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Abstract. The present paper deals with the concept of antiresonance in multiple cracked
beams and application for multi-crack identification. First, governing equations for an-
tiresonant frequency are conducted and used for both computing antiresonant frequen-
cies versus crack parameters and measuring-loading colocation and identifying cracks by
measured antiresonant frequencies. Then, a procedure is proposed for crack identifica-
tion in cantilever beam by antiresonant frequencies based on the so-called crack scanning
method. Theoretical development is illustrated by numerical examples.
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1. INTRODUCTION

Resonance is the well known concept for both researchers and engineers in the field
of vibration theory and engineering. This is the phenomena happened when frequency
of external force approaches to natural frequency of a system and it leads amplitude
of forced vibration to reach its maximum (peak). The frequency at which the forced
vibration amplitude attains its maximum is called resonant frequency. The resonant fre-
quencies of undamped dynamic systems are identical to natural frequency and therefore,
the resonant frequencies have been comprehensively studied in the literature on vibra-
tion of machines and structures. Conversely, antiresonance is the phenomena that occurs
when external force frequency makes the forced vibration amplitude vanished or reached
its minimum and location of the vibration amplitude’s zero or minimum is termed by
antiresonant frequency. Obviously, antiresonance may appears only in multi-degree of
freedom systems or continuous-elastic structures and from mathematical point of view
there should be found at least one antiresonant frequency between two neighboring reso-
nant frequencies.The antiresonant frequencies have found some application in the vibra-
tion control problems [1–3] and model updating [4–7], but they have not adequately and
systematically studied with the aim to use for structural health monitoring [8–11]. The
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present paper is devoted to establish basic equations for computing antiresonant frequen-
cies of multiple cracked beam and simple diagnostic equations for crack identification in
beam by measured antiresonant frequencies.

First attempt to systematically investigate antiresonant frequencies of cantilever beam
was accomplished by Wang et al. [12] who have revealed that antiresonant frequency
measured at node of vibration mode is identical to resonant frequency corresponding
to the vibration mode. Bamnios et al. [13] have studied effect of either crack or driv-
ing (loading) point on mechanical impedance and extracted from that antiresonant fre-
quencies of cantilever and clamped end beam. They concluded that driving point of
mechanical impedance could provide additional information useful for crack detection.
This impedance method has been applied recently for crack identification in simply sup-
ported Euler–Bernoulli [14] and Timoshenko [15] beams. Dilena and Morassi [16–19]
demonstrated that antiresonant frequencies used mutually with resonant frequencies are
capable to solve numerous problems of crack identification in rods and beams that could
not be solved by using only natural frequencies. Moreover, Meruane and Heylen [20]
obtained an attractive result that antiresonant frequencies used mutually with natural
ones are more efficient than using mode shapes in combination with natural frequencies
for structural damage assessment, while antiresonant frequencies are more easily and
accurately measured than the mode shapes.

The authors of Refs. [21, 22] have studied resonant and antiresonant frequencies of
multiple cracked bars and proposed a useful procedure for crack identification in bar
based on both resonant and antiresonant frequency equations. The present study aims
at expanding the obtained in [21, 22] results for beam structures. Namely, first explicit
equations for antiresonant frequency are established for multiple cracked beams that al-
low one to examine antiresonant frequencies in dependence upon not only crack location
and depth but also measuring and driving collocation. Then, the simplest form of the
antiresonant frequency equations are employed for solving the multi-crack identification
from first antiresonant frequencies measured at various collocations using the so-called
crack scanning method [23, 24]. Theoretical development has been illustrated by numer-
ical examples.

2. FREQUENCY RESPONSE FUNCTION OF MULTIPLE CRACKED BEAM

It was well known that frequency response function measured at x under point load
applied at location x0 of a beam is defined as solution of the equation

EI∂4W (x, t) /∂x4 + ρF∂2W (x, t) /∂x2 = P(t)δ (x− x0) , x ∈ (0, `) (1)

with boundary conditions generally represented by

W(p0) (0, t) = W(q0) (0, t) = W(p1) (`, t) = W(q1) (`, t) = 0, (2)

where W(r) (x, t) is derivative of function W(x, t) with respect to spatial variable x and
derivative order r = p0, q0, p1, q1 could be equal to one of the values 0, 1, 2, 3.



Crack identification in beam by antiresonant frequencies 391

Under Fourier transform the equations (1) and (2) become

φ(IV) (x)− λ4φ (x) = P (ω) δ (x− x0) , x ∈ (0, 1) , (3)

λ4 = ω2ρF`4/EI, P (ω) = P (ω) `4/EI,

φ(p0) (0) = φ(q0) (0) = φ(p1) (1) = φ(q1) (1) = 0, (4)

where
φ (x) =

∫ ∞

−∞
W (x, t) e−iωtdt, P (ω) =

∫ ∞

−∞
P (t) e−iωtdt.

