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Abstract. The size-dependent behavior of a silicon microbeam with an axial force in
MEMS is studied using a nonlinear finite element procedure. Based on a refined third-
order shear deformation theory and the modified couple stress theory (MCST), nonlin-
ear differential equations of motion for the beam are derived from Hamilton’s principle,
and they are transferred to a discretized form using a two-node beam element. Newton-
Raphson based iterative procedure is used in conjunction with Newmark method to obtain
the pull-in voltages and deflections of a clamped-clamped microbeam under electrostatic
actuation. The influence of the axial force, applied voltage and material length scale pa-
rameter on the behavior of the beam is studied in detail and highlighted.

Keywords: microbeam, modified couple stress theory, electrostatic actuation, refined third-
order shear deformation theory, nonlinear finite element analysis.

1. INTRODUCTION

Microbeams are used in many micro-electromechanical system (MEMS) devices such
as capacitive MEMS switches and resonant sensors. Under electric actuation, both the DC
and AC voltages, these microbeams often undergo moderately large deflection, and thus
nonlinear static and dynamic analysis is required to assess the mechanical behavior of
the MEMS microbeams. Both analytical and numerical methods have been developed
for studying the response of electrically actuated microbeams.

The classical Euler-Bernoulli beam theory which ignores the size effect has been
employed by several authors to study mechanical behavior of MEMS microbeams. The
Euler–Bernoulli beam model was used in conjunction with the shooting method by Choi
and Lovell [1] in development of a numerical procedure for computing deflections and
stresses of a clamped microbeam under mechanical and electrostatic loads. Abdel–
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Rahman et al. [2] presented a nonlinear beam model for the electrically actuated mi-
crobeams of MEMS. The microbeam in the system is modeled as a distributed-mass struc-
ture bending under an electric actuation force and subjected to mid-plane stretching and
axial loading. The governing equation was solved by the shooting method for the deflec-
tions and frequencies. Younis et al. [3] derived the fourth-order differential equations of
motion for an axially loaded MEMS microbeam an electric load and subjected to a viscous
damping. With the aid of Galerkin method, the equations are converted to the discrete
form, and the static and dynamic pull-in behavior was studied in detail. Younis and
Nayfeh [4] employed the perturbation method to obtain the first-order nonlinear differ-
ential equations in their nonlinear analysis of a resonant microbeam under an electric ac-
tuation and an axial force. The effects of the axial force as well as the DC electrostatic and
AC harmonic forces on the dynamic responses were examined. Also using the pertur-
bation method, Abdel–Rahman and Nayfeh [5] studied response of a microbeam-based
resonant sensor to super-harmonic and sub-harmonic electric actuations. The frequency-
response and force-response curves were obtained for the sensor with clamped ends.
Chaterjee and Pohit [6] considered the pull-in problem of electrostatically actuated mi-
crocantilever beams with relatively large gap between the microbeam and the stationary
electrode. The obtained result reveals that the nonlinearities play a significant role when
pull-in occurs. Static and dynamic pull-in behavior of resonant microbeams was con-
sidered by Ghazavi et al. [7] using a two-node beam element and the software ANSYS,
respectively. Rezazadeh et al. [8] employed the finite difference method to compute pull-
in voltage of a fixed-fixed microbeam subjected to electrostatic load. The effect of axial
stress on the instability of the microbeam was considered by the authors. The pull-in in-
stability of microcantilever in MEMS devices was investigated by Kaneria et al. [9] with
the aid of the COMSOL Multiphysics finite element package.

