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Abstract. In this paper, an approach is proposed and presented to tackle the vibro-acoustic
properties of finite clamped composite sandwich plates with foam core. Composite sand-
wich plates are treated as being orthotropic and the apparent bending stiffnesses are cal-
culated for the two principal directions. The apparent bending stiffnesses of composite
sandwich plate are estimated by finite element calculation on beam elements cut from the
considered composite sandwich plates. The sound transmission loss of clamped compos-
ite sandwich plates is predicted using orthotropic Kirchhoff’s plate theory, together with
the obtained bending stiffnesses in two principal directions. Several sound transmission
loss measurements were conducted in the laboratory on fiberglass/polyester composite
sandwich plates with polyurethane foam core. The predicted sound transmission loss is
compared with measured data and the agreement is reasonable.

Keywords: vibroacoustic properties, composite sandwich plate, foam core, sound transmis-
sion loss, apparent bending stiffness.

1. INTRODUCTION

The composite sandwich plate with a foam core is widely used in many industries,
including aircraft, building, motor vehicle and ships because of the advantages like high
strength, light weight, low cost and good sound insulation. A very important vibro-
acoustic index used to measure the potential of sandwich plates to absorb sounds trans-
mitted through them is the sound transmission loss (STL). This is the ratio of the sound
power incident on the incident plate to the sound power transmitted by the radiating
plate. The STL of sandwich structures has been the subject of many studies [1–5]. Espe-
cially, Sahu et al. [6] investigated the active control of sound transmission through sand-
wich plate with a soft core using volume velocity cancellation. D’Alessandro et al. [7]
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reviewed the most significant works in literature of the acoustic behavior of sandwich
panels including theoretical and experimental methods. In [8], by applying modal ex-
pansion method, Shen et al. proposed a theoretical model to predict the STL of a simply
supported sandwich plate with corrugated core. Naify et al. [9] presented transfer ma-
trix method and experiment to determine the transmission loss of honeycomb sandwich
plate with attached gas layers. Based on Mindlin’s plate theory [10], Wang et al. [11] de-
rived the governing equation of bending vibration for unbounded orthotropic sandwich
panels with orthotropic composite skins and honeycomb core, and used the impedance
method, these authors also obtained the expression for transmission coefficient. Zhou
et al. [12] studied and optimized the sound transmission loss through a sandwich panel
with poroelastic core layer. Nilsson [13] proposed a method to determine the dynamic
properties of sandwich panels by some simple measurements on sandwich beams.

In [14], Qu et al. used Finite element method to model the vibroacoustic emission of
composite sandwich structures. An improved method-the wave finite element method
described by Mace and Mancony [15], Droz et al. [16] and Chronopoulos et al. [17], is
a numerical model reduction method which permits the modelling of each cell element
rather than modelling the complete structure. The method entails the combination of
both the finite element and the periodicity of the structure with the advantage of low
computational cost. Recently, Yang et al. [18,19] has applied this model to predict the STL
of multi-layered plates with fluid layers. In short, to describe the vibration-acoustic re-
sponse and calculate the STL of composite sandwich plates, one can apply various meth-
ods, mathematical models and theories such as: Analytical method, Numerical method
and/or Experimental method; Kirchhoff’s plate theory or Mindlin’s plate theory for face
sheets sandwich plate and Biot’s theory for poroelastic core layer.

In this paper, fiberglass/polyester composite sandwich plates with a foam core, PU
(Polyurethane), are treated as being orthotropic and the apparent bending stiffness is cal-
culated for the two principal directions. The apparent bending stiffness of composite
sandwich plate is estimated by finite element calculation on sandwich beams cut from
the considered composite sandwich plate. Using standard orthotropic Kirchhoff thin
plate theory, together with the obtained bending stiffness in two directions, the sound
transmission loss of finite clamped composite sandwich plates is predicted with modal
expansion method. Some experiments to measure the sound transmission loss were car-
ried out in the laboratory on considered composite sandwich plates. The predicted STL
is also compared with experimental results.
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2. THEORETICAL FORMULATION

2.1. Plate geometry and assumptions

Suppose there is a finite, rectangular composite sandwich plate clamped on four
edges, as shown in Fig. 1. The sandwich plate for this study refers to a structure con-
sisting of two thin laminated composite sheets bonded to a polyurethane foam core. The
sandwich plate has length a along x-direction, width b along y-direction and thickness
along z-direction.