Furthermore, the beam is assumed to be damaged to n cracks of depth a1, . . . , an at
the locations e1, . . . , en (0 ≤ e1 < . . . < en ≤ 1) so that solution of Eq. (3) must satisfy also
the following conditions at the crack locations

φ
(
ej + 0

)
= φ

(
ej − 0

)
, φ′
(
ej + 0

)
− φ′

(
ej − 0

)
= γjφ

′′ (ej
)

,

φ′′
(
ej + 0

)
= φ′′

(
ej − 0

)
= φ′′

(
ej
)

, φ′′′
(
ej + 0

)
= φ′′′

(
ej − 0

)
.

(5)

The parameter γj, acknowledged as crack magnitude calculated from crack depth as

γj = EI/R = 6π
(
1− ν2

0
)

h fc (z) , z = a/h,

fc (z) = z2
(

0.6272− 1.04533z + 4.5948z2 − 9.9736z3 + 20.2948z4 − 33.0351z5

+47.1063z6 − 40.7556z7 + 19.6z8) .

As well-known also in theory of differential equations, general solution of Eq. (3) can
be found in the form

φ (x) = φ0 (x) + φQ (x) , (6)
where φ0 (x, ω) is general solution of homogeneous equation

φ(IV) (x)− λ4φ (x) = 0, (7)

and φQ (x, ω) is a particular solution

φQ (x) = P (ω)
∫ x

0
H (x− s) δ (s− x0) ds = P (ω) H (x− x0) (8)

with

H (x) =

{
0 : x ≤ 0
h (x) : x > 0

, h (x) = [sinh λx− sin λx] /2λ3. (9)

On the other hand, general solution of Eq. (7) satisfying conditions (5) inside the beam
span could be found in the form [23]

φ0 (x, ω) = Cφ1 (x, ω) + Dφ2 (x, ω) , (10)

where C, D are constants and

φ1 (x, ω) = L1 (x, λ) +
n

∑
j=1

µ1jK
(

x− ej, λ
)

, φ2 (x, ω) = L2 (x, λ) +
n

∑
j=1

µ2jK
(
x− ej, λ

)
,

(11)
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with the damage index vectors µ1 = (µ11, . . . , µ1n)
T , µ2 = (µ21, . . . , µ2n)

T determined
subsequently by recurrent relationships

µ1j = γj

[
L
′′
1
(
ej, λ

)
+

j−1

∑
k=1

µ1jS′′
(
ej − ek, λ

)]
, µ2j = γj

[
L
′′
2
(
ej, λ

)
+

j−1

∑
k=1

µ2jS′′
(
ej − ek, λ

)]
,

K (x, λ) =

{
0, x ≤ 0
S(x, λ), x � 0

, S (x, λ) = [sinh λx + sin λx] /2λ.

(12)
Functions L1 (x, λ), L2 (x, λ) in Eq. (11) are continuous solutions of Eq. (7) satisfy-

ing boundary conditions at the left end, x = 0, that are given in Table 1 for different
boundary conditions. It is easily to verify that functions defined in Eq. (11) also sat-
isfy boundary conditions at the left end of beam likely the functions L1 (x, λ), L2 (x, λ).
Hence, it remains to satisfy only boundary conditions at the right end of the beam as{

Cφ
(p1)
1 (1) + Dφ

(p1)
2 (1) = −P (ω) h(p1) (1− x0) ,

Cφ
(q1)
1 (1) + Dφ

(q1)
2 (1) = −P (ω) h(q1) (`− x0) ,

(13)

where p1, q1 are also given in Table 1. Obviously, Eqs. (13) allow one to find two constants
C, D as

C = P (ω)C1 (x0) /D (λ) , D = P (ω) D1 (x0) /D (λ) (14)

with D (λ) = φ
(p1)
1 (1) φ

(q1)
2 (1)− φ

(q1)
1 (1) φ

(p1)
2 (1) and

C1 (x0) =
[

h(q1) (1− x0) φ
(p1)
2 (1)− h(p1) (1− x0) φ

(q1)
2 (1)

]
,

D1 (x0) =
[

h(p1) (1− x0) φ
(q1)
1 (1)− h(q1) (1− x0) φ

(p1)
1 (1)

]
.

Table 1. Boundary functions and derivative orders

Boundary conditions L1 (x, λ) L2 (x, λ) p1 q1

Clamped ends sinh λx− sin λx cosh λx− cos λx 0 1
Free ends sinh λx + sin λx cosh λx + cos λx 2 3

Symply sopported ends sinh λx sin λx 0 2
Cantilever sinh λx− sin λx cosh λx− cos λx 2 3

Thus, solution of Eq. (3) satisfying conditions (4) and (5) is found in the form

φ (x, x0, ω) =
[
P (ω) /D (λ)

]
[C1 (x0) (x) + D1 (x0) φ2 (x) + D (λ) H (x− x0)] , (15)

and frequency response function of the damaged beam is therefore obtained as

FRF (x, x0, ω) = φ (x, x0, ω) /P (ω)

= [C1 (x0) φ1 (x) + D1 (x0) φ2 (x) + D (λ) H (x− x0)] /D (λ) .
(16)
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3. ANTIRESONANT FREQUENCY EQUATION FOR MULTIPLE CRACKED BEAM