The influence of size effect on mechanical behavior of MEMS has been taken into
consideration recently. Based on the modified couple stress theory (MCST) and Euler–
Bernoulli beam theory, Farokhi and Ghayesh [10] derived the governing equation for
nonlinear static and dynamic behaviors of microcantilever-based MEMS under an elec-
tric excitation. The obtained fourth-order equation was then converted into a reduced-
order model of the system, and dynamic response was computed with the aid of arc-
length continuation technique. The result of the work revealed that the classical theory
overestimated the amplitude of the transverse displacement and predicts the lower static
pull-in voltage. Ghayesh and Farokhi [11] considered the electrode of MEMS as a mi-
croplate in studying nonlinear behavior of electrically actuated MEMS resonators. The
weighted-residual method was used in conjunction with a continuation method coupled
with backward differentiation formula to obtain the nonlinear characteristics of the mi-
croplate. The influence of the size effect on the nonlinear response of the plate was ex-
amined. Baghani [12] presented an analytical method to study the size-dependent static
pull-in voltage of microcantilevers of MEMS. The method based on the modified vari-
ational iteration procedure enables to assess the nonlinear response of the microbeams
under electric actuation. Ghayesh et al. [13] studied nonlinear size-dependent resonant
behavior of MEMS resonators, in which the microbeam with an axial force is subjected to
both DC and AC voltages. Euler–Bernoulli beam theory and the MCST were adopted to
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derive the nonlinear differential equations, and Galerkin method was employed to obtain
the frequency-response curves of the system.

In this paper, the size-dependent behavior of a silicon microbeams with an axial force
under electostatic actuation of a DC voltage is studied using a nonlinear finite element
procedure. Different from above discussed references, the microbeam is modelled by
a refined third-order shear deformation theory, in which the transverse displacement is
split into bending and shear parts. Based on the MCST, nonlinear governing equations
for the microbeam are derived and transferred into a discretized form by a two-node
beam element. A Newton–Raphson based iterative procedure is used in conjunction with
the Newmark method to compute the response of the microbeam with clamped ends.
The effects of the axial force, the applied voltage and the material size parameter on the
behavior of the microbeam are studied and highlighted.

2. MATHEMATICAL FORMULATION

A clamped-clamped silicon microbeam with rectangular cross section formed one
side of a capacitor [4, 13] as depicted in Fig. 1 is considered. In the figure, L, h, b and
d are, respectively, the total length, height, width of the beam and the air-gap between
the microbeam and electrode. The Cartesian coordinates (x, y, z) is chosen such that the
(x, y) plane is coincident with the beam mid-plane.

 

DCV

L

b

d

h

x

y
z

Microbeam

Stationary electrode

Fig. 1. Model of an electrostatically actuated microbeam in MEMS

Based on the refined third-order shear deformation theory of Shimpi and Patel [14],
the axial and transverse displacements of a point in the beam, u1(x, z, t) and u3(x, t),
respectively, are given by

u1(x, z, t) = u0(x, t)− zwb,x(x, t)− f (z)ws,x(x, t),

u3(x, t) = wb(x, t) + ws(x, t),
(1)

where u0(x, t) is the axial displacement of a point on the mid-plane; wb(x, t) and ws(x, t)
are, respectively, the bending and shear parts of the transverse displacement; t is the time
variable, and the shearing shape function f (z) is of the form

f (z) = z
[
− 1

4
+

5
3

( z
h

)2 ]
. (2)
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In Eq. (1) and hereafter, a subscript comma is used to denote the derivative with respect
to the variable that follows, e.g. wb,x = ∂wb/∂x.

The normal strain (εxx) and the shear strains (γxz) based on the von Kármán nonlin-
ear strain-displacement relationship are given by

εxx = u1,x +
1
2

u2
3,x = u0,x − zws,xx − f (z)ws,xx +

1
2
(wb,x + ws,x)

2,

γxz = u1,z + u3,x = g(z)ws,x,
(3)

where g(z) = 1 − f,z = 5
[

1
4
−

( z
h

)2
]

.

The constitutive equation based on linear behavior of the beam material is

σxx = Eεxx, τxz = Gγxz, (4)

where σxx and τxz are, respectively, the normal and shear stresses; E, G =
E

2(1 + ν)
and ν

are Young’s modulus, shear modulus and Poisson’s ratio, respectively.
It is well-known that the classical continuum mechanics is not sufficient to predict

the size-dependent behavior of micron-scale structures. Several higher order continuum
theories, such as the couple stress theory that contains four material constants (two clas-
sical and two additional), strain gradient theory, micropolar theory, nonlocal elasticity
theory ... have been developed to account for the size effect in the small-scale structures.
The MCST proposed by Yang et al. [15] is adopted herein to evaluate the strain energy of
the microbeam as