 

 

 

laminated composite sheets bonded to a polyurethane foam core. The sandwich plate has length 

a along x-direction, width b along y-direction and thickness along z-direction 

 

Fig. 1.  Schematic of sound transmission across a clamped rectangular composite sandwich plate:(a) 

Composite sandwich plate; (b) overall view; (c) side view from the direction of arrow in (b). 

         Obviously, the plate divides the spatial region into two modes: the incident field (z < 0) 

and the transmitted field (z > 0). An oblique plane sound wave varying harmonically in time is 

incident on the bottom side of the plate, with elevation angle φ and azimuth angle θ, Fig.1 (b). 

The plate vibration induced by the positive-going wave and the negative-going wave (including 

the reflected wave and the radiating wave) in the incident acoustic field, and the positivegoing 

wave in the transmitted field. The pressure changes caused by this disturbance will in turn 

significantly influence the plate vibration, resulting the so-called composite laminated plate 

coupling. In the present study, it is assumed that the plate deforms out of plane (in the z-

direction), positive upward.  

2.2. Composite sandwich plate dynamics 

In most applications, and for simplicity, the composite sandwich plate can be regarded as 

an orthotropic single plate. The dynamical displacement of an orthotropic symmetric composite 

plate in the air on both sides and subjected to uniform, plane sound wave varying harmonically 

can be described by [11], [13]: 

  (1) 

where: w is the normal displacement of the plate, Dx and Dy are the apparent bending stiffnesses 

in x and y directions, respectively, m* is the surface density of the plate, ρ0 is the air density, ω 

is the angular frequency of the incident sound and  denote the velocity potentials for 

the acoustic fields in the proximity of the plate, corresponding to the sound incidence and the 

structure radiating field, respectively. 
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(a) Composite sandwich plate
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(b) Overall view
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(c) Side view from the direction of arrow in (b)

Fig. 1. Schematic of sound transmission across a clamped rectangular composite sandwich plate

Obviously, the plate divides the spatial region into two modes: the incident field
(z < 0) and the transmitted field (z > 0). An oblique plane sound wave varying har-
monically in time is incident on the bottom side of the plate, with elevation angle φ and
azimuth angle θ, Fig. 1(b). The plate vibration induced by the positive-going wave and
the negative-going wave (including the reflected wave and the radiating wave) in the in-
cident acoustic field, and the positive-going wave in the transmitted field. The pressure
changes caused by this disturbance will in turn significantly influence the plate vibra-
tion, resulting the so-called composite laminated plate coupling. In the present study, it
is assumed that the plate deforms out of plane (in the z-direction), positive upward.
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2.2. Composite sandwich plate dynamics

In most applications, and for simplicity, the composite sandwich plate can be re-
garded as an orthotropic single plate. The dynamical displacement of an orthotropic
symmetric composite plate in the air on both sides and subjected to uniform, plane sound
wave varying harmonically can be described by [11, 13]

Dx
∂4w (x, y; t)

∂x4 + 2
√

DxDy
∂4w (x, y; t)

∂x2∂y2 + Dy
∂4w (x, y; t)

∂y4 + m∗ ∂2w(x, y; t)
∂2t

− jωρ0 [Φ1(x, y, z; t)− Φ2(x, y, z; t)] = 0,
(1)

where w is the normal displacement of the plate, Dx and Dy are the apparent bending
stiffnesses in x and y directions, respectively, m∗ is the surface density of the plate, ρ0 is
the air density, ω is the angular frequency of the incident sound and Φi (i = 1, 2) denote
the velocity potentials for the acoustic fields in the proximity of the plate, corresponding
to the sound incidence and the structure radiating field, respectively.

