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Abstract. This paper presents a method of controlling a serial robot for milling by an
inverse kinematic controller combined with an outer PD loop (Inverse Dynamics + PD
controller), with calibration and compensation of errors in calculating the cutting forces.
Because the cutting forces are generated at the time of cutting, at the contact area between
the workpiece and the cutting tool, the generalized forces of the cutting forces in the differ-
ential equations of motion of robot is always variable and difficult to determine precisely.
The cutting forces depend on the cutting mode, the geometric parameters of the cutting
layer, the cutting conditions, etc. This study shows an inverse dynamic controller with the
outer PD loop and an additional calibration block to compensate the differences between
the actual cutting forces and calculated cutting forces (which are calculated by the empir-
ical formula). The cutting forces at each machining time of the calibration block is deter-
mined based on the differential equation of motion. The efficiency (convergence time and
accuracy) of the proposed controller is evaluated by comparison between the numerical
simulation results of the controller with cutting force calibration and the conventional PD
controller. In the conventional PD controller, the dynamic model of the robot is assumed
to define precisely. The results contribute to design and manufacture the controllers for
robotic milling, and to improve the quality of the machined surface.

Keywords: milling robot, robotic machining, robot dynamics, cutting force calibration, ro-
bot control.

1. INTRODUCTION

Serial robots which have more than 6 degrees of freedom offer many advantages
in flexibility over machine tools. However, machining motion of robots (including its
joints and links) is more complex than that of the machine tools. At the same time, at the
contact point between the tool and the workpiece, the position, direction, and magnitude
of the cutting force is always changes with time. Due to the complexity of the motion and
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variation of the cutting force, it is difficult to accurately calculate the dynamic model to
control the robot in milling process. To meet high precision of the machining surface, the
relative motion of the tool and the machining surface (including the position, direction
and relative velocity) is demanded accurately. Inverse Dynamics + PD (IDPD) controller
or PID (IDPID) controller is commonly used for robots [1–3] because it gives accurate
control results when the dynamic parameters of the robot are determined precisely. In
order to improve and enhance the machining accuracy for robots, there have been many
studies to reduce the influence of cutting force error on the quality of robot controllers [4,
5]. However, this is still an open problem. The application of intelligent control methods
gives positive results [6]. In cases where high reliability is required, it is usually based on
clear calculations. Therefore, this paper proposes a solution to correct the error of cutting
force when milling by robot.

In fact, there are many errors that appear in the dynamic model of robot. The con-
ventional IDPD controller is added with a correction element that can correct the errors.
The effect of cutting force is significant during robotic milling process. Therefore, the cal-
culation error of the cutting force affects the control accuracy and ultimately affects the
machining accuracy.

This article presents the IDPD controller with integrated cutting force calibration
block. The controller has two closed feedback loops (internal closed feedback loop for
inverse dynamics, external closed feedback loop of PD (proportional-derivative), and
cutting force calibration block. Assuming the dynamic model is accurately determined, at
the time of machining, the controller will determine the deviation signals of the position,
velocity, acceleration and control force between the input and output, so that in the next
control loop, the controller performs a calibration step that calculates compensation of
the cutting force before calculating the inverse dynamics to determine the control force.

This study compares and evaluates the numerical simulation results between the
IDPD controller and the IDPD controller with the cutting force calibration block (IDPD-
HC) to control the machining robot to shape the part surface in the same machining mode
and cutting conditions but the changes of generated cutting force has different values.

The article includes the following sections: Section 1 introduces, Section 2 presents
the IDPD controllers. Section 3 presents the IDPD-HC controller. Section 4 presents the
numerical simulation results. Section 5 shows the conclusion and development.

