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Abstract. The present study investigates the axial vibration of double-walled nanotubes.
Using the nanorod continuum model with the van der Waals effect, the vibrational fre-
quencies are studied. Aydogdu (Journal of Vibration and Control, Vol. 21, Issue 16, (2015),
3132-3154) proposed a reliable model for the study of axial vibration in a double-walled
nanotube. This model provided a detailed investigation of axial vibration using van der
Waals effects. But sometimes, the wrong equation might lead to erroneous scientific re-
sults. The incorrect term for axial vibration in the double-walled nanotube model is taken
care of in the present study for the correct scientific inferences. Effectively, the axial vi-
brational frequencies appear without decoupling the continuum model as for primary
and secondary nanotubes. The semi-analytical method estimates the axial vibrational fre-
quencies of the double-walled nanotube as a coupled model. Two different boundary
conditions like clamped-clamped and clamped-free support, are considered in this com-
putation. The Pasternak medium support and magnetic effects influence the vibrational
frequencies of the first and second nanotube for the first time. The Pasternak constant
and magnetic parameters don’t vary with the length of the nanotube for axial vibration.
It means that still more understanding requires in modeling the Pasternak medium and
magnetic force for the double-nanotube to model axial vibration.

Keywords: critical buckling of double-walled nanotube, differential transform method,
Pasternak medium support, magentic force effect.

1. INTRODUCTION

The discovery of carbon nanotube by Iijima [1] influenced the researchers to under-
stand its properties and behaviour. Endo et al. [2] discussed the carbon nanotube’s prop-
erties in detail. Dresselhaus et al. [3] elaborated on the physical properties of carbon nan-
otube. Elishakoff et al. [4] investigated the mechanical properties and nanotube’s struc-
tural behavior for one-dimensional nanostructures. Hierold et al. [5] examined the mod-
elling and application of carbon nanotube devices. Aydogdu [6] proposed the nonlocal
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model for the axial vibration of a single nanorod and obtained the analytical solutions for
two different boundary conditions. Kiani [7] used the perturbation technique to compute
the vibrational frequencies of tapered nanowire/nanorods. Narendar and Gopalakrish-
nan [8] studied the wave propagation analysis for carbon nanorod using nonlocal elastic-
ity theory. Aydogdu [9] used a cylindrical nanorod model to study the wave propagation
and calibrated the nonlocal parameter compared to lattice dynamics. Islam et al. [10]
used the analytical solutions to investigate the nonlocal effects in torsional nanorods.
Aydogdu and Gul [11] investigated the vibrational behaviour of double nanorod systems
using the doublet mechanics theory. Li et al. [12] used analytical solutions for specified
boundary conditions and developed finite element solutions for clamped-strained ends
using nonlocal strain gradient theory. Kiani [13] used an integro-differential model to
investigate the vibrational frequencies of elastically connected nanorods. Zhu and Li [14]
analysed the integral form of stress, strain, stress-strain based nonlocal theories for vibra-
tional analysis. Nazemnezhad and Kamali [15] investigated the vibrational studies of the
nonlocal nanorod model using analytical solutions. Farajpour et al. [16] compiled the re-
view on the mechanics of nanostructures. It includes the research works about nanorods,
nanorings, nanobeams, nanoplates, and nanoshells. Numanoğlu et al. [17] studied the
nonlocal effects over vibrational frequencies of nanorod for various boundary conditions.
Babaei and Yang [18] estimated the vibrational frequencies for rotating rods with nonlo-
cal effects using the Galerkin method. Civalek and Numanoğlu [19] solved the nonlo-
cal nanorod model for dynamic analysis using analytical and finite element methods.
Babaei [20] studied the effect of harmonic excitation over frequencies of nanorod using
nonlocal strain gradient theory. From this literature, it is understood that the vibrational
analysis of nanorods is of greater interest among researchers.