The displacement of the composite sandwich plate induced by the incident sound
can be expressed as

w(x, y; t) = w0e−j(kxx+kyy−ωt). (2)

The acoustic velocity potential in the incident field (Fig. 1) is defined by [8]

Φ1(x, y, z; t) = Ie−j(kxx+kyy+kzz−ωt) + βe−j(kxx+kyy−kzz−ωt), (3)

where I and β are the amplitudes of the incident and the reflected waves, respectively.
Similarly, in the transmitting field adjacent to the radiating upper plate, there exist no
reflected waves, and therefore the velocity potential in the transmitting waves, given as:

Φ2(x, y, z; t) = ε e−j(kxx+kyy+kzz−ωt), (4)

where ε is the amplitude of the transmitting wave. These wave numbers are determined
by the elevation angle φ and azimuth angle θ of the incident sound wave as

kx = k0 sin φ cos θ; ky = k0 sin φ sin θ; kz = k0 cos φ, (5)

where k0 = ω/c0 is the acoustic wave number in air a c0 is the acoustic speed in the air.

With the plate fully clamped on four edges, the boundary conditions can be ex-
pressed as

x = 0, a, w = 0,
∂w
∂x

= 0; y = 0, b, w = 0,
∂w
∂y

= 0. (6)
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At the air-plate interface, the normal velocity is continuous, yielding the correspond-
ing velocity compatibility condition equations

z = 0,
∂Φ1

∂z
=

∂Φ2

∂z
= jωw; z = h,

∂Φ1

∂z
=

∂Φ2

∂z
= jωw. (7)

By using the orthogonal plate eigenfunctions and the generalized coordinates, the
dynamical displacement of the composite sandwich plate can be rewritten as

w (x, y; t) =
∞

∑
m=1

∞

∑
n=1

φmn (x, y) qmn (t) =
∞

∑
m=1

∞

∑
n=1

(
1 − cos

2mπx
a

)(
1 − cos

2nπx
b

)
αmnejωt,

(8)
where qmn(t) = αmnejωt. Similarly, the acoustical velocity potentials of Eqs. (3) and (4)
are expressed by [8]

Φ1(x, y, z; t) =
∞

∑
m=1

∞

∑
n=1

Imn φmne−j(kzz−ωt) +
∞

∑
m=1

∞

∑
n=1

βmn φmne−j(−kzz−ωt), (9)

Φ2(x, y, z; t) =
∞

∑
m=1

∞

∑
n=1

εmn φmne−j(kzz−ωt). (10)

From the general forms of Eqs. (2)–(4) and the generalized forms of Eqs. (8)–(10), by
utilizing the Cosine Fourier transform, one can obtained the following expression

χmn =
4
ab

b∫
0

a∫
0

χe−j(kxx+kyy) cos
2mπx

a
cos

2nπx
b

dxdy, (11)

where the symbol χ can be referred to any of the coefficients I, β and ε.

2.3. Displacement continuity condition at air-plate interfaces

Suppose ξ1 and ξ2 are the acoustic particle displacements in the incident and trans-
mitted air medium, respectively. The air particle displacement and the acoustic pressure
are related by the air momentum equation, as [20]

∂2

∂t2 ξ1 = − 1
ρ0

∂p1

∂z

∣∣∣∣
z=0

,
∂2

∂t2 ξ2 = − 1
ρ0

∂p2

∂z

∣∣∣∣
z=0

, (12)

where, the acoustic pressure can be expressed by the acoustical velocity potentials through
Bernoulli’s equation, as [8]

pi = ρ0

[
∂Φi

∂t

]
, (i = 1, 2) . (13)

The displacements of the air particle adjacent to the plate can be expressed as

ξ1 = ξ10e−j(kxx+kyy−ωt), ξ2 = ξ20e−j(kxx+kyy−ωt). (14)
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Substituting (13), (14) into (12), and applying the acoustical velocity potentials of (9)
and (10), one can obtain

ξ10 =

(
∞

∑
m,n=1

Imn φmn −
∞

∑
m,n=1

βmn φmn

)
kz

ω
ej(kxx+kyy),

ξ20 =
∞

∑
m,n=1

εmn φmn
kz

ω
ej(kxx+kyy).