2. IDPD CONTROLLER FOR MILLING ROBOT

Fig. 1 shows a robot model with a clamping platform deploying in milling [7]. The
task of motion control of the machining robot is to ensure accurate shaping motion be-
tween the tool surface and the workpiece surface, so that the tool moves on the forming
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curve with position, direction, velocity and acceleration according to technical require-
ments. Motion of the cutter is synthesized from motion of the robot joints. On that basis,
there are joint space controllers and task space controllers.
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Fig. 1. Mechanical model of the machining robot system

The controller presented in the paper is a controller in the joint space.

Based on the dynamics model of robot (1) [8]

M(q)q̈ + ψ(q, q̇) + G(q) + Q = U. (1)

Choose the split control rule (2).

U = M(q)uq + ψ(q, q̇) + G(q) + Q, (2)

where: uq is 6× 1 control signal vector selected based on the control law PD

uq = q̈d + KD ėq + KPeq, (3)

eq, ėq, ëq are 6× 1 vectors of coordinate error, velocity, and acceleration of the joints

eq = qd − q =
[
eq1, eq2, . . . , eq6

]T ,

ėq = q̇d − q̇ =
[
ėq1, ėq2, . . . , ėq6

]T ,

ë =
[
ëq1, ëq2, . . . , ëq6

]T ,

(4)

qd, q̇d, q̈d are 6× 1 vectors of desired joint position, velocity, and acceleration (set value)
solved from the inverse kinematics problem. q, q̇, q̈ are 6× 1 vectors of the actual position,
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velocity, and acceleration of the robot’s joints. eqi, ėqi, ëqi are errors of position, velocity
and acceleration of the joint i robot, i = 1, . . . , 6. KP, KD are diagonal matrices, which
have elements that are positive constants, and represent the proportional and derivative
gain coefficients, respectively.

KP = diag {kP1, kP2, . . . , kP6} , KD = diag {kD1, kD2, . . . , kD6} , kPi > 0, kDi > 0. (5)

Substituting (2) and (3) in (1) obtained the following

q̈ + ψ(q, q̇) + G(q) + Q = M(q)
[
q̈d + KD ėq + KPeq

]
+ ψ(q, q̇)q̇ + G(q) + Q, (6)

M(q)
[
ëq + KD ėq + KPeq

]
= 0. (7)

From (7) get the position error differential equation of the closed loop controller (8)

ëq + KD ėq + KPeq = 0. (8)

Since KD, KP are diagonal matrices, from (8) we get the position-independent differ-
ential equations of errors for the joints (9).

ëqi + kDi ėqi + kPieqi = 0, i = 1, . . . , 6. (9)

Fig. 2 shows the general structure model of the IDPD controller for machining robots.
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3. IDPD-HC CONTROLLER FOR MILLING ROBOT

With the assumption that the dynamic model of the robot, including the cutting
force, is determined accurately, the above IDPD controller will give accurate control re-
sults. In order to determine the efficiency of the cutting force calibration block, this paper
chooses a simple IDPD model with the assumption that the dynamic model is determined
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accurately, easy to give accurate control results for comparison. Then, the controller with
integrated cutting force calibration block (hereinafter referred to as calibration controller)
IDPD-HC is assumed to have errors in the input cutting force calculation. The calibration
block will calculate and determine the cutting force before each control loop step based
on the signal received from the previous control loop step.

It is assumed that the kinematics and dynamics of the robot system are correct be-
cause these parameters can be determined by measuring and calibration when manufac-
turing and assembling. The cutting force is assumed to have an error because the cutting
force constantly changes with the machining process.

Below is the execution sequence of the controller with the cutting force error calibra-
tion block when machining:

In the first processing steps, the cutting force is determined according to the formula
(9)–(12) [8]. At each subsequent machining steps, the controller measures information
about joint position (q), joint velocity (q̇), joint acceleration (q̈) and torque through the
sensors located at the joints of robots. Thanks to the parameters representing the dy-
namic state of the robot determined during the control process, combined with the use
of the dynamics equation (1) will determine the generalized force Q of the cutting force
and thus determine the cutting force Rc (which needs to be calibrated). At each control
loop step, a calibration step is performed to calculate the cutting force before calculating
inverse dynamics to determine the driving force.