Erol and Gürgöze [21] proposed the mathematical model of a double-rod system
along with springs and dampers. Though two different cross-sectional area properties
exist in their model, they simplified the material properties as E1A1 = E2A2 = e. Fur-
ther, the relative displacement function assumes in terms of the primary and secondary
nanorod in their study. Using this assumption, the coupled model of double-rod became
two separate models as primary and secondary nanorod. Finally, Erol and Gürgöze [21]
obtained the closed-form solution of double-rod for longitudinal vibrational frequencies
along with springs and dampers effects. Murmu and Adhikari [22] analyzed the nonlo-
cal effects in the vibrational frequencies of double-nanorod connected with springs using
analytical solutions. Further, the decoupled model evaluated the frequencies using rela-
tive displacements, and it interlinks the primary and secondary nanorod. Narendar and
Gopalakrishnan [23] elaborated the nonlocal effects in coupled nanorod systems using
wave propagation studies. Karličić et al. [24] investigated the viscoelastic and nonlocal
effects over the frequencies of double-nanorod. Xu et al. [25] determined the longitudinal
vibrational frequencies of double and triple-nanorods using the Fourier series with the
Rayleigh-Ritz approach. Using doublet mechanics theory, Aydogdu and Gul [11] studied
the longitudinal vibrational frequencies of double-nanorod systems. Zhou [26], proposed
the differential transform method for semi-analytical solutions. Chai and Wang [27], used
the differential transformation method to compute the critical load for heavy columns.
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Using the differential transform method, Senthilkumar [28] computed the Euler’s crit-
ical buckling loads of carbon nanotube with nonlocal effects. Further, Senthilkumar
et al. [29] determined Timoshenko’s critical buckling load of single-walled carbon nan-
otube by implementing the differential transform method. Senthilkumar [30] evaluated
the frequencies of double-nanorod and double-walled carbon nanotube by applying the
differential transform method. Aydogdu [31] proposed the governing equations for ax-
ial vibration of double-nanotube using nonlocal elasticity. This model includes van der
Waals force with suitable transformation. Using the interaction coefficient, the van der
Waals coefficient of double-walled carbon nanotube yielded the axial effect for double-
nanorod in Aydogdu’s model. Kiani and Żur [32] analysed the vibrational frequencies
of double-nanorod systems with defects using nonlocal-integral-surface-energy models.
In Aydogdu’s [31] model, an erroneous mistake occurred as ρ instead of ρA1 for the
first nanotube. Also, for the second nanotube, instead of ρA2, the same ρ took place.

Further, Aydogdu reported the dimensionless axial frequency term as f 2 =
ρω2L2

EA2
for

double-nanotube model. It is worth noting that the dimensionless axial frequency of
double-nanotube doesn’t depend on the cross-sectional area of the nanorod. Due to this,
the second carbon nanorod’s axial frequencies resulted in the wrong values. So this has

to be corrected as f 2 =
ρω2L2

E
. So the present objective of this work is to estimate the

double-nanotubes axial frequencies using the corrected model. The Differential Trans-
form Method estimates the axial frequencies of primary and secondary nanotubes effec-
tively in a reliable manner by using the updated model. The first research work about
modelling of Pasternak medium support while investigating the frequency analysis of
nanorod is reported by Mohammadimehr et al. [33]. Later, Lv et al. [34] investigated the
wave propagation of nanorods using the Pasternak medium with uncertainty in material
properties using the nonlocal model. Murmu et al. [35] proposed the magnetic force term
for the axial frequency analysis of nanorods. Also, the Pasternak effect and magnetic ef-
fect in the axial vibrational frequencies of double-nanotube don’t exist in the literature as
per the author’s knowledge. So this work addresses the impact of the Pasternak medium
and magnetic effect over axial frequencies of double-nanotube.

