
Vietnam Journal of Mechanics, VAST, Vol. 44, No. 1 (2022), pp. 83 – 95
DOI: https://doi.org/10.15625/0866-7136/16852

STRENGTH AND FATIGUE ANALYSIS OF PERIODIC
PERFORATED MATERIALS USING THE COMPUTATIONAL

HOMOGENIZATION AND ES-FEM APPROACHES

Phuong H. Nguyen1, Canh V. Le1,∗, Phuc L.H. Ho1

1Department of Civil Engineering, International University,
Vietnam National University Ho Chi Minh City, Vietnam

∗E-mail: lvcanh@hcmiu.edu.vn

Received: 30 December 2021 / Published online: 30 March 2022

Abstract. This paper presents a computational homogenization shakedown analysis of
periodic perforated materials with von Mises matrices. The plastic behaviors of the perfo-
rated materials under cyclic macroscopic loads are studied by means of kinematic shake-
down theorem and computational homogenization method. The kinematic micro-fields
are approximated by the edge-based smoothed finite element method. The resulting large-
scale optimization problem is efficiently solved by using conic solver, enabling a large
number of points on the macroscopic strength and fatigue surface to be calculated rapidly.
The effects of the hole’s shape and size on the overall strength and fatigue domains are
also investigated.

Keywords: shakedown analysis, computational homogenization, overall plastic properties,
ES-FEM.

1. INTRODUCTION

The overall properties of heterogeneous materials can be determined by solving a
boundary-value problem formulated at micro-level. At a material/integration point of
macro-structures, a representative volume element (RVE) or unit cell is assigned and
macro-stresses or -strains are applied on its boundaries as external loads [1–3]. In order to
capture the effects of the mechanical and geometrical properties of micro-structures and
their interaction at micro-level on the overall plastic behaviors, shakedown analysis of
micro-structures has been developed by using the shakedown theorems in combination
with the homogenization theory [4–7]. In these formulations, the microscopic periodic
displacement fields are approximated using the finite element method. As a result, the
plastic dissipation function involves both the macroscopic strains and the micro degree
of freedoms, and hence efforts must be paid to treat the objective function, particularly
when using the direct iterative optimization algorithm [6,7]. Moreover, there is a need to
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reformulate the stiffness matrix in order calculate the fictitious elastic stresses [4, 5]. It is,
therefore, worthwhile to improve the performance of this method.

In this paper, the shakedown formulation presented in [4–7] is reformulated in terms
of total micro-displacement. The obtained problem is closely similar to the formulation
defined for the structures, and hence it is convenient to extend advanced techniques used
shakedown analysis of structures to that of micro-structures. The total micro-
displacements are approximated using the edge-based smoothed finite element method
(ES-FEM). The computational homogenization method [1–3] is used to calculate the fic-
titious elastic stresses and to enforce periodic boundary conditions which are constraints
of the microscopic kinematic shakedown problem. The discrete formulation is then trans-
formed into a conic optimization problem, being solved by using the primal-dual interior
point algorithm implemented in Mosek package. Circular and rectangular perforated
materials are examined to determine its macroscopic strength and fatigue criteria. The
effects of the hole’s shape and size on the overall plastic properties are also reported.

2. KINEMATIC HOMOGENISED SHAKEDOWN ANALYSIS OF
MICRO-STRUCTURES

Consider a elastic-perfectly plastic representative volume element (RVE) of area Ωm
and boundary Γ under cyclic macroscopic stress Σ (associated with macroscopic strain
E). According to the homogenization theory, the microscopic stresses and strain rates are
linked with macroscopic quantities by the average relations as

Σ = ⟨σ⟩, E = ⟨ϵ⟩, ∆E = ⟨∆ϵ⟩, with ⟨ f ⟩ = 1
|Ωm|

∫
Ωm

f dΩm (1)

where σ and ϵ are respectively the microscopic stress and strain fields, ∆ϵ is the accumu-
lative microscopic plastic strain fields, ∆E is the accumulative macroscopic plastic strains
and ∇ is the linear differential operator.