Recalling resonant and antiresonant frequencies defined as poles and zeros respec-
tively of frequency response function, they are determined from so-called resonant and
antiresonant frequency equations

D (λ) = φ
(p1)
1 (1) φ

(q1)
2 (1)− φ

(q1)
1 (1) φ

(p1)
2 (1) = 0,

A (x, x0, λ) ≡ C1 (x0) φ1 (x) + D1 (x0) φ2 (x) + D (λ) H (x− x0) = 0.
(17)

Note, both the resonant and antiresonant frequencies determined from the above

equations are related to parameter λ = 4
√

ω2ρF`4/EI, well known as frequency parame-
ter. So, solution of Eq. (17) with respect to λ is called respectively resonant and antireso-
nant frequency parameter.

Obviously, resonant frequencies or natural frequencies could be found in depen-
dence upon only boundary conditions, while antiresonant frequencies are strongly de-
pendent on where the frequency response is measured (cosh x) and where the point load
is applied (x0). The response measured location and load applied location are acknowl-
edged herein as measuring and loading locations respectively. It can be noted that an-
tiresonant frequencies may not be found for arbitrarily chosen the measuring and load-
ing locations. Therefore, for simplification, antiresonant frequency is sough from fre-
quency response function detemined for identical measuring and loading locations, i.e.
x = x0. Such identical location is called driving-measuring collocation or shortly collo-
cation, keeping its notation by x. In the case, equation for seeking antiresonant frequen-
cies is

A (x, λ) ≡ C1 (x) φ1 (x, λ) + D1 (x) φ2 (x, λ) = 0,

or

A (x, λ) ≡ h(q1) (1− x) Ap (x, λ)− h(p1) (1− x) Aq (x, λ) = 0, (18)

where

Ap (x, λ) =
[
φ
(p1)
2 (1) φ1 (x)− φ

(p1)
1 (1) φ2 (x)

]
,

Aq (x, λ) =
[
φ
(q1)
2 (1) φ1 (x)− φ

(q1)
1 (1) φ2 (x)

]
.

First, using expressions (11) functions Ap
(
x, λ
)

, Aq
(
x, λ
)

can be rewritten as

Ap (x, λ) = Ap
0 (x, λ) +

n

∑
j=1

[
Ap

2
(

x, λ, ej
)

µ1j − Ap
1
(
x, λ, ej

)
µ2j

]
+

n

∑
j,k=1

SKp
(

x, λ, ej, ek
)

µ1jµ2k,

Aq (x, λ) = Aq
0 (x, λ) +

n

∑
j=1

[
Aq

2
(

x, λ, ej
)

µ1j − Aq
1
(
x, λ, ej

)
µ2j

]
+

n

∑
j,k=1

SKq
(
x, λ, ej, ek

)
µ1jµ2k,

(19)
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where

Ap,q
0 (x, λ) = L(p,q)

2 (λ) L1 (x)− L(p,q)
1 (λ) L2 (x) ,

Ap,q
i

(
x, λ, ej

)
= L(p,q)

i (λ)K
(
x− ej

)
− Li (x) S(p,q) (1− ej

)
, i = 1, 2,

SKp,q
(

x, λ, ej, ek
)
= K

(
x− ej

)
S(p,q) (1− ek)− K (x− ek) S(p,q) (1− ej

)
.

Putting (19) into (18) leads the latter equation to

A (x, λ) = A0 (x, λ) +
n

∑
j=1

[
A2
(

x, λ, ej
)

µ1j − A1
(
x, λ, ej

)
µ2j
]
+

n

∑
j,k=1

SK
(
x, λ, ej, ek

)
µ1jµ2k = 0,

(20)
where

A0 (x, λ) = h(q1) (1− x) Ap1
0 (x, λ)− h(p1) (1− x) Aq1

0 (x, λ) ,

Ai
(

x, λ, ej
)
= h(q1) (1− x) Ap1

i

(
x, λ, ej

)
− h(p1) (1− x) Aq1

i

(
x, λ, ej

)
, i = 1, 2,

SK
(
x, λ, ej, ek

)
= h(q1) (1− x) SKp1

(
x, λ, ej, ek

)
− h(p1) (1− x) SKq1

(
x, λ, ej, ek

)
.

It is easily to verify that SK
(

x, λ, ej, ej
)
= 0 and antiresonant frequency equation can

be represented in the form

R0 (λ) +
n

∑
j=1

[
R2j (λ) µ1j − R1j (λ) µ2j

]
+

n

∑
j,k=1

Qjk (λ) µ1jµ2k = 0, (21)

where
R0 (λ) = A0 (x, λ) , R1j (λ) = A1

(
x, λ, ej

)
,

R2j (λ) = A2
(
x, λ, ej

)
, Qjk (λ) = SK

(
x, λ, ej, ek

)
.