U =
1
2

∫
V
(σσσ : εεε +mmm : χχχ)dV, (5)

where V is the beam volume; σσσ and εεε are, respectively, the stress and strain tensors; mmm
is the deviatoric part of the couple stress tensor and χχχ is the symmetric curvature tensor.
For the beam under consideration, these tensors are given by

σσσ =

σxx 0 τxz

0 0 0
τxz 0 0

 , εεε =

 εxx 0 γxz/2
0 0 0

γxz/2 0 0

 , χχχ =

 0 χxy 0
χxy 0 0
0 0 0

 , mmm = 2l2Gχχχ, (6)

where χxy = −(wb,xx + ws,xx)/2 + g(z)ws,xx/4; mxy = 2Gl2χxy, and l is the material
length scale parameter. Using Eq. (6), one can rewrite the strain energy of the beam
in Eq. (5) in the form

U =
b
2

∫ L

0

∫ h/2

−h/2
(σxxεxx + τxzγxz + 2mxyχxy)dzdx. (7)

The kinetic energy of the beam resulted from Eq. (1) is of the form

T =
ρ

2

∫
V
(u̇2

1 + u̇2
3)dV =

ρ b
2

∫ L

0

∫ h/2

−h/2
[(u̇0 − z ẇb,x − f (z) ẇs,x)

2 + (ẇb + ẇs)
2]dzdx, (8)

where ρ is the mass density, and an over dot denotes the derivative with respect to the
time variable t.
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The beam is exerted by the electrostatic force per unit length in the form [10, 13]

q(x, t) =
ε0bVDC

2

2(d − u3(x, t))2 , (9)

where VDC is the DC polarization voltage, and ε0 is the dielectric constant of vacuum.
The beam is also assumed to be subjected to viscous damping of coefficient c0.

The potential energy (VE) of the electrostatic force in Eq (9) is given by [16]

VE = −1
2

∫ L

0

ε0bVDC
2

2(d − u3)
dx. (10)

In addition, the microbeam is assumed to be under action of an axial force P, which
results in energy UP of the form

UP =
P
2

∫ L

0
u2

3,xdx =
P
2

∫ L

0
(wb,x + ws,x)

2dx. (11)

The damping mechanism is formulated herein by using the Rayleigh dissipation
function D as follows

D =
c0

2

∫ L

0
[u̇2

0 + (ẇb + ẇs)
2]dx, (12)

where c0 is the coefficient of the viscous damping.
Equations of motion for the microbeam can be derived from Hamilton’s principle,

which can be expressed as

δ
∫ t2

t1

[T − (Ub + UP + VE +D)] = 0. (13)

Substituting Eqs. (7)–(12) into Eq. (13) one can obtain the following nonlinear partial
differential equations of motion for the microbeam

ρAü0 + c0u̇0 −
EA
2

(2u0,xx + wb,xwb,xx + wb,xxws,x + wb,xws,xx + ws,xws,xx) = 0, (14)

ρA(ẅb + ẅs)− ρIẅb,xx + c0(ẇb + ẇs) + EIwb,xxxx −
3EA

8

(
wb,xxw2

b,x

+ 2wb,xwb,xxws,x + w2
b,xws,xx + 2wb,xws,xws,xx + w2

s,xwb,xx + ws,xxw2
s,x

)
− EA

2

(
u0,xxwb,x + u0,xwb,xx + u0,xxws,x + u0,xws,xx

)
+ GAl2

(
wb,xxx +

7
12

ws,xxx

)
− P(wb,xx + ws,xx) =

ε0 b V2
DC

2(d − wb − ws)2 ,

(15)
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ρA(ẅb + ẅs)−
ρI
84

ẅs,xx + c0(ẇb + ẇs) +
EI
84

ws,xxxx −
3EA

8

(
wb,xxw2

b,x

+ 2ws,xws,xxwb,x + w2
b,xws,xx + 2wb,xwb,xxws,x + w2

s,xwb,xx + ws,xxw2
s,x

)
− EA

2

(
u0,xxwb,x + u0,xwb,xx + u0,xxws,x + u0,xws,xx

)
− GA

2

(5
3

ws,xx

− 7l2 wb,xxxx −
3l2

4
ws,xxxx

)
− P(wb,xx + ws,xx) =

ε0 b V2
DC

2(d − wb − ws)2 .