Let σe(x, t) be the fictitious elastic stress response of the RVE to macroscopic stresses
λ+Σ, over a period of time (x ∈ Ω, t ∈ [ 0, T ]). The kinematic shakedown analysis of
periodic media [4–7] can be re-expressed in terms of the total microscopic displacement
as

λ+ = min
ϵp, ∆u, ∆E

∫ T

0

∫
Ωm

D(ϵp)dΩmdt

s.t


∫ T

0

∫
Ωm

σeT(x, t)ϵp dΩmdt = 1

∆ϵ =
∫ T

0
ϵp dt =

1
2
[∇∆u + (∇∆u)T] in Ωm

∆u(x)− ∆E · x periodic on Γ

(2)

where D(ϵp) is the plastic dissipation power and ∆u is the accumulative displacements.
Note that at each instant during the time cycle t, the plastic strain rates ϵp may be not
compatible, but the plastic strain accumulated over the cycle ∆ϵ must be compatible.
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Matrices of micro-materials are isotropic and governed by the von Mises failure cri-
terion in plane stress as

ψ(σ) = σTYσ ≤ 1 (3)

where Y is the matrix containing the strength properties of the micro-materials and given
by

Y =
1
σ2

p

 1 −0.5 0
−0.5 1 0

0 0 3

 (4)

with σp is the reference yield stress.
The plastic dissipation power associated with the von Mises failure criterion can be

formulated in terms of the total microscopic strain rates as

D (ϵp) =
√
ϵpTY−1ϵp (5)

Now, the kinematic homogenised shakedown analysis of periodic media governed
the von Mises failure criterion becomes

λ+ = min
ϵp, ∆u, ∆E

∫ T

0

∫
Ωm

√
ϵpTY−1ϵp dΩmdt

s.t



∫ T

0

∫
Ωm

σeT(x, t)ϵp dΩmdt = 1

∆ϵ =
∫ T

0
ϵp dt =

1
2
[∇∆u + (∇∆u)T] in Ωm

∆E = ⟨∆ϵ⟩
∆u(x)− ∆E · x periodic on Γ

(6)

The solution of the problem (6) is the smaller one of low-cycle fatigue limit and ratch-
eting limit.

In numerical analysis, the time integration in the problem (6) must be numerically
calculated due to the determination of plastic strains over a loading cycle would be dif-
ficult. To this end, the load domain in the space of the macroscopic stresses Σ can be
expressed as

Σ =
[
µ1Σ11 µ2Σ22 µ3Σ33 µ4Σ12 µ5Σ23 µ6Σ31

]T (7)

where µ−
i ≤ µi ≤ µ+

i , i = 1, 2, . . . , 6, are the amplifying factors that vary independently.
Using the two convex-cycle theorems [8], shakedown analysis can be performed only

at the vertices of the convex polyhedral loading domain defined by (7). The problem (6)
can be then reformulated as
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λ+ = min
ϵp

k , ∆u, ∆E

NL

∑
k=1

∫
Ωm

√
ϵ

pT
k Y−1ϵ

p
k dΩm

s.t



NL

∑
i=1

∫
Ωm

σeT
k ϵ

p
k dΩm = 1

∆ϵ =
NL

∑
k=1

ϵ
p
k =

1
2
[∇∆u + (∇∆u)T] in Ωm

∆E = ⟨∆ϵ⟩
∆u(x)− ∆E · x periodic on Γ

(8)

where NL is the number of vertices of the convex polyhedral load domain.
In order to obtain numerical solutions of the problem (8), the accumulative displace-

ment field must be approximated using a numerical method. In this paper, the edge-
based smoothed finite element method is used and recalled in the following section.

3. EDGE-BASED SMOOTHED FINITE ELEMENT METHOD

Fig. 1. Triangular elements (solid lines)
and the edge-based smoothing domains

(shaded areas)

In the edge-based smoothed finite element
method (ES-FEM) [9], the problem domain
is divided into smoothing domains based on

edges of elements such that Ω ≈
Ned⋃
k=1

Ωk and

Ωi ∩ Ωj = ⊘ for i ̸= j, in which Ned is the to-
tal number of elemental edges in the problem
domain. The shape functions used in FEM and
ES-FEM are identical. However, the ES-FEM
uses smoothed strains over local smoothing
domains, instead of using compatible strains
as in FEM. Employing triangular three-node
elements, these local smoothing cells are gen-
erated based on elemental edges as illustrated
in Fig. 1.