(22)

Now, the damage indexes (12) are rewritten as

µ11 = γ1L
′′
1 (e1) , µ21 = γ1L

′′
2 (e1) ,

µ12 = γ2L
′′
1 (e2) + γ2γ1S′′ (e2 − e1) L

′′
1 (e1) , µ22 = γ2L

′′
2 (e2) + γ2γ1S′′ (e2 − e1) L

′′
2 (e1) ,

µi3 = γ3L
′′
i (e3) + γ3γ2S′′ (e3 − e2) L

′′
i (e2) + γ3γ1S′′ (e3 − e1) L

′′
i (e1) +

+ γ3γ2γ1S′′ (e3 − e2) S′′ (e2 − e1) L
′′
i (e1) , i = 1, 2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

µij = γj

[
L
′′
i
(
ej
)
+

j−1

∑
k=1

γkS′′
(
ej − ek

)
L
′′
i (ek) +

j−1

∑
k1=2

k1−1

∑
k2=1

γk1 γk2 S′′
(
ej − ek1

)
S′′
(
ek1 − ek2

)
L
′′
i
(
ek2

)
+

j−1

∑
k1=3

k1−1

∑
k2=2

k2−1

∑
k3=1

γk1 γk2 γk3 S′′
(
ej − ek1

)
S′′
(
ek1 − ek2

)
S′′
(
ek2 − ek3

)
L
′′
i
(
ek3

)
+ . . .

+ γj−1γj−2 . . . γ1S′′
(
ej − ej−1

)
S′′
(
ej−1 − ej−2

)
. . . S′′(e2 − e1) L

′′
i (e1)

]
, i = 1, 2, j = 1, 2, . . . , n.

(23)
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Substituting (23) into (21) one gets

R0 (λ) +
n

∑
j=1

R1
(
λ, ej

)
γj +

n

∑
j=2

j−1

∑
k=1

R2
(
λ, ej, ek

)
γjγk +

n

∑
3=1

j−1

∑
k=2

k−1

∑
r=1

γjγkγrR3
(
λ, ej, ek, er

)
+ . . . + Rn (λ, en, en−1, . . . , e1) γnγn−1 . . . γ1 = 0,

(24)
where

R1
(
λ, ej

)
= R2j (λ) L

′′
1
(
ej
)
− R1j (λ) L

′′
2
(
ej
)

,

R2
(
λ, ej, ek

)
= S′′

(
ej − ek

) [
R2k (λ) L

′′
1 (ek)− R1k (λ) L

′′
2 (ek)

]
+ Qjk (λ)

[
L
′′
1
(
ej
)

L
′′
2 (ek)− L

′′
1 (ek) L

′′
2
(
ej
)]

,

R3
(
λ, ej, ek, er

)
= S′′

(
ej − ek

) [
R2r (λ) L

′′
1 (er)− R1r (λ) L

′′
2 (er)

]
+ Qjk (λ)

 S′′
(
ej − er

) [
L
′′
1 (er) L

′′
2 (ek)− L

′′
1 (ek) L

′′
2 (er)

]
−

−S′′ (ek − er)
[

L
′′
2 (er) L

′′
1
(
ej
)
− L

′′
2
(
ej
)

L
′′
1 (er)

]  ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Rn (λ, en, en−1, . . . , e1) = S′′ (en − en−1) S′′ (en − en−1) . . . S′′ (e2 − e1)
[

R21 (λ) L
′′
1 (e1)− R11 (λ) L

′′
2 (e1)

]
.

(25)
Thus, in case of single, double and triple cracks the exact characteristic equation gets

to be

R0 (λ) + γR1 (λ, e) = 0, (26)

R0 (λ) + γ1R1 (λ, e1) + γ2R1 (λ, e2) + γ2γ1R2 (λ, e2, e1) = 0, (27)

R0 (λ) + γ1R1 (λ, e1) + γ2R1 (λ, e2) + γ3R1 (λ, e3) + γ3γ2R2 (λ, e3, e2)

+ γ2γ1R2 (λ, e2, e1) + γ3γ1R2 (λ, e3, e1) + γ3γ2γ1R3 (λ, e3, e2, e1) = 0, (28)

with coefficients R1 (λ, e1) , R2 (λ, e2, e1) , R3 (λ, e3, e2, e1) are defined in (25).
In case of multiple cracked beam with small magnitude of cracks, first and second

asymptotic approximations of the characteristic equation are respectively

R0 (x, λ) +
n

∑
j=1

R1
(

x, λ, ej
)

γj = 0, (29)

R0 (x, λ) +
n

∑
j=1

R1
(

x, λ, ej
)

γj +
n

∑
j=2

j−1

∑
k=1

R2
(
x, λ, ej, ek

)
γjγk = 0. (30)

The latter equations are first obtained herein and they will be employed below for
developing a crack identification procedure in beam by antiresonant frequencies. For
this purpose, the coefficients R0 (x, λ), R1

(
x, λ, ej

)
, R2

(
x, λ, ej, ek

)
are recalled for antires-

onant frequencies as follow:
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R0 (x, λ) = h(q1) (1− x)
[

L(p1)
2 (λ) L1 (x)− L(p1)

1 (λ) L2 (x)
]