(16)

In the above equations, A = (b × h) and I = bh3/12 are, respectively, the cross-sectional
area and the second moment of inertia of the beam cross section. The constraints for both
the clamped ends are u0 = wb = ws = wb,x = ws,x = 0 at x = 0 and x = L.

Derivation of a closed-formed solution for the system of nonlinear equations (14)–
(16) is cumbersome. The finite element method is employed herein to solve the nonlinear
differential equations.

3. SOLUTION METHOD

A finite element formulation is formulated in this Section to transfer the nonlinear
differential equations (14)–(16) into a discretized form. To this end, the beam is assumed
to be divided into a number of two-node beam elements with length of le. The vector of
nodal displacements (qe) for an element contains ten components as

qe = {u0, wb, ws}T, (17)

where

u0 ={u01, u02}T, wb = {wb1, wb1,x, wb2, wb2,x}T, ws = {ws1, ws1,x, ws2, ws2,x}T, (18)

are, respectively, the vectors of nodal axial displacements, bending and shear transverse
displacements. The displacements inside the element are interpolated from the nodal
values according to

u0 = Nu0, wb = Hwb, ws = Hws, (19)
where N = [N1, N2] and H = [H1, H2, H3, H4] are the matrices of the interpolating
functions. The following linear and Hermite functions used in [17] are adopted for the
functions Ni (i = 1, 2) and Hj (j = 1, . . . , 4)

N1 =
le − x

le
, N2 =

x
le

, (20)

and

H1 = 1 − 3x2

l2
e

+
2x3

l3
e

, H2 = x − 2x2

le
+

x3

l2
e

, H3 =
3x2

l2
e

− 2x3

l3
e

, H4 = − x2

le
+

x3

l2
e

, (21)

Substituting Eq. (19) into Eqs. (14)–(16) and taking integration over the beam length
lead to the following matrix-form Galerkin residual equation [18]

NE

∑
(

meq̈e + ceq̇e + keqe − fe

)
= 0, (22)
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where NE is the total number of elements used to discretize the beam; me, ce and ke
are, respectively, the element mass, damping and stiffness matrices; fe, q̇e and q̈e are the
element vectors of the nodal force, nodal velocities and nodal accelerations, respectively.
The matrices in Eq. (22) can be written in sub-matrix forms as follows

me
10×10

=

maa 0 0
0T mbb mbs

0T mT
bs mss

 , ce
10×10

=


caa 0 0

0T cbb cbs

0T cT
bs css

 , ke
10×10

=


kaa kab kas

kT
ab kbb kbs

kT
as kT

bs kss

 . (23)

The element nodal force vector has the form

fe
10×1

=
{

0, fb, fs
}T . (24)

In the above equations, the subscripts ‘a’, ‘b’ and ‘s’ stand for the ‘axial’, ‘bending’
and ‘shear’, respectively. The detail expressions for the sub-matrices and sub-vector in
Eqs. (23) and (24) are as follows

maa
(2×2)

=
∫ le

0
NTρANdx, mbb

(4×4)
= ρA

∫ le

0
HTHdx + ρI

∫ le

0
HT

,xH,xdx,

mbs
(4×4)

= ρA
∫ le

0
HTHdx, mss

(4×4)
= ρA

∫ le

0
HT Hdx + ρI

∫ le

0
HT

,x H,xdx,

(25)

caa
(2×2)

= c0

∫ le

0
NTNdx, cbb

(4×4)
= c0

∫ le

0
HTHdx, cbs

(4×4)
= css

(4×4)
= cbb

(4×4)
, (26)

kaa
(2×2)

= EA
∫ le

0
NT

,xN,xdx, kab
(2×4)

=
EA
2

∫ le

0
NT

,x(wb,x + ws,x)H,xdx, kas = kab,

kbb
(4×4)

= AE
∫ le

0

(3
8

HT
,x(w

2
b,x + w2

s,x)H,x +
3
4

HT
,x(wb,xws,x)H,x

)
dx

+ P
∫ le

0
HT

,x H,xdx + EI
∫ le

0
HT

,xx H,xxdx

+ AE
∫ le

0

(1
2

HT
,x(u0,x)H,x +

7l2

24(1 + ν)
HT

,xxH,xx

)
dx + P

∫ le

0
HT

,xH,xdx,

kbs
(4×4)