Smoothed strains are determined based on the compatible strains by

ϵ̃h
k =

∫
Ωk

ϵh(x)ϕk(x)dΩ =
∫

Ωk

∇uh(x)ϕk(x)dΩ (9)

where ∇uh are the compatible strains of the approximation displacements uh, and ϕk(x)
is a smoothing function given by ∫

Ωk

ϕk(x)dΩ = 1 (10)
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For computational convenience, the smoothing function ϕk is chosen as

ϕk(x) =
{

1/Ak, x ∈ Ωk
0, otherwise (11)

where Ak is the area of the smoothing cell Ωk, and is determined by

Ak =
∫

Ωk

dΩ =
1
3

Nk
e

∑
j=1

Aj
e (12)

where Nk
e is the number of elements associated with the edge k and Aj

e is the area of the
jth element associated with the edge k.

The smoothed strains can be then determined by

ϵ̃h
k = B̃kdk (13)

where dk is the displacement vector containing degree of freedoms of the nodes of edge
k, and B̃kj(j = 1, 2) are the strain-displacement matrices calculated by

B̃kj =


Ñkj

1,x 0 . . . Ñkj
n,x 0

0 Ñkj
1,y . . . 0 Ñkj

n,y

Ñkj
1,y Ñkj

1,x . . . Ñkj
n,y Ñkj

n,x

 (14)

where Ñkj
I,α is the smoothed version of shape function derivative, see [10] for more details.

4. ES-FEM BASED KINEMATIC HOMOGENISED SHAKEDOWN ANALYSIS

The smoothed accumulative strains in micro-problem are approximated using the
ES-FEM method and linked to the macroscopic accumulative strains by

∆E =
1

|Ωm|

∫
Ωm

∆ϵh dΩm =
1

|Ωm|

Ned

∑
k=1

AkB̃k∆d (15)

The key differences between the kinematic shakedown analysis formulated for the
RVE and that of macro-structures are the periodic conditions for the accumulative dis-
placements and the averaging relations for the accumulative strains. These constraints
can be conveniently performed within the framework of the computational homogeniza-
tion method [2]. The periodic condition for each pair {x+, x−} of the RVE boundary is

∆uh(x+)− ∆E · x+ = ∆uh(x−)− ∆E · x− (16)

which can be then expressed in the matrix form as [11]

A1∆d + A2∆E = 0 (17)

in which A1 and A2 are the link-topology matrices, consisting of {0, 1,−1} only.
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Employing the smoothed accumulative displacement and strain fields, the homog-
enized formulation for kinematic shakedown analysis of perforated materials governed
von Mises failure criterion in plane stress can be discretized as

λ+ = min
ϵp

ki , ∆u, ∆E

NL

∑
i=1

Ned

∑
k=1

Ak

√
ϵ

pT
ki Y−1ϵ

p
ki

s.t



NL

∑
i=1

Ned

∑
k=1

Akσ
eT
ki ϵ

p
ki = 1

∆ϵh
k =

NL

∑
i=1

ϵ
p
ki = B̃k∆d, k = 1, 2, . . . ,Ned

∆E =
1

|Ωm|

Ned

∑
k=1

AkB̃k∆d

A1∆d + A2∆E = 0

(18)

The objective function of the problem (18) is cast in a form involving a sum of norms as

DESFEM =
NL

∑
i=1

Ned

∑
k=1

Ak

∣∣∣∣∣∣JTϵ
p
ki

∣∣∣∣∣∣ (19)

where ||·|| is the Euclidean norm, i.e, ||v|| = (vTv)1/2, and J is the so-called Cholesky
factor of Y−1.