Q = U − (M(q)q̈ + ψ(q, q̇) + G(q)). (10)

From (7) [8] it is possible to determine the cutting force Rc that needs to be calibrated
before each loop of control the machining robot

Rc =
[

JT
E

]−1
{U − [M(q)q̈ + ψ(q, q̇) + G(q)]} . (11)

The recalculated cutting force according to (11) is included in determining the control
force based on the differential equation of motion (1).

Fig. 3 shows the IDPD-HC controller structure model. Unlike the IDPD controller,
this controller is integrated with a “Cutting Force Adjustment-CFA” block to recalculate
the actual cutting force in the previous control loop instead of the estimated shear force
according to the empirical formula.
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The control simulation results of the IDPD-HC controller for the machining robot are
shown in Section 4.

4. RESULTS OF NUMERICAL SIMULATION OF CONTROLLERS

Performing numerical simulation to control the motion of a robot carrying a milling
cutter (Fig. 4), performing forward milling of the workpiece surface (Fig. 5) made of
Ti6Al4V titanium alloy material. When machining to ensure the forming motion between
the tool surface and the work piece, the cutting point at the tool tip moves on the forming
curve Ci (Ci lies on the face of the mold) following the trajectory from outside to inside.
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Fig. 4. End mills for mold surface forming

Table 1 describes the kinematic and dynamic parameters of the robot, end mills,
clamping platform and workpiece, when the robot performs surface shaping.
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Table 1. Kinematic and dynamic parameters of the robot, end mill, clamping platform
and workpiece

Denavit-Hartenberg parameters of the robot

Link-Joint θi di (mm) ai (mm) αi
1 θ1 d1 = 514.5 a1 = 300 α1 = π/2
2 θ2 d2 = 0 a2 = 700 α2 = 0
3 θ3 d3 = 0 a3 = 280 α3 = −π/2
4 θ4 d4 = 1060.24 a4 = 0 α4 = π/2
5 θ5 d5 = 0 a5 = 0 α5 = −π/2
6 θ6 d6 = 377 a6 = −256 α6 = 0

Kinematic parameters of the position and orientation of the tool in the frame
with respect to the frame O6x6y6z6

E 6xE = 0 6yE = 0 6zE = 0 6αE = −π/2 6βE = π/2 6ηE = 0
Specifications and technical parameter of flat end mills

Tool
material

D1
(mm)

D2
(mm)

L1
(mm)

L2
(mm)

Z
(tooth)

vc
(m/ph)

vr
(mm/s)

Sz
(mm/tooth)

B
(mm)

h
(mm)

Cold
solution

Carbide 10 10 70 22 4 61.14 6.7 0.1 2.2 3 Emunxi

Where: z is number of cutting teeth of end mill, vc is cutting speed; vr is relative velocity between
the milling tool and the workpiece surface; Sz is tool feed per tooth, B is milling width; h is milling
depth

Kinematic parameters of the workpiece and clamping platform

Machining
material

(HB)
Stiffness (HB)

l
(mm)

w
(mm)

c
(mm)

0xd
(mm)

0yb
(mm)

0zd
(mm)

Ti6Al4V 200 1140 600 715 0 −1361 296.6

Where l, w, c are the length, width, and height of the workpiece
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Dynamic parameters of the robot

TT

Position of the center

of gravity relative to

the frame i (mm)
Mass

(kg)

Inertial moment of the links with respect to the frame attaching

at the center of mass (kg.mm2)

xCi yCi zCi Ixx Iyy Izz Ixy Iyz Izx

1 101.27 −161.53 17.51 979.776 107464105.457 106997584.679 76391174.876 −15737765.261 1079510.623 2528210.401

2 −389.98 57.61 15.15 255.520 3908083.112 12110291.517 11739707.489 −454581.588 110524.194 877218.740