= AE
∫ le

0

(3
8

HT
,x(w

2
b,x + w2

s,x)H,x +
3
4

HT
,x(wb,xws,x)H,x

+
1
2

HT
,x(u0,x)H,x +

7l2

24(1 + ν)
HT

,xxH,xx

)
dx,

kss
(4×4)

= EA
∫ le

0

(3
8

HT
,x(w

2
b,x + w2

s,x)H,x +
3
4

HT
,x(wb,xws,x)H,x +

1
2

HT
,x(u0,x)H,x

+
3l2

16(1 + ν)
HT

,xxH,xx

)
dx +

EI
84

∫ le

0
HT

,xx H,xxdx + P
∫ le

0
HT

,xH,xdx,

(27)
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and

fb
(4×1)

= fs
(4×1)

=
∫ le

0
q(x, t)HTdx. (28)

Since the highest order of the polynomials under the integrals in Eqs. (25)–(28) is eight,
thus the integrals can be exactly evaluated by five Gauss points.

After assembling the element matrices and force vector, once can construct the dis-
crete nonlinear equation of motion for the microbeam in the form

MD̈ + CḊ + KD − F = 0, (29)

where M, C, K and F are, respectively, the global mass, damping, stiffness matrices and
global force vector; D, Ḋ and D̈ are the global vectors of nodal displacements, nodal
velocities and nodal accelerations, respectively. A Newton–Raphson based iterative pro-
cedure is used in combination with Newmark method to solve Eq. (29). In case of static
analysis, both Ḋ and D̈ are set to zeros, and only the iterative procedure is used to com-
pute D.

4. NUMERICAL RESULTS AND DISCUSSION

Numerical investigation is carried out in this section to highlight the effects of var-
ious factors such as the axial force, the applied voltage and the beam properties on be-
havior of the microbeam. The microbeam is discretized herewith by 20 elements for all
computations below. For the convenience of discussion, the following dimensionless pa-
rameters are introduced

µ = ω1

√
ρAL4

EI
, N∗ =

PL2

EI
, Wmax = max

(u3

d

)
, η =

l2AG
EI

,

and α1 = 6
(d

h

)2
, α2 =

6ε0L4

Eh3d3 ,

(30)

with ω1 is the fundamental frequency of the microbeam.
The derived formulation is necessary to verify before computing the response of the

microbeam. To this end, Tables 1 and 2 compare the static and dynamic pull-in voltages
obtained by present formulation with that of Refs. [7, 8, 19]. A good agreement between
the present result with that of the cited references can be noted from the tables, regardless
of the beam length, the air gap, the axial force and the damping coefficient as well. Noting
that the finite element method is used in Ref. [7], while the finite difference method and
the 3D MEMCAD model were employed in Refs. [8, 19], respectively.

In Fig. 2, the frequency parameter µ versus the VDC voltage is depicted for η = 0
and various values of the axial forces, where for comparison purpose, the result obtained
by Galerkin method of Ref. [20] is also given. The curves for the frequency parameter µ
versus the VDC voltage with different material length scales η are shown in Fig. 3. Both
Figs. 2 and 3 were obtained for the beam with L = 210 µm, b = 100 µm, h = 1.5 µm,
d = 1.18 µm, ν = 0.06 and E = 169 GPa [20]. Fig. 2 confirms the accuracy of the present
formulation in evaluating the frequency of the beam, and it also shows the important role
of the axial force on the frequency and pull-in voltage. Both the frequency and the pull-in
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Table 1. Comparison of static pull-in voltages for E = 169 GPa, ν = 0.06, b = 50 µm, h = 3 µm,
η = 0 and different values of L (µm), d (µm) and P with P/A (MPa)

Beam properties Vpull-in
Error (%)

