 4 runs R2
3, R3

3, R4
3, R1

3 and reference R2 (with the
scales from 0.5 to 5.5 for the filter models R2

3, R3
3, R4

3 (a–c) and from 5 to 50 for the model without
correction R1

3 (d)) at the time instant t = 2.4s after putting the source in the middle of the lake:
Model R3

3 with ASEIKF(k) (a); Model R4
3 with ASEIKF(0) (b); Model R2

3 with SEIKF (c); Model R1
3

without correction (no assimilation) (d)
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Fig. 5. Concentration estimation ADP between 4 runs R2
3, R3

3, R4
3, R1

3 and reference R2 (with the
scales from 0.5 to 5.5 for the filter models R2

3, R3
3, R4

3 (a–c) and from 5 to 50 for the model without
correction R1

3 (d)) at the time instant t = 8 s after putting the source in the middle of the lake:
Model R3

3 with ASEIKF(k) (a); Model R4
3 with ASEIKF(0) (b); Model R2

3 with SEIKF (c); Model R1
3

without correction (no assimilation) (d)

model without correction R1
3) at t = 2.4 s and t = 8 s after the opening of the source in

the middle of the lake. It is seen that the ADP levels are lowest in the ASEIKF(0) and
ASEIKF(k) (see Figs. 4(a, b), 5(a, b)) and are biggest in the model without correction R1

3
(see Figs. 4(d), 5(d)).

Looking at Figs. 6(a)–6(e) and 7(a)–7(e), corresponding to the time moments t = 2.4 s
and t = 8 s, one concludes that the concentration fields, estimated by the model without
correction R1

3 are the most far different from the ones of reference model R2. Beside that,
the concentration fields, estimated by the ASEIKF(0) and ASEIKF(k), are closest to the
references ones, compared to those produced by the other filters. It means that among
all the employed filters, the ASEIKF(0) and ASEIKF(k) behave better in recovering the
unknown true concentration.

In the popular PC (Intel Core i5 3.1 GHz), for our correction problem it takes about
45 min to run all 3 SEIKF, ASEIKF(0), ASEIKF(k) filter algorithms.
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Fig. 6. Concentration estimate produced by different filters at the time t = 2.4 s after opening the
source in the middle of the lake: the reference model R2 (a); Model R3

3 with ASEIKF(k) (b); Model
R4

3 with ASEIKF(0) (c); Model R2
3 with SEIKF (d); Model R1

3 (without correction) (e)

Fig. 7. Concentration estimate produced by the different filters at the time t = 8 s after opening
the source in the middle of the lake: the reference model R2 (a); Model R3

3 with ASEIKF(k) (b);
Model R4

3 with ASEIKF(0) (c); Model R2
3 with SEIKF (d); Model R1

3 (without correction) (e)
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7. CONCLUSIONS

In this paper, the idea of the adaptive filtering approach, developed in [6], was fol-
lowed to construct the ASEIKF whose non-adaptive version is the SEIKF [4,7]. It is shown
how the gain in the SEIKF can be parameterized in an appropriate way which allows to
achieve an excellent performance of the ASEIKF by tuning some parameters of the gain.
The objective of the ASEIKF is to minimize the mean prediction error of the system out-
put. The difficulties in solving the optimization problem, formulated in probabilistic
space, are overcome by applying the SPSA algorithm which works perfectly in accor-
dance with the time-recursive character of sequential filtering approach. By perturbing
simultaneously (and stochastically) the vector of unknown parameters in the gain, at
each assimilation instant, it requires to integrate only two or three times the numerical
model, without the need to compute numerically the gradient vector or to construct the
adjoint model (or adjoint code). By this way, the original SEIKF become adaptive. The
solution of the optimization problem based on the SPSA algorithm is presented in de-
tail. The algorithms, obtained in Sections 3-6, constitute a background for solving the 2D
water pollution problem, formulated in Section 2.

The numerical experiment on estimation of pollution propagation has been carried
out which shows a high accuracy of the estimates produced by the ASEIKF. Due to space
limit of the paper we cannot presented some numerical results showing the better perfor-
mance of the ASEIKF(k) over the ASEIKF(0) especially when the initial state estimate is
more far away from the initial true state. This proves the usefulness of the ASEIKF, espe-
cially for time-varying systems. It has been demonstrated that the ASEIKF, either based
on a constant or time-varying gain, is overperforming the SEIKF. Another very positive
point concerns the performance of the ASEIKF(k): with best performance, the ASEIKF is
proved to be a very promising tool in the future for solving data assimilation problems
in non-stationary dynamical systems.
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