3 −70.78 −52.67 −194.76 356.302 15150531.425 15511051.346 10981064.424 −843859.157 109739.085 349159.306

4 0 −344.49 −14.39 268.237 25403793.206 3355342.987 23996196.983 −13888.740 1000831.563 9449.097

5 0 40,29 1.05 55.235 465398.004 441427.864 231978.283 70.639 9848.368 19.282

6 290.94 40.29 −64.09 36.306 305737.658 512275.019 383507.486 −92.536 −36.246 −41461.026

The coefficient of cutting force in formula (11) [8] depends on the cutting mode, the
geometrical parameters of the cutting layer, the cutting conditions, etc. It is assumed
that two ways of calculation from the experiment are used to select the cutting force
coefficient, as shown in Table 2. According to [8], the cutting force Fx, Fy, Fz, Mx, My, Mz

can be calculated (usually Mx, My are very small, so they should be ignored).

Table 2. Cutting force coefficient in milling determined experimentally

Case Ktc (N/mm2) Krc (N/mm2) Kac (N/mm2) Kte (N/mm) Kre (N/mm) Kae (N/mm)

1 1844.4 513.2 1118.9 24 43 −3
2 1455 310 112 26 43 −2.8

. . .

Thus, with different experimental calculation methods, it will give different results
for calculating the cutting force, leading to the existence of an error in the cutting force.
Fig. 6 shows the results of the cutting force calculation for the two cases of choosing the
cutting coefficient.

The parameters of the diagonal matrices of the proportional and derivative gain, KP,
and KD, respectively, of the IDPD and IDPD-HC controllers are chosen to be the same

KP = diag {22500, 22500, 22500, 22500, 16900, 16900}

KD = diag {300, 300, 300, 300, 260, 260}

The following shows the numerical simulation results of the controllers in the fol-
lowing cases:

- IDPD controller with the assumption of existing of cutting force error, the numerical
simulation results shown in Fig. 7(a).
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- IDPD-HC controller with the assumption of existing of cutting force error, numeri-
cal simulation results are shown in Fig. 7(b).
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 PK diag 22500,22500,22500,22500,16900,16900=

 DK diag 300,300,300,300,260,260=

The following shows the numerical simulation results of the controllers in the following cases:

IDPD controller with the assumption of existing of cutting force error, the numerical simulation

results shown in Figure 7a. 

IDPD-HC controller with the assumption of existing of cutting force error, numerical simulation 

results are shown in Figure 7b. 
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(a) IDPD controller results (b) IDPD-HC controller results

Fig. 7. Results of numerical simulation of the controllers

The numerical simulation results show that the cutting force calibration block im-
proves control results, which can be applied to achieve machining accuracy.

Because the cutting force acts directly on the last link of the robot (the end effector),
the joint position of the last link is more affected than the other links.

5. CONCLUSION

The paper presented the design of IDPD and IDPD-HC controllers for robots with 6
degrees of freedom in milling. The IDPD-HC controller has overcome the effect of cutting
force error on the quality of robot control when machining and shaping surfaces with un-
defined cutting forces. The IDPD controller is applicable to cases where the cutting forces
calculated in advance through empirical formulas are accurate or have small errors. The
applied IDPD-HC controller with a compensation block for calculating the cutting force
has solved the difficult problem in the machining process that it is impossible to accu-
rately calculate the cutting force, because the cutting force is always changing during the
machining process. So that it is able to improve the machining quality.
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In addition to the calculation error of the cutting force, there are also errors in the
calculation of dynamic quantities. Then the cutting force correction is related to other
factors. The problem becomes “multiple solutions”. Overcoming this will combine the
proposed cutting-force correction method and intelligent solutions such as fuzzy con-
trol, neural networks, ... In addition, modern evolutionary algorithms can help identify
dynamic error types in “multiple solutions” problems to improve the controller.
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