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Abstract. We use variational method to examine buckling of chiral elastic rings spanned
by fluid films. We find that the critical surface tension of the fluid film at which buck-
ling occurs depends on the degree of chirality, regardless whether the ring possesses left-
handed chirality or right-handed chirality. Additionally, the chirality always has a desta-
bilizing effect on buckling, yielding to buckle at a critical surface tension smaller than that
of the achiral elastic rings. The destabilizing effect of chirality, however, can be reduced
by increasing the twisting rigidity to bending rigidity of filaments (twist-to-bend ratio).
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1. INTRODUCTION

Buckling of elastic rings is an old problem dated back to the original paper of Levy [1]
whose buckling of a cylindrical shell under pressure is examined. When the shell is in-
finitely long, the problem reduces to buckling of an elastic ring under pressure. The
buckling of elastic rings plays an important role in many phenomena, including design-
ing nanorings in MEM and NEM devices [2], designing slender structures such as tubes,
pressure tankers [3], and others.

Buckling of elastic rings has recently attracted researchers as it appears in physical
and biological systems whose the rings spanned by fluid films and the shape of the rings
results from competition between the energies of boundaries and surfaces. A typical il-
lustration is the dorsal mesenteric membrane spanning vertebrate gut tube; the surface
tension of the membrane accounts for the chirality and knot of tube [4]. Another illus-
tration is the lipid bilayers enclosing the helical protein belts which have both planar
and eight-figured shapes [5]. Buckling of twisted elastic rings spanned by fluid films
originated from the groundbreaking work of Plateau [6] on minimum surfaces spanning
a closed, simple, and given boundary. A generalization of the Plateau’s work was first
considered Bernatzki and Ye [7] who found the existence condition for solutions of the
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generalized problem in which the boundary is elastic and not extensible. Giomi and Ma-
hadevan [8] then experimentally and numerically identified the forms of the boundary
using fishing strands and soapy fluid. Fried and co-workers [9–13] subsequently investi-
gated theoretically the stability and bifurcation of the planar configuration.

Chirality is present in many structures at various scales, ranging from DNA to plant
vines, and to animal horns. Chirality results in many useful facts such as the coupling
between twisting, bending, and stretching of the filaments. Whereas the twist-stretch
coupling is well understoood [14–16], the twist-bend coupling has not been so although
the former was suggested after the latter [17, 18]. Motivated by recent work [19, 20] in
which the coupling of twisting and bending is taken to trigger the out-of-plane buckling,
we aim in this study to explore how this coupling affects buckling of elastic rings spanned
by a fluid film. We show that an instability of the chiral elastic rings arises at a critical
surface tension smaller than that of the achiral ones.

The paper is divided as follows. The kinematics and energetics of the chiral filaments
and spanning surface are presented in Section 2. While first variational criteria are pro-
vided in Section 3, buckling results of chiral elastic rings appear in Section 4. Our salient
results are summarized in Section 5.

2. KINEMATICS AND ENERGETICS

We model chiral elastic rings as unshearable and not extensible filaments of circu-
lar cross sections with midline C. Moreover, the ring encloses a fluid film modeled as
a surface S of a constant surface tension σ, depicted schematically in Fig. 1. Since the
boundary ∂S of S and the midline C are coincident, we have C = ∂S.Buckling of chiral elastic rings spanned by fluid films 3
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Fig. 1. An orientable surface S = {ξ ∈ R3, ξ = ξ(r, θ), 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π} models a fluid
film. The midline of chiral elastic ring is coincident with the boundary ∂S of S and given as
C = {ξ ∈ R3, ξ = ξ(1, θ), 0 ≤ θ ≤ 2π}. The surface S has unit normal n and the space curve
C is provided with a material frame {t × d, t, d}. A closed-up image of the filament shows its

chirality, demonstrated as right-handedness
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where a, c > 0, e 6= 0 are bending, twisting, and twisting-bending rigidities of the fila-
ment, respectively. To incorporate the constraints (4), we augment the potential energy
as follows

Φ = E +
∫ 2π

0

1
2

(
λ1(|t|2 − 1) + λ2(|d|2 − 1) + 2λ3(t · d)

)
dθ. (7)

where λ1, λ2, and λ3 are Lagrange multipliers.