Defining additional variables χki as

χki = JTϵ
p
ki (20)

The problem (18) can be then cast in the form of a standard conic programming
problem

λ+ = min
ϵp

ki , ∆u, ∆E

NL

∑
i=1

Ned

∑
k=1

ξiski

s.t



NL

∑
i=1

Ned

∑
k=1

Akσ
eT
ki ϵ

p
ki = 1

∆ϵh
k =

NL

∑
i=1

ϵ
p
ki = B̃k∆d, k = 1, 2, . . . ,Ned

∆E =
1

|Ωm|

Ned

∑
k=1

AkB̃k∆d

A1∆d + A2∆E = 0
||χki|| ≤ ski, i = 1, 2, . . . ,NL; k = 1, 2, . . . ,Ned
χki = JTϵ

p
ki, i = 1, 2, . . . ,NL; k = 1, 2, . . . ,Ned

(21)

The implementation code of the problem (21) is performed within the Matlab environ-
ment and the optimisation problem with conic constraint is solved by using the highly
efficient solver, Mosek.
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5. NUMERICAL EXAMPLE

Circular and rectangular perforated materials are examined in this section. In all
examples, the square RVEs of a × a (a = 1 mm) is considered, and under the bi-axial
cyclic loads varying independently as

Σ =
[
µ1Σ11 µ2Σ22

]T , 0 ≤ µi ≤ 1, i = 1, 2 (22)

5.1. Circular perforated materials

 

 

 

 

 

 

 

 

 

 

Fig. 2. The RVE of circular perforated mate-
rials: geometries, macroscopic stress loads

and finite element mesh of 524 nodes and
1, 372 edges

A thin plate under plane stress condition
is considered first. Repeated variable macro-
scopic stress loads are shown in Fig. 2. Let Vf
be the volume fraction.

Fictitious elastic stresses were calcu-
lated using the computational homogenisation
method presented in [2, 3]. Given elastic pa-
rameters are: Young modulus E = 70 GPa and
Poisson’s ratio ν = 0.3. The computed macro-
scopic strength and fatigue domains of the cir-
cular perforated materials for the case when
Vf = 0.3 and α = 45◦ are plotted in Fig. 3,
and compared with those reported by Carvelli
et al. [12] and Maier and Carvelli [4], in which
the periodic displacement fields were approxi-
mated and a direct iterative optimisation algo-
rithm was used. The effects of the porosity on
the macroscopic fatigue criterion are also illus-
trated Fig. 4.
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Fig. 3. Circular perforated materials: macroscopic strength (Limit analysis - LA)
and fatigue domains (Shakedown - SD) for Vf = 0.3 and α = 45◦
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Fig. 4. Circular perforated materials: the effect of the porosity on the macroscopic fatigue domain

The three dimensional macroscopic fatigue domains of circular perforated materials
under three independent macroscopic loads (Σ11, Σ22, Σ12) are plotted in Figs. 5 and 6,
where Vf = 0.3 and α = 0◦ or α = 45◦. The computed values of each domain were ob-
tained by solving 440 optimisation problems of 77, 880 variables per each. The computed

(a) 3D view (b) Σ11 − Σ22

(c) Σ11 − Σ12 (d) Σ22 − Σ12

Fig. 5. Circular perforated materials: macroscopic fatigue domains for Vf = 0.3 and α = 0◦
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(a) 3D view (b) Σ11 − Σ22

(c) Σ11 − Σ12 (d) Σ22 − Σ12

Fig. 6. Circular perforated materials: macroscopic fatigue domains for Vf = 0.3 and α = 45◦

macroscopic fatigue domains can be fitted in the form of a general quadratic function as

Ψ(Σ) =
b1

σ2
p

Σ2
11 +

b2

σ2
p

Σ2
22 +

b3

σ2
p

Σ11Σ22 +
b4

σ2
p

Σ2
12 +

a1

σp
Σ11 +

a2

σp
Σ22 − 1 = 0 (23)

where b2
3 − 4b1b2 < 0. By means of the least square method, material parameters ai and

bi can be numerically approximated and reported in Table 1.