(15)

According to the continuity condition, the displacement of the air particles at the
surface adjacent to the plate must be equal to the displacement of the particles of attached
plate surface, thus

ξ10 = w0, ξ20 = w0. (16)

From (11), we obtain the following relation between coefficients Imn and I0 (initial
amplitude of incident wave)

Imn =
4I0abk2

xk2
y
(
1 − e−jkxa) (1 − e−jkyb)

(4m2π2 − k2
xa2)

(
4n2π2 − k2

yb2
) , (17)

and from (2), (14), (15) and (16), one can express the coefficients in the acoustical velocity
potentials by the plate displacement coefficients, as

βmn = Imn −
ω

kz
αmn, εmn =

ω

kz
αmn. (18)

Substituting (9) and (10) into (1) and applying the orthogonality of the modal func-
tions, one gets

q̈mn + ω2
mnqmn(t)−

jωρ0

m∗

[
Imne−j(kzz−ωt) + βmne−j(−kzz−ωt) − εmne−j(kzz−ωt)

]
= 0, (19)

where m∗ = 2tsρs + tcρc and the natural frequencies of clamped orthotropic rectangular
composite sandwich plate are determined by

ω2
mn =

∫∫
A

(
Dx

∂4φmn

∂4x
+ 2
√

DxDy
∂4φmn

∂2x∂2y
+ Dy

∂4φmn

∂4y

)
φmndA

m∗
∫∫
A

φmn · φmndA
. (20)

Therefore, the coefficient αmn is defined from (19) by:

αmn =
2jωρ0 Imn

m∗

[
ω2

mn − ω2 + 2
jω2ρ0

mkz

]−1

. (21)
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Once the plate displacement coefficients αmn are known, the acoustical velocity po-
tentials will be known and given by

Φ1(x, y, 0) = 2Ie−j(kxx+kyy) −
∞

∑
m=1

∞

∑
n=1

ω

kz
αmn φmn(x, y),

Φ2(x, y, 0) =
ω

kz

∞

∑
m=1

∞

∑
n=1

αmn φmn(x, y).
(22)

3. DEFINITION OF SOUND TRANSMISSION LOSS

The power of incident sound is defined as [20]

Π1 =
1
2

Re
∫∫
A

p1v∗1dA, (23)

where v∗1 = p1/ (ρ0c0) is the local acoustic velocity, and p1 is the sound pressure in the
incident field,

p1 = jρ0ω Φ1 (x, y, 0) = jρ0ω

[
2Ie−j(kxx+kyy) −

∞

∑
m=1

∞

∑
n=1

ω

kz
αmn φmn(x, y)

]
. (24)

Substitution p1 and v∗1 into (23) yields

Π1 =
ρ0ω2

2c0

∣∣∣∣∣∣4I2
∫∫
A

e−2j(kxx+kyy)dA − 4I
ω

kz

∞

∑
m,n=1

αmn

∫∫
A

e−j(kxx+kyy)φmndA

+
ω2

k2
z

∞

∑
m,n=1

∞

∑
k,l

αmnαkl

∫∫
A

φmn(x, y)φkl(x, y)dA

∣∣∣∣∣∣ .

The transmitted sound power can be defined as

Π2 =
1
2

Re
∫∫
A

p2v∗2dA =
ρ0ω4

2c0k2
z

∣∣∣∣∣∣
∞

∑
m,n=1

∞

∑
k,l=1

αmnαkl

∫∫
A

φmn(x, y)φkl(x, y)dA

∣∣∣∣∣∣ , (25)

where v∗2 = p2/ (ρ0c0) is the local acoustic velocity and p2 is the sound pressure in the
transmitted field,

p2 = jρ0ω Φ2 (x, y, 0) = jρ0
ω2

kz

∞

∑
m=1

∞

∑
n=1

αmn φmn(x, y). (26)

Finally, the power transmission coefficient can be obtained as

τ0 (θ, φ, f ) =
Π2

Π1
. (27)
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The diffuse field sound transmission coefficient over all angles of incidence φ and θ

is calculated by [8]

τd =

2π∫
0

θL∫
0

τ0 (φ, θ, f ) sin φ cos φdφdθ

2π∫
0

θL∫
0

sin φ cos φdφdθ

. (28)

The integral (28) has been evaluated numerically by using Simpson’s 1/3 rule with
15◦-angular increments in φ and θ. θL is the limiting angle of incidence and is taken as 78◦

for field-incidence calculations.