+ h(p1) (1− x)
[

L(q1)
1 (λ) L2 (x)− L(q1)

2 (λ) L1 (x)
]

,

R1
(
x, λ, ej

)
= h(q1) (1− x)

 K
(

x− ej
) [

L(p1)
2 (λ) L

′′
1
(
ej
)
− L(p1)

1 (λ) L
′′
2
(
ej
)]

+

+S(p1)
(
1− ej

) [
L
′′
2
(
ej
)

L1 (x)− L
′′
1
(
ej
)

L2 (x)
] 

+ h(p1) (1− x)

 K
(

x− ej
) [

L(q1)
1 (λ) L

′′
2
(
ej
)
− L(q1)

2 (λ) L
′′
1
(
ej
)]

+

+S(q1)
(
1− ej

) [
L
′′
1
(
ej
)

L2 (x)− L
′′
2
(
ej
)

L1 (x)
]  ,

R2
(
x, λ, ej, ek

)
= S′′

(
ej − ek

) [
M1 (x, λ, ek)K (x− ek) + M2 (x, λ, ek) S(p1) (1− ek)

]
+
[
N
(

x, λ, ej
)

K (x− ek) + N (x, λ, ek)K
(
x− ej

)] [
L
′′
1
(
ej
)

L
′′
2 (ek)− L

′′
2
(
ej
)

L
′′
1 (ek)

]
(31)

with
M1 (x, λ, ek) = h(q1) (1− x)

[
L(p1)

2 (λ) L
′′
1 (ek)− L(p1)

1 (λ) L
′′
2 (ek)

]
+ h(p1) (1− x)

[
L(q1)

1 (λ) L
′′
2 (ek)− L(q1)

2 (λ) L
′′
1 (ek)

]
,

M2 (x, λ, ek) = h(q1) (1− x)
[

L1 (x) L
′′
2 (ek)− L2 (x) L

′′
1 (ek)

]
+ h(p1) (1− x)

[
L2 (x) L

′′
1 (ek)− L1 (x) L

′′
2 (ek)

]
,

N (x, λ, e) = h(q1) (1− x) S(p1) (1− e)− h(p1) (1− x) S(q1) (1− e) .

(32)

The latter equations would be used below for developing a procedure for multi-crack
identification by antiresonant frequencies.

A (x, λ) ≡ h(q1) (1− x)
[
φ
(p1)
2 (1) φ1 (x)− φ

(p1)
1 (1) φ2 (x)

]
− h(p1) (1− x)

[
φ
(q1)
2 (1) φ1 (x)− φ

(q1)
1 (1) φ2 (x)

]
= 0.

(33)

While the resonant frequency equation, simply acknoledged as frequency equation
in case of ignored damping was thoroughly studied in the literature for multiple cracked
beam, the antiresonant frequency equations are first obtained herein and that will be in-
volved below in subsequent section to propose a procedure for multi-crack identification
from given antiresonant frequencies.

4. A PROCEDURE FOR CRACK IDENTIFICATION BY ANTIRESONANT
FREQUENCIES

Suppose that m antiresonant frequencies ω1, . . . , ωm of a beam have been determined
at locations x1, . . . , xm, it is required to identify amount of cracks possibly occurred in
the beam and their location and depth. Evidently, for given antiresonant frequencies
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ω1, . . . , ωm the antiresonant frequency parameter can be easily calculated as

λk =
4
√

ω2
kρF`4/EI, k = 1, . . . , m (34)

Based on the fact that an assumed crack at location e is confirmed to actually exist
if its depth a could be predicted definitely greater than zero, a procedure acknowledged
as crack scanning method was proposed [24] for crack identification in beam structures.
The crack scanning method applied for antiresonant frequency-based crack identification
in beam can be briefly presented as follows [23, 24]:

First, a mesh of cracks assumed to occur at selected locations (e1, . . . , en) and to have
unknown depth (a1, . . . , an) is introduced for conducting a model of multiple cracked
beam that enables to establish a relationship between the crack parameters and antires-
onant frequencies of the beam measured at a given grid (the characteristic equation for
antiresonant frequencies).

Second, using the established above relationship, crack depth vector a = (a1, . . . , an)
T

is predicted accordingly to the selected mesh of crack locations and given antiresonant
frequencies and, as result, a new mesh of crack locations

(
e′1, . . . , e′n′

)
, n′ < n, correspond-

ing to the positively predicted crack depths could be generated.
Third, the newly generated crack mesh allows a new model to be reconstructed so

that the crack depth vector could be reproduced and this iteration in estimating the vector
of crack depths would be stopped until no new crack mesh could be obtained. The lastly
obtained crack location mesh and predicted crack depth vector provide desired crack
locations and depths. The identified crack locations and depths give also the number
of cracks obtained and thus the problem of crack identification based on antiresonant
frequencies is thus solved. Note, the most important task in the provided procedure is to
estimate crack depth from given antiresonant frequencies, especially, when the scanning
crack location mesh should be very large compared to number of given antiresonant
frequencies being usually limited (m < n).