3. EQUILIBRIUM CRITERIA

Let v = δξ and ζ = δd be smooth variations of ξ and d. Equilibrium criteria are
sought by setting to zero the first variation of (7). Following [9, 19], we obtain

δΦ =
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− (λ1t + λ3d)θ
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· ζ
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ν(ξθ × nr + nθ × ξr) · v drdθ. (8)

Fig. 1. An orientable surface S = {ξ ∈ R3, ξ = ξ(r, θ), 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π} models a fluid
film. The midline of chiral elastic ring is coincident with the boundary ∂S of S and given as
C = {ξ ∈ R3, ξ = ξ(1, θ), 0 ≤ θ ≤ 2π}. The surface S has unit normal n and the space curve
C is provided with a material frame {t × d, t, d}. A closed-up image of the filament shows its

chirality, demonstrated as right-handedness
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Throughout the paper, lengths are measured relative to R which is the radius of
a circle with perimeter equal to the length 2πR of C. The surface S, thus, admits a
parametrization

S = {ξ ∈ R3, ξ = ξ(r, θ), 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π}, (1)

where 2π is the dimensionless length of C, the vector ξ is continuously differentiable and
injective up to the fourth order, and r, θ are polar coordinates on unit disc, as illustrated in
Fig. 1. Denoting differentiation be indicated by subscripts, then periodicity requires that
ξ and its higher derivatives are periodic with period of 2π. The midline C, then, admits
a parametrization

C = {ξ ∈ R3, ξ = ξ(1, θ), 0 ≤ θ ≤ 2π}, (2)
with parameter θ being its dimensionless arclength. Denoting {t × d, t, d} the material
frame of the filament [21], the tangent t, the bending density κ, and the twisting density
ω of C are defined by [21]

t = ξθ , κ = tθ , ω = (d × dθ) · t, (3)

and the inextensibility condition of C along with the other constraints are [19]

|t| = 1, |d| = 1, t · d = 0. (4)

The net free-energy is [9, 19]

E =
∫ 2π

0

1
2
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)
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∫ 2π

0

∫ 1

0
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where n is a unit normal vector of S. Vanishing the first variation (8) leads to the areal
equilibrium condition

ξθ × nr + nθ × ξr = 0, (9)
and the two lineal equilibrium equations

[(κ + ηωd)θ − (αω + η(κ · d))(d × dθ)− λ1t − λ3d]θ + ν(ξθ × n) = 0, (10)

and

(αω + η(κ · d))(dθ × t)− [(αω + η(κ · d))(t × d)]θ + ηωκ + λ2d + λ3t = 0. (11)

Whereas the areal equilibrium condition (9) expresses force equilibrium in the normal
direction of S, the two lineal equilibrium conditions (10),(11) express, respectively force
balance and moment balance on C. An alternative derivation of (10) and (11) is presented
in A.1.

Multiplying both sides of equation (11) with t × d, t, and d, we obtain,

λ3 = −(αω + η(κ · d))(t × d) · κ,

λ2 = −2(αω + η(κ · d))(t × d) · dθ − ηω(κ · d),

}
(12)

and
(αω + η(κ · d))θ = ηωκ · (t × d). (13)

Substituting λ3 in (12)1 into (10) yields

[(κ + ηωd)θ − (αω + η(κ · d))(t × κ)− λt]θ + ν(ξθ × n) = 0, (14)

where a new Lagrange multiplier λ is introduced as

λ = λ1 + ω(αω + η(κ · d)). (15)

4. BUCKLING OF CHIRAL ELASTIC RINGS MADE FROM CHIRAL FILAMENTS
AND SPANNED BY FLUID FILMS

Having determined the equilibrium conditions, we now study buckling of a ring
which has a (dimensionless) constant curvature of 1, zero twist density, and is spanned
by a planar surface S of the fluid film. We next introduce the Frenet frame {t, p, b} of the
unit circle satisfying

tθ = p, pθ = −t, bθ = 0. (16)
The planar surface S has a parametrization

ξ(r, θ) = −rp(θ), 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π. (17)

With (17), the equilibrium criteria (9), (13) are met trivially while the remaining equilib-
rium condition (14) is satisfied if

λ = −(1 + ν). (18)
Now consider perturbation v(r, θ) of the planar surface S, perturbation ζ(θ) of the

director d, and perturbation ϵ(θ) of the Lagrange multiplier λ with |v| ≪ 1, |ζ| ≪ 1, and
|ϵ| ≪ 1,

v(r, θ) = u(r, θ)t + v(r, θ)p + w(r, θ)b,

ζ(θ) = h(θ)t + ℓ(θ)p + k(θ)b,

}
0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π. (19)
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Since linearization of the constraints (4) yields

t · vθ = 0, d · ζ = 0, vθ · d + t · ζ = 0, (20)

the components of perturbation fields v and ζ must satisfy

v = uθ , ℓ = 0, h = −(u + vθ) cos ψ. (21)