L d P/A Ref. [7] Ref. [8] Ref. [19] Present

250 1 0 39.60 39.13 39.50 39.60 0/1.19/0.25
250 1 100 58.30 58.84 56.90 58.33 0.05/0.87/2.51
250 1 −25 33.10 33.04 33.70 33.07 0.09/0.08/1.87
350 1 0 -∗ 20.36 20.30 20.27 -/0.45/0.15
350 1 100 - 36.99 35.40 36.47 -/1.42/3.02
350 1 −25 - 13.27 13.80 12.93 -/2.56/6.30
250 2 0 113.30 - - 114.20 0.79/-/-
250 2 100 165.60 - - 166.50 0.54/-/-
250 2 −25 96.20 - - 96.60 0.42/-/-
250 3 0 215.70 - - 217.60 0.88/-/-
250 3 100 307.50 - - 309.80 0.75/-/-
250 3 −25 185.30 - - 186.60 0.70/-/-
350 0.5 0 - 7.07 - 7.12 -/0.71/-
350 2 0 - 57.59 - 58.30 -/1.23/-

Note: ∗ not available.

Table 2. Comparison of dynamic pull-in voltage for L = 250 µm, b = 50 µm, h = 3 µm,
E = 169 GPa, ν = 0.06, η = 0 and various values of d, c0 and P

Sources d
P/A = 0 P/A = −25 P/A = 100

c0 = 0.4 c0 = 0.8 c0 = 1.6 c0 = 0.325 c0 = 0.65 c0 = 1.3 c0 = 0.55 c0 = 1.1 c0 = 2.2

Ref. [7] 1 38.80 39.40 39.60 32.30 33.00 33.10 56.80 58.10 58.30
Present 38.71 39.63 39.59 32.34 33.12 33.10 56.80 58.29 58.31

Ref. [7] 2 110.40 111.70 113.30 93.20 95.60 96.20 160.60 164.10 165.60
Present 111.68 114.18 114.19 94.20 96.40 96.40 161.89 166.25 166.30

Ref. [7] 3 208.60 212.90 215.70 178.10 182.50 185.30 296.40 303.80 307.50
Present 212.26 217.16 217.19 181.98 186.53 186.57 301.73 309.77 309.92

voltage are decreased of the compressive axial force amplitude, while they are increased
by the tensile axial force. The material length scale parameter, as seen from Fig. 3, has an
important role on both the frequency and pull-in voltage, and both these quantities are
considerably underestimated by ignoring the size effect.

The effects of the material length scale and the axial force on the nonlinear bending
behavior of the microbeam are shown in Figs. 4 and 5, respectively. In Fig. 4, for the
comparison purpose, the available result of Ghayesh et al. [13] is also shown given. In
addition to the excellent agreement between the present result with that of Ref. [13], the
figures also show the important role of the material length scale and the axial force on the
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nonlinear bending of the beam. At a given value of the VDC voltage, the maximum trans-
verse deflection decreases by increasing the material length scale and the axial forces.

Finally, the relations between the maximum deflection Wmax and the applied voltage
VDC with the time are shown in Figs. 6 and 7, respectively. The curves in the figures are
obtained for L = 250 µm, b = 50 µm, h = 3 µm, d = 1 µm, E = 169 GPa, ν = 0.06,
η = 0.5, and c0 = 1.6 kg/s.m (as in Refs. [7, 8, 20]) (N∗ = 0 in Fig. 6 and various values
of N∗ in Fig. 7). As seen from Fig. 6, the time necessary for the deflection to attain the
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maximum value decreases by increase of the applied voltage. The time necessary for
the deflection to achieve a maximum value when the applied voltage exceeds a certain
value, namely VDC ≥ 47.2 V, is considerably short. The influence of the pull-in time,
as seen from Fig. 7, is much dependent on the axial force, and the time necessary for
pull-in to occur is decreased by increase of the compressive axial force, but it increases by
increasing the tensile axial force.

5. CONCLUSIONS

The size-dependent behavior of a clamped-clamped microbeam with an axial force in
MEMS has been studied using a nonlinear finite element procedure. Equations of motion
based on the MCST and refined third-order shear deformation theory were derived and
transferred to a discretized form using a two-node beam element. The Newton–Raphson
iterative procedure was employed in conjunction with Newmark method to compute
frequencies, defections, pull-in voltages and pull-in times of the microbeam. Numerical
results reveal that the axial force and the material length scale play an important role
on the behavior of the beam, and the fundamental frequencies and pull-in voltage are
considerably underestimated by ignoring the size effect. A parametric study has been
carried out to highlight the influence of the axial force, the material length scale on the
nonlinear behavior of the beam.
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