Then the sound transmission loss across the composite sandwich plate is defined by:

STL = 10 log10

(
1
τd

)
. (29)

4. DETERMINATION OF APPARENT BENDING STIFFNESS

For homogeneous plates, the bending stiffness is frequency independent; however,
for sandwich plates, the bending stiffness becomes frequency dependent. According to
Nilsson’s model [13], as an approximation, the bending stiffness of a sandwich plate can
be defined as that of a simple homogeneous beam having the same dynamic properties as
the plate at certain frequencies. In general, the apparent bending stiffnesses of sandwich
plates can be determined by measuring the natural frequencies of beams cut out of the
structures. But in this study, the apparent bending stiffnesses of the studied composite
sandwich plates were inferred basing on the natural frequencies calculated by the finite
element method for the aforementioned beams. That is also the key step of this work.

The sandwich plates studied here are manufactured with polyurethane foam core,
as shown in Fig. 2. Eight different composite sandwich plates are investigated here,
and their properties are measured and shown in Table 1. The sheets are made of glass
fiber/polyester symmetric composites with configuration [0◦/90◦/0◦]s for plate A, C, E,
G and [0◦/90◦/0◦/90◦]s for plate F; H, I, K; ts and tc denotes the thickness of skin and
core respectively.

Beam A0 and A90 were cut from plate A along the 0◦ (or x) and 90◦ (or y) directions
respectively. The same operations are done to the other plates. The sizes of beams A0,
C0, E0, F0, G0, H0, I0 and K0 are 1200 mm × 50 mm; the sizes of beams A90 and C90,
E90, F90, G90, H90, I90 and K90 are 1100 mm × 45 mm.
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Fig. 2. Composite sandwich plate and beams A0, A90. 

The natural frequencies of sixteen above free-free composite sandwich beams were 

calculated by ANSYS finite element codes. The apparent bending stiffness of the beam is 

obtained according to the following expression [13]: 

   (30) 

where: fn is the eigenfrequency for mode n; L is the length and m* is the mass per unit area. 

Here, for the beam studied with free-free boundary conditions, the values of αn can be found in 

Ref. [13]. 

The first ten eigenfrequencies and corresponding apparent bending stiffnesses of beams 

A0, A90, C0 and C90, for example, are shown in Table 2. The apparent bending stiffness curve 

and function along the entire frequency range of interest are reconstructed by applying the LS 

method to the set of (fxn, Dxn) and (fyn, Dyn) points obtained numerically for each eigenfrequency. 

Table 2. Eigenfrequencies and apparent bending stiffnesses of four beams. 

Mode Beam A0 Beam A90 Beam C0 Beam C90 

f (Hz) Dx (Nm) f (Hz) Dy (Nm) f (Hz) Dx (Nm) f (Hz) Dy (Nm) 

1 82.334 10523.81 95.643 10026.90 82.076 13779.59 94.927 13014.55 
2 223.59 10230.23 256.26 9488.29 216.69 12660.41 237.56 10743.91 
3 407.07 8826.87 468.1 8241.22 397.31 11079.41 425.86 8987.47 
4 596.87 6944.65 650.3 5820.55 574.29 8471.15 609.77 6743.07 
5 675.41 3984.97 726.59 3256.23 646.2 4806.33 689.32 3861.60 

44*2244*22 /4 ; /4 nyynynnxxnxn LmfDLmfD apap ==

Fig. 2. Composite sandwich plate and beams A0, A90

Table 1. Properties of composite sandwich plates tested

Plate a × b (m)
Thickness
ts/tc/ts

(×10−3 m)

Skin
density ρs

(kg/m3)

Core
density ρc

(kg/m3)