Following [9], linearization of the equilibrium condition (9) leads to the governing equa-
tion for the transverse perturbation w(r, θ).

wrr +
1
r

wr +
1
r2 wθθ = 0, (22)

Similarly, following [19], linearization of the equilibrium condition (13) and (14) yields to

α(wθ + kθ) + η(vθθ + v) = 0. (23)

and
3(vθθ + v) + 2η(wθ + kθ) + ϵ = 0,

vθθθθ + vθθ + (ν − 2)(vθθ + v) + η(wθθθ + kθθθ − kθ)− ϵ = 0,

wθθθθ + (1 + ν)wθθ + νwr − η(vθ + vθθθ) = 0.





(24)

Since the scalar Laplace equation (22) admits separable solutions of the form

w(r, θ) = anrn cos nθ, n = 0, 1, 2, . . . , (25)

we assume that the restriction of v(1, θ) to the boundary of the fluid film or the ring, k(θ),
and ϵ(θ) are of the form

v(1, θ) = bn sin nθ,

k(θ) = cn cos nθ,

ϵ(θ) = dn sin nθ,





n = 0, 1, 2, . . . (26)

Substituting (25) and (26) into (23) and (24), we obtain a system of four homogeneous
equations for an, bn, cn, dn. We then eliminate cn and dn to obtain a system of two homo-
geneous equations for an, bn


 nη

(
1 − η2

α

)
(n2 − 1)− ν

n(n + 1)− ν (n + 1)η



[

an
bn

]
=

[
0
0

]
. (27)

Nontrivial solutions of (27) exist if its determinant vanishes

f (ν) ≡
[
(n2 − 1)

(
1 − η2

α

)
− ν

][
n(n + 1)− ν

]
− n(n + 1)η2 = 0. (28)

Since n = 0 and n = 1 correspond, respectively, to rigid body translations and rotations
so we consider n ≥ 2.

Also, since

f (ν) = −n(n + 1)η2 ≤ 0, at ν = (n2 − 1)
(

1 − η2

α

)
, (29)
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the quadratic equation (28) has two roots ν1,2 satisfying

ν1 ≤ (n2 − 1)
(

1 − η2

α

)
≤ ν2, n ≥ 2. (30)

As we are interested in chiral elastic rings spanned by fluid films which buckle when the
surface tension reaches a smallest critical value first, we, thus, consider the smaller ν = ν1
of the two critical values ν = ν1,2 of (28). From (30), we have

ν1 ≤ (n2 − 1)
(

1 − η2

α

)
≤ n2 − 1, ∀ α, η and n ≥ 2. (31)

Since ν = n2 − 1 is the critical value of surface tension at which elastic rings made from
achiral filaments and spanned by fluid films buckle [8, 9], we, therefore, conclude that a
fluid film spanning a chiral elastic ring is less stable than that spanning an elastic ring
made from achiral filaments.

The critical values ν1 of ν as α and η vary is shown in Fig. 2. We see from this figure
that the surface with n = 2 always stays inside surfaces with n ≥ 3 for ν ≥ 0. Thus,
the critical surface tension ν1 of ν at which chiral elastic rings spanned by fluid films first
buckle occurs when n = 2, in accordance with previous results [9, 19].6 Hoang Minh Tuan, Nguyen Thi Lan, Tran Minh Tuyen
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Fig. 2. A diagram showing the critical surface tension satisfying (28) at which buckling occurs for
various chirality and twist-to-bend ratio for the modes n = 2, n = 3, n = 4, and n = 5.
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For n = 2 and with reference to (28), the influence of chirality on the critical surface
tension ν1 of ν for various values of α are determined and illustrated as in Figure 3. All
the curves in these Figures are symmetric about the axis η = 0 implying that the critical
surface tension of ν at which rings first buckle are independent of whether chirality is

Fig. 2. A diagram showing the critical surface tension satisfying (28) at which buckling occurs for
various chirality and twist-to-bend ratio for the modes n = 2, n = 3, n = 4, and n = 5