Let’s consider Eq. (30) for antiresonant frequency that is rewritten as

[A (γ)] {γ} = {b} , (35)

where [A] is m× n-matrix with elements

akj = R1
(
xk, λk, ej

)
+

j−1

∑
r=1

R2
(
xk, λk, ej, er

)
γr, k = 1, . . . , m, j = 1, . . . , n, (36)

and vectors

{γ} = (γ1, . . . , γn)
T , {b} = (b1, . . . , bm)

T , bk = −R0
(
xk, λk

)
, k = 1, . . . , m. (37)

In general, solution of Eq. (34) can be sought by iteration procedure

[Ai−1]
{

γ(i)
}
= {b} , (38)

with Ai−1 = A
(

γ(i−1)
)

; i = 1, 2, 3, . . . , γ(0) = 0 and this procedure would be stopped
when ∣∣∣∣∣∣γ(i) − γ(i−1)

∣∣∣∣∣∣ ≤ tolerance. (39)
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Since the crack scanning mesh should be large, the system of equations (38) is usually
underdetermined, so that it should be solved by the regularization method. Regularized
solution of Eq. (38) can be found in the form

γ(i) =
NR

∑
r=1

(
σruT

r b
δ + σ2

r

)
vr, (40)

where NR, σr, ur, vr, r = 1, 2, . . . , NR are respectively the rank, singular values and left
and right singular vectors of matrix Ai−1, δ is regularization factor determined from equa-
tion

θ (δ) =
NR

∑
r=1

(
δuT

r b
δ + σ2

r

)2

−
n

∑
r=NR+1

(
uT

r b
)2

= ε, (41)

with ε being noise level in the right hand side of Eq. (35).
After the crack magnitude estimated, depth of the identified cracks is calculated from

the equation

F (a) = 6π
(
1− ν2

0
)

h fc (a/h) = γj,

fc (z) = z2
(

0.6272− 1.04533z + 4.5948z2 − 9.9736z3 + 20.2948z4 − 33.0351z5

+ 47.1063z6 − 40.7556z7 + 19.6z8
)

.

(42)

5. NUMERICAL EXAMPLES AND DISCUSSION

5.1. Antiresonant frequencies of multiple cracked beam
First, fundamental antiresonant frequency parameter (λ) of beam with conventional

boundary conditions has been computed using the antiresonant frequency equations
(26)–(28) for various collocations in different cases of multi-crack scenarios (single, dou-
ble and triple cracks at different locations and with various depth including also the case
of uncracked beam). Computation results given in Tables 2–4 show that the antiresonant
frequency of the beam with symmetric boundary conditions is unchanged due to a crack
appeared at the beam middle. However, symmetric cracks produce different changes
in antiresonant frequency measured at any location. Moreover, the second approximate
equation (30) gives a solution almost identical to that of the exact one even for crack
depth reached to 40% beam thickness. This allows one to confidently use the second
approximate antiresonant frequency equation for multi-crack identification of beam by
measured antiresonant frequencies.

Table 2. First antiresonant frequency parameter of multiple cracked simply supported beam

Crack
location

Driving-measuring collocation, x

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Single crack of a/h = 0.4

0.25 4.0459 4.3697 4.9132 5.5918 5.8422 5.2865 4.7410 4.3180 3.9912 -
0.5 5.6063 5.1937 5.3612 5.8069 6.2832 5.7800 5.0608 4.4792 4.0545 -

0.75 4.2638 4.5419 4.8497 5.1363 5.4813 5.3950 4.8152 4.4572 4.1906 -
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Crack
location

Driving-measuring collocation, x

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Double cracks of a/h = 0.4

0.25-0.50 4.5533 4.8006 4.9016 4.9028 4.9428 4.9683 4.9043 4.6353 4.2153 -
0.25-0.75 3.8681 4.0130 4.1103 4.1830 4.2701 4.3731 4.4881 4.4304 4.1046 -
0.50-0.75 4.2292 4.4742 4.7430 5.0035 5.3045 5.6294 5.0165 4.7342 5.4074 -

Triple cracks at locations (0.25-0.50-0.75)

a/h = 0.5 3.5958 3.7013 3.7630 3.8168 3.8934 3.9398 3.9698 3.8504 3.6092

0.4 EX 3.8545 3.9964 4.0938 4.1711 4.2636 4.3326 4.3884 4.2657 3.9511 -
A2 3.8538 3.9955 4.0931 4.1704 4.2624 4.3303 4.3845 4.2627 3.9500
A1 4.2879 4.5368 4.7290 4.8378 4.9965 5.2234 4.6298 4.2329 3.9275

0.3 EX 4.1154 4.3144 4.4612 4.5629 4.6650 4.7625 4.8756 4.7855 4.3716 -
A2 4.1150 4.3138 4.4607 4.5625 4.6643 4.7610 4.8729 4.7832 4.3709
A1 4.5010 4.8578 5.1713 5.2830 5.4565 5.3820 4.7800 4.3550 4.0307