E1

(GPa)
E2

(GPa)
G12

(GPa)
v12

Ec

(GPa)
vc

A 1.2 × 1.2 2.53/30/2.53 1600 46.880 10.580 2.640 1.020 0.17 0.0570 0.25
C 1.2 × 1.2 2.53/30/2.53 1600 57.870 10.580 2.640 1.020 0.17 0.0580 0.25
E 1.2 × 1.2 2.53/30/2.53 1600 79.860 10.580 2.640 1.020 0.17 0.0585 0.25
F 1.2 × 1.2 3.37/30/3.37 1600 79.860 10.580 2.640 1.020 0.17 0.0585 0.25
G 1.2 × 1.2 2.53/40/2.53 1600 79.860 10.580 2.640 1.020 0.17 0.0585 0.25
H 1.2 × 1.2 3.37/40/3.37 1600 79.860 10.580 2.640 1.020 0.17 0.0585 0.25
I 1.2 × 1.2 3.37/50/3.37 1600 114.580 10.580 2.640 1.020 0.17 0.0590 0.25
K 1.2 × 1.2 3.37/50/3.37 1600 218.140 10.580 2.640 1.020 0.17 0.0595 0.25

The natural frequencies of sixteen above free-free composite sandwich beams were
calculated by ANSYS finite element codes. The apparent bending stiffness of the beam is
obtained according to the following expression [13]:

Dxn = 4π2 f 2
xnm∗L4

x/α4
n, Dyn = 4π2 f 2

ynm∗L4
y/α4

n, (30)

where fn is the eigenfrequency for mode n; L is the length and m∗ is the mass per unit
area. Here, for the beam studied with free-free boundary conditions, the values of αn can
be found in Ref. [13].

The first ten eigenfrequencies and corresponding apparent bending stiffnesses of
beams A0, A90, C0 and C90, for example, are shown in Table 2. The apparent bending
stiffness curve and function along the entire frequency range of interest are reconstructed
by applying the LS method to the set of ( fxn, Dxn) and ( fyn, Dyn) points obtained numeri-
cally for each eigenfrequency.
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Table 2. Eigenfrequencies and apparent bending stiffnesses of four beams

Mode
Beam A0 Beam A90 Beam C0 Beam C90

f (Hz) Dx (Nm) f (Hz) Dy (Nm) f (Hz) Dx (Nm) f (Hz) Dy (Nm)

1 82.334 10523.81 95.643 10026.90 82.076 13779.59 94.927 13014.55
2 223.59 10230.23 256.26 9488.29 216.69 12660.41 237.56 10743.91
3 407.07 8826.87 468.10 8241.22 397.31 11079.41 425.86 8987.47
4 596.87 6944.65 650.30 5820.55 574.29 8471.15 609.77 6743.07
5 675.41 3984.97 726.59 3256.23 646.20 4806.33 689.32 3861.60
6 707.32 2240.37 761.04 1831.25 672.17 2665.84 722.84 2176.74
7 784.18 1553.56 840.93 1261.42 739.37 1819.74 798.40 1498.21
8 855.54 1120.85 920.24 915.62 806.86 1313.56 874.31 1089.01
9 897.52 790.56 970.72 652.95 841.34 915.33 918.13 769.64

10 934.56 574.38 1016.2 479.50 876.75 666.08 962.95 567.32

5. VALIDATION STUDY

For the validation test, the STL across a finite aluminium sandwich plate with poroe-
lastic material is calculated and compared with theoretical result of Bolton et al. [3]. The
property parameters of aluminium plates and poroelastic material are presented in Ta-
ble 3.

It is obvious from Fig. 3 that there is an acceptable agreement between present ana-
lytical and theoretical results shown in [3].
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Table 3. Parameters of the aluminium skin and the core layer

Parameter Symbol Value

The skin of sandwich plate

Young’s Modulus Es 70 GPa
Density ρs 2700 kg/m3

Poisson’s ratio vs 0.33
Upper plate thickness h1 1.27 mm
Bottom plate thickness h2 0.762 mm
Length × Width of plate a × b 1.2 × 1.2 m
Porous layer thickness H 27 mm
Initial amplitude of incident wave I0 1 m2/s