Table 1. Circular perforated materials: material parameters of fitted fatigue criteria

Materials Vf b1 b2 b3 b4 a1 a2

von Mises (α = 0◦)

0.1 2.2930 2.3027 −0.6712 8.1464 0.0000 0.0000
0.2 2.9709 2.9718 −0.9333 14.8425 0.0000 0.0000
0.3 4.6544 4.6634 −0.8393 26.6311 0.0000 0.0000
0.4 8.2446 8.2433 −0.3171 54.0049 0.0000 0.0000

von Mises (α = 45◦)

0.1 3.5582 3.5274 −0.2086 4.0523 0.0000 0.0000
0.2 6.1697 6.0686 −0.6391 5.9225 0.0000 0.0000
0.3 10.4769 10.4879 −1.9112 10.3136 0.0000 0.0000
0.4 19.6536 19.6912 −4.6518 22.0363 0.0000 0.0000
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Next, the present solutions are compared with those previously investigated in [13]
using both kinematic and static limit analysis. To this end, the computed macroscopic
domains are mapped into the plane involving the average hydro-static stress Σm and a
macroscopic stress Σcp, defined by

Σm =
Σ11 + Σ22

2
, Σcp =

√
3(Σ11 − Σ22)

2
(24)
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0

0.5
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1.5

cp
/k

LA-ESFEM
SD-ESFEM
Trillat and Pastor (2005)
Gurson (1977)

Fig. 7. Circular perforated materials: the
mapped domains in comparison with oth-

ers in case of Vf = 0.16

Fig. 7 illustrates the present computed do-
mains with those reported in [13, 14]. The
present strength domains are not matched
with those of [13] using finite element method.
This may be due to the fact that different types
of boundary conditions are applied in the two
formulations, i.e. the periodic conditions (ũ =
u − E · x periodic on boundary of RVE) in
the present approach and the uniform strain
boundary conditions (ũ = 0 on boundary of
RVE) in [13].

5.2. Rectangular perforated materials
Finally, an RVE with a rectangular hole

(L1 × L2) at its center, as shown in Fig. 8 is con-
sidered. The matrix of the rectangular perforated RVE is aluminium Al with yield stress
σp = 137 MPa and obeyed von Mises criterion.

-0.5 0 0.5
-0.5

0

0.5
Solid part

Fig. 8. The rectangular perforated RVE: geometry and mesh of 1041 nodes and 2955 edges

The effects of the hole’s shape on fatigue and strength domains are shown in Fig. 9
in the plane of macro principal stress (Σ11 − Σ22). When considering macro shear stress
Σ12 the effects of the hole’s shape on the three-dimensional fatigue domains are shown in
Fig. 10. The fitted functions of the computed fatigue domains for rectangular perforated
material are reported in Table 2.
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Fig. 9. Rectangular perforated materials: macroscopic strength domain
and fatigue domain with L1 = 0.1

(a) L2 = 0.1 (b) L2 = 0.3

(c) L2 = 0.5 (d) L2 = 0.7

Fig. 10. Rectangular perforated materials: three dimensional fatigue domains with L1 = 0.1
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Table 2. Rectangular perforated materials: material parameters of fitted fatigue criteria

Materials L2 b1 b2 b3 b4 a1 a2

von Mises (α = 0◦)

0.1 1.2691 1.6297 −0.2945 6.2576 0.0000 0.0000
0.3 3.6236 1.0311 −0.2987 11.6711 0.0000 0.0000
0.5 7.0256 1.1769 −0.4207 26.6209 0.0000 0.0000
0.7 16.6706 0.7398 −0.2296 53.5227 0.0000 0.0000

6. CONCLUSION

A computational procedure, that uses the edge-based smoothed finite element me-
thod in combination with the homogenisation theory and kinematic shakedown theo-
rem, for the estimation of the macroscopic strength and fatigue domains of periodic per-
forated materials is described. Numerical examples are performed to show the effects of
the hole’s shape and size on the macroscopic strength and fatigue domains. Moreover,
the present numerical method based on the ES-FEM can result in more accurate solu-
tions than that of using the FEM reported in the literature. The method can be further
developed for the problems with higher dimension, more complex yield conditions and
random voids, which is the subject of future research.
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