0.2 EX 4.4387 4.7547 4.9777 5.0751 5.1575 5.3357 5.1894 4.6385 4.4313 -
A2 4.4385 4.7544 4.9774 5.0750 5.1572 5.3350 5.1902 4.6386 4.4314
A1 4.7528 5.3700 5.7306 6.0375 6.1116 5.5563 4.9386 4.4773 4.1259

0.1 EX 4.9526 4.8838 5.3378 6.0485 5.7991 5.7825 5.0899 4.5879 4.2153
A2 4.9527 4.8838 5.3378 6.0486 5.7991 5.7826 5.0899 4.5879 4.2153
A1 4.7470 4.8332 5.2663 5.8508 6.2282 5.7117 5.0730 4.5763 4.1974

0.0 4.2264 4.6183 5.1318 5.7826 6.2832 5.7826 5.1318 4.6183 4.2264

Notation: EX – exact equation; A2 – second approximation; A1 – first approximation

Table 3. First antiresonant frequency parameter of multiple cracked clamped end beam

Crack
location

Driving-measuring collocation, x

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Single crack of a/h = 0.4

0.3 5.2058 5.4726 5.9770 6.9441 7.4069 6.6894 6.0080 5.4708 5.0371 -
0.5 7.7053 6.9407 6.7904 7.2324 7.8532 7.1305 6.1353 5.3930 4.8767 -
0.7 5.4897 5.7393 6.1137 6.5252 7.0038 6.7182 5.9770 5.5969 5.1262 -

Double cracks of a/h = 0.4

0.3–0.5 5.4386 5.6143 5.8218 5.9382 6.0333 5.9959 5.8122 5.4422 4.5699 -
0.3–0.7 5.0999 5.1811 5.2869 5.3647 5.4445 5.4582 5.4057 5.2335 5.0602
0.5–0.7 5.3669 5.5630 5.8354 6.1544 6.5452 7.1475 6.3643 6.8946 5.8087 -

Triple cracks at locations (0.3–0.5–0.7)

a/h = 0.5 4.9504 5.0119 5.0881 5.1323 5.1871 5.1899 5.1429 5.0040 4.8733

0.4 EX 5.0999 5.1811 5.2869 5.3647 5.4445 5.4582 5.4057 5.2335 5.0602 -
A2 5.0994 5.1803 5.2858 5.3637 5.4432 5.4565 5.4039 5.2324 5.0597
A1 5.5890 5.8824 6.3009 6.5906 6.9944 6.5889 5.8239 5.3504 4.8880
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Crack
location

Driving-measuring collocation, x

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.3 EX 5.2564 5.3750 5.5332 5.6609 5.7714 5.8014 5.7468 5.5278 5.2652 -
A2 5.2562 5.3746 5.5327 5.6605 5.7708 5.8005 5.7458 5.5272 5.2650
A1 5.6816 6.0364 6.5651 6.8828 7.5523 6.7368 5.9527 5.4402 4.9687

0.2 EX 5.4461 5.6591 5.9243 6.1192 6.2523 6.3228 6.3199 6.0536 5.6077 -
A2 5.4459 5.6590 5.9241 6.1190 6.2521 6.3224 6.3194 6.0533 5.6076
A1 5.8004 6.3104 7.4263 7.5617 7.4865 6.9097 6.1012 5.5322 5.0458

0.1 EX 5.8050 6.4030 7.0549 7.1095 7.0413 7.4390 6.2920 5.6362 5.1311
A2 5.8050 6.4029 7.0549 7.1095 7.0413 7.4391 6.2920 5.6362 5.1311
A1 6.0605 6.0129 6.5015 7.2592 7.7938 7.0726 6.2382 5.6076 5.1052

0.0 5.1296 5.6399 6.3015 7.1494 7.8532 7.1494 6.3015 5.6399 5.1296

Notation: EX – exact equation; A2 – second approximation; A1 – first approximation

Table 4. First antiresonant frequency parameter of multiple cracked cantilever beam

Crack
location

Driving-measuring collocation, x

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Single crack of a/h = 0.4

0.3 2.8176 1.8623 2.1441 2.5948 3.0666 3.6402 4.3296 4.6185 4.3154 3.9190
0.5 2.6316 1.8443 2.1045 2.3950 2.7547 3.3905 4.0964 4.3626 4.0846 3.7437
0.8 2.3773 2.0489 2.2926 2.5805 2.9479 3.4435 4.1211 4.6202 4.2714 3.7811

Double cracks of a/h = 0.4

0.3-0.5 2.6318 2.3695 1.9411 2.3542 2.7930 3.4969 4.2356 3.9214 4.0506 3.6756
0.3-0.8 2.5796 2.4101 1.8897 2.2592 2.6605 3.2596 3.9400 3.7127 3.9065 3.6748
0.5-0.8 2.5849 2.3488 2.0292 2.3093 2.6520 3.2511 3.9931 3.8732 4.0459 3.6482