For n = 2 and with reference to (28), the influence of chirality on the critical surface
tension ν1 of ν for various values of α are determined and illustrated as in Fig. 3. All
the curves in these figures are symmetric about the axis η = 0 implying that the critical
surface tension of ν at which rings first buckle are independent of whether chirality is
positive or negative. Additionally, we observe from Fig. 3 that ν1 ≤ 3 and the equality
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Fig. 3. A Plot showing effect of the chirality on the critical surface tension ν1 of ν for n = 2 and
different twist-to-bend ratio.

positive or negative. Additionally, we observe from Figure 3 that ν1 ≤ 3 and the equality
occurs only if η = 0, regardless of values α. This results reflects the destabilizing influence
of chirality of filaments on buckling of rings made from these filaments and spanned by
fluid films. The destabilizing effect of chirality, however, can be reduced by increasing
the twisting rigidity to the bending rigidity α, as intuitively expected, since doing so will
suppress the buckling mode via which the elastic ring buckles out of its plane. This is
demonstrated in Figure 3 in which for a given value of η, a curve with a smaller value of
α stays below the other curves with larger values of α.

5. SUMMARY

A variational approach is used to study buckling of chiral elastic rings spanned by
fluid film. We considered rings of circular cross sections and constant material proper-
ties. Contrary to previous studies, the chirality leads to coupling of twisting and bending
of the rings. Our model involves four dimensional constant: the bending rigidity a > 0,
twisting rigidity c > 0, and twisting-bending coupling rigidity e of the filament, and the
surface tension σ of the fluid film. Using parametrization, we reduce to three dimen-
sionless parameters: the twist-to-bend ratio α = c/a > 0, the chirality η = e/a, and
the surface tension ν = σR3/a ≥ 0. We find that the critical surface tension of the fluid
film at which buckling occurs depends only on the degree of chirality, no matter it is left-
handed or right-handed chirality. Moreover, the chirality always has a negative influence
on buckling behavior, yielding to critical values of surface tension less than those for achi-
ral elastic rings spanned by fluid films (ν(η) < ν(η = 0) = 3). The destabilizing effect of
chirality, however, can be reduced by increasing twisting rigidity to bending rigidity.
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APPENDIX A.

A.1. Another derivation of equilibrium conditions
Alternative derivation of the equilibrium criteria (10) and (11) can be done using

balance of force and moment on C [21]:{
n′ + f = 0,

m′ + t × n = 0,
(A.1)

where f = −ν(ξθ × n) is nondimensional surface tension of the fluid. The internal mo-
ment is expressed in terms of strains for an unshearable, inextensible, and chiral ring [19]
as follows

m = (αω + ηΩ2)t + Ω1d + (Ω2 + ηω)t × d, (A.2)
where

Ω1 = −κ · t × d, Ω2 = κ · d. (A.3)
Repeating [22], we calculate

m′ = (αω′ + η(ωΩ1 + Ω′
2))t + (Ω′

1 + (α − 1)ωΩ2 + η(Ω2
2 − ω2))d

+ (Ω′
2 + η(ω′ − Ω1Ω2)− (α − 1)ωΩ1)t × d, (A.4)

and then plug it into (A.1)2 to get

αω′ + η(ωΩ1 + Ω′
2) = 0 (A.5)

and

n = µt − (Ω′
2 + η(ω′ − Ω1Ω2)− (α − 1)ωΩ1)d + (Ω′

1 + (α − 1)ωΩ2 + η(Ω2
2 − ω2))t × d,

(A.6)
where µ is an unknown constant. Evidently, the equilibrium criterion (A.5) is identical
with (13) describing moment balance in the tangential direction on C. Therefore, to prove
that the force balance condition (14) coincides with (A.1)1, it is sufficient to prove that

n = −(κ + ηωd)θ + (αω + η(κ · d))(t × κ) + λt. (A.7)

By directly substituting (A.3) into (A.6) and requiring that the Lagrange multipliers λ, µ
are related as

µ = λ + |κ|2 + α ω2 + 2η ω(κ · d), (A.8)
we confirm that (A.6) coincides with (A.7).


	1. INTRODUCTION
	2. KINEMATICS AND ENERGETICS
	3. EQUILIBRIUM CRITERIA
	4. BUCKLING OF CHIRAL ELASTIC RINGS MADE FROM CHIRAL FILAMENTS AND SPANNED BY FLUID FILMS
	5. SUMMARY
	ACKNOWLEDGEMENTS
	REFERENCES
	APPENDIX A. 
	A.1. Another derivation of equilibrium conditions