The core of sandwich plate

Density ρc 30 kg/m3

Young’s Modulus Ec 8.105 Pa
Poisson’s ratio vc 0.40

6. EXPERIMENTAL STUDY

The STL of the eight sandwich plates are measured according to ISO 140-4 [21]. The
test samples are clamped between two reverberation rooms, one (2.06 m × 3.7 m × 2.1 m)
is used as the source room and the other (1.54 m × 3.7 m × 2.1 m) is the receiving room,
as shown in Fig. 4.
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The sound transmission loss is determined by [21]:

STL = L1 − L2 + 10 log
(

APT
0.161V2

)
(31)
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where L1 and L2 are the average sound pressure levels in the source and receiving room,
respectively. Ap is the test-specimen area; V2 is the volume of the receiving room; T is
the reverberation time of the receiving room when the sandwich plate is clamped be-
tween the two rooms. The mounting conditions are described in Fig. 4. Eight composite
sandwich plates are tested, and together with prediction, the results are shown in Figs.
5–8.

Fig. 5. Measured and predicted STL for Plate A and C

Fig. 6. Measured and predicted STL for Plate I and K

From Fig. 5 to Fig. 8, as can be seen that experimental results approximately agree
with the theoretical prediction. As shown, for example, with plate A, at low frequen-
cies, below 200 Hz, the difference between measurement and prediction is less than 6 dB.
At frequency 1600 Hz, this difference is 7 dB. The similarity between the measured and
the calculated results over the remaining frequency range is observed. Experimental re-
searches have shown that the boundary conditions may have some influences on STL
below the coincidence frequency. Secondly, around the coincidence frequency, theoreti-
cal results seem to overestimate STL compared with experiments.
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Fig. 7. Measured and predicted STL for Plate E and F

Fig. 8. Measured and predicted STL for Plate G and H

- From Figs. 5 and 6, described the STL across plate A, plate C and plate I, plate K
respectively, we can see that, increasing the core density increases considerably the STL
through the sandwich plates, specifically for sandwich plate K versus plate I:

+ In the low frequency region ( f < 125 Hz), theoretically, the STL increases by 1,484
dB at 100 Hz; experimentally, the STL increased by 1.76 dB.

+ In the mid frequency region (125 Hz < f < 2000 Hz), theoretically, the STL in-
creases by 3,206 dB at 2000 Hz; experimentally, the STL increased by 4.97 dB.

+ In the high frequency region ( f > 2000 Hz), theoretically, the STL increases by 1,711
dB at 10000 Hz; experimentally, the STL increases by 4.79 dB at this same frequency.

- Figs. 6 and 7 compared the measured and predicted STL for plate G with plate H
and plate E with plate F respectively. It is obvious that, the STL through the sandwich
plates increases as the thickness of the skin plates increased, for example with plate F
(compare to plate E):
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+ In the low frequency region ( f < 125 Hz), theoretically, the STL increases by 0.4 dB
at 80 Hz; experimentally, the STL increased by 1.04 dB.

+ In the mid frequency region (125 Hz < f < 2000 Hz), theoretically, the STL in-
creases by 0.3 dB at 1000 Hz; experimentally, the STL increased by 2.49 dB.

+ In the high frequency region ( f > 2000 Hz), theoretically, the STL increases by 0.3
dB at 5000 Hz; experimentally, the STL increases by 4.4 dB at this same frequency.

7. CONCLUSIONS

In this paper, based on a new approach, the forced vibration equation of the compos-
ite sandwich plate with foam core is replaced by the vibration equation of an orthotropic
plate with two apparent bending stiffnesses in the two principal directions of the plate.
The apparent bending stiffnesses of composite sandwich plate are estimated basing on
the natural frequencies calculated by the finite element method for the composite sand-
wich beams cut from the considered composite sandwich plates (without any costly ex-
periments). Finally, the sound transmission loss through clamped finite rectangular com-
posite sandwich plates with foam core is predicted with modal expansion method.

A series of sound transmission loss measurements were conducted on composite
sandwich plates with skin layers of fiberglass/polyester and core layer of porous
polyurethane.

Theoretical predictions agree well with the experimental results in most frequency
ranges of interest. The theoretical approach presented in this work may provide a simple
tool for predicting the STL of finite composite sandwich structures with foam core.
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