Triple cracks at locations (0.3 – 0.5 – 0.8)

a/h = 0.5 3.7526 2.5149 1.6986 2.1759 2.7315 3.2611 3.2333 3.2889 3.4460 3.4234

0.4 EX 2.6776 2.4611 1.8911 2.3044 2.7614 3.7039 3.5696 3.5878 3.8007 3.6067
A2 2.6782 2.4615 1.8911 2.3044 2.7614 3.7045 3.5697 3.5881 3.8011 3.6065
A1 2.5796 2.4101 1.8897 2.2592 2.6605 3.2596 3.9400 3.7127 3.9065 3.6748

0.3 EX 2.6772 1.8102 2.0777 2.4490 2.8685 3.5271 3.9972 3.9167 4.2079 3.7459
A2 2.6773 1.8102 2.0777 2.4490 2.8685 3.5272 3.9971 3.9167 4.2080 3.7459
A1 2.6263 1.8098 2.0767 2.4307 2.8303 3.4151 4.1057 4.0303 4.1660 3.7696

0.2 EX 2.5997 1.9905 2.2513 2.5888 2.9921 3.5747 4.3255 4.2655 4.2686 3.8443
A2 2.5997 1.9905 2.2513 2.5888 2.9921 3.5747 4.3255 4.2655 4.2686 3.8443
A1 2.5822 1.9904 2.2509 2.5839 2.9822 3.5492 4.2438 4.3602 4.2582 3.8495

0.1 EX 1.9188 2.1453 2.3892 2.6994 3.0964 3.6472 4.3439 4.6594 4.3228 3.9047
A2 1.9188 2.1453 2.3892 2.6994 3.0964 3.6472 4.3439 4.6594 4.3228 3.9047
A1 1.9188 2.1453 2.3891 2.6989 3.0955 3.6452 4.3379 4.6527 4.3219 3.9051

0.0 2.0291 2.2160 2.4484 2.7462 3.1416 3.6830 4.3737 4.6826 4.3465 3.9266

Notation: EX – exact equation; A2 – second approximation; A1 – first approximation
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5.2. Results of crack identification by antiresonant frequencies for cantilever beam
In this subsection the proposed above crack detection procedure is examined for can-

tilever beam with single and triple cracks at different locations and depths and various
number of measured antiresonant frequencies. Results of the crack detection are shown
in Figs. 1–4, where identified crack magnitude versus crack locations assumed in the
scanning mesh. Inputs used for the crack detection are antiresenant frequencies com-
puted by exact antiresonant frequency equations that implies the frequencies measured
without noise.
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Fig. 3. Results of crack detection by antiresonant frequencies measured at 10, 16, 18, 20 positions
on cantilever beam with three cracks at location e/L = 0.2; 0.5; 0.9 of equal depth a/h = 10%,

using model with 20 crack mesh

It can be seen that single crack of 10% depth could be reliably detected with antireso-
nant frequencies measured at 10 locations, but it would be uniquely identified by amount
of antiresonant frequencies measured at all 15 locations of scanning mesh (Fig. 1). Larger
crack of 30% beam thickness could be detected uniquely by 18 measured antiresonant
frequencies using 20 location mesh (Fig. 2). Detecting triple cracks at positions 0.2-0.5-0.9
is accomplished in two cases of crack depth scenario: in the first case, three cracks have
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equal 10% depth (Fig. 3) and in the other one they have different depth of 30%, 20% and
50% (Fig. 4). Obviously, though triple cracks might be also consistently localized from
10 antiresonant frequencies, they could be exactly with equal depth only by the antires-
onant frequencies measured at 20 locations of scanning mesh. In case of triple cracks
with different depth, both location and magnitude could be accurately identified with 16
antiresonant frequencies.

Vietnam Journal of Mechanics 

depth only by the antiresonant frequencies measured at 20 locations of scanning mesh. In case of triple cracks 

with different depth, both location and magnitude could be accurately identified with 16 antiresonant frequencies. 

 

  

  
Fig. 5.4. Results of crack detection by antiresonant frequencies measured at 10, 16, 18, 20 positions  on 
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Fig. 4. Results of crack detection by antiresonant frequencies measured at 10, 16, 18, 20 positions
on cantilever beam with three cracks of depth a/h = 30%; 20%; 50% at locations e/L = 0.2; 0.5;

0.9 using model with 20 crack mesh

6. CONCLUDING REMARKS

Thus, in the present paper, concept of antiresonant frequency defined as zero point
of frequency response function has been generally addressed for multiple cracked beam.
First, governing equation for computing anti- resonant frequencies called antiresonant
frequency equation has been established explicitly in term of crack magnitudes. From the
governing equation, first and second asymptotic approximate antirequency equations in
case of number of small cracks greater than 3 can be derived and used for analysis of an-
tiresonant frequencies versus crack parameters and position on beam where the antires-
onant frequencies have been measured. Finally, a procedure has been proposed to detect
multi-cracks by given antiresonant frequencies based on the crack scanning method. Nu-
merical examples show that the second approximate antiresonant frequency equation is
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consistent for computing antiresonant frequencies and antiresonant frequencies in com-
bination with positions, where the antiresonant frequencies have been measured, pro-
vide more efficient indicator for crack identification compared with natural frequencies
or even with mode shapes.
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