2. MATHEMATICAL MODEL OF DOUBLE-WALLED CARBON NANOTUBE

Aydogdu [31] proposed the mathematical model for double-walled carbon nanotube
with axial vibration effect as,

c′(u2 − u1) = −EA1
∂2u1

∂x2 + ρ
∂2u1

∂t2 , (1)

−c′(u2 − u1) = −EA2
∂2u2

∂x2 + ρ
∂2u2

∂t2 , (2)

where u1 and u2 are the axial deformation of the first and second nanotube. Also, the
cross-section areas of the first and second nanotube are A1 and A2. c′ is the van der Waals
interaction coefficient for axial effect with the first-order approximation [31] of van der
Waals force. In the nonlinear analysis, the higher-order coefficients of van der Walls force
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involve with c′3, c′7 and c′9 etc along with the linear term coefficient c′. Since the present
study considers linear analysis [31], the coefficient c′ takes care of the first-order approxi-
mation effect by ignoring the higher-order nonlinear effects of van der Waals coefficients
values.

Two erroneous mistakes appeared in Eq. (1) and Eq. (2). The inertial force effect term
for the first nanotube ρA1 incorrectly appeared as ρ in Eq. (1). Similarly, the second nan-
otube’s inertial force inaccurately appeared as ρ instead of ρA2 in Eq. (2). The corrected
model is,

c′(u2 − u1) = −EA1
∂2u1

∂x2 + ρA1
∂2u1

∂t2 , (3)

−c′(u2 − u1) = −EA2
∂2u2

∂x2 + ρA2
∂2u2

∂t2 . (4)

The present model extends the investigation by including the effect of the Pasternak
medium and magnetic environment. By ignoring Winkler and damping moduli, cu=0
and k1=0 (Mohammadimehr et al. [33] and Lv et al. [34]), the axially distributed force per
unit length fu with magnetic effect by neglecting terms of nonlocal (Murmu et al. [35])
assumes as,

fu = kup
∂2u
∂x2 + ηm A(H2

y + H2
z )

∂2u
∂x2 . (5)

Here kup and ηm represent the Pasternak medium (Mohammadimehr et al. [33] and Lv
et al. [34]) and magnetic effects (Murmu et al. [35]) for nanorod. Aydogdu [31] defined the
axial force in the following form as fij = c′(uj − ui) for linear analysis. For the consistent
notation purpose, assuming pu

(N)(N+1) = fij and cu
(N)(N+1) = c′. The forces pu

(N)(N+1) [36]
and cu

(N)(N+1) [37] take form as,

pu
(N)(N+1) = cu

(N)(N+1)(uN+1 − uN), (6)

c(N)(N+1) =
320×(2RN) erg/cm2

0.16a2
C−C

, aC−C = 0.142 nm N = 1, 2, . . . n. (7)

By defining a ratio between the van der Waals interaction coefficient and linear van der
Waals interaction coefficient as cRatio,

cRatio =
cu
(N)(N+1)

c(N)(N+1)
, (8)

c = c12 =
320×(2R1) erg/cm2

0.16a2
C−C

, aC−C = 0.142 nm, (9)

cRatio =
cu

12
c12

=
c′

c
, (10)

c′ = cRatio×c, (11)

cu
12 = cRatio×c12. (12)

As suggested by Aydogdu [31], cRatio assumed in the range of 0.01–0.1.
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Using Aydogdu [38] expression for the equation of motion and adding the force term
pu, the equation becomes,

∂N
∂x

= ρA
∂2u(x, t)

∂t2 − fu − pu. (13)

Also, the well-known relation takes the following form for nanorod,

∂N
∂x

= EA
∂2u
∂x2 . (14)

Substituting Eq. (5) and Eq. (6) in Eq. (13) , the equation of motion for nanorod in terms
of displacement using Eq. (14) is as follows,

ρA
∂2u
∂t2 − kup

∂2u
∂x2 − ηm A(H2

y + H2
z )

∂2u
∂x2 − pu = EA

∂2u
∂x2 . (15)

Using Eq. (6) in Eq. (15) , the axial vibration model for double-walled nanotube attains
as

EA1
∂2u1

∂x2 − ρA1
∂2u1

∂t2 + kup
∂2u1

∂x2 + ηm A1(H2
y + H2

z )
∂2u1

∂x2 + cu
12(u2 − u1) = 0, (16)

EA2
∂2u
∂x2 − ρA2

∂2u2

∂t2 + kup
∂2u2

∂x2 + ηm A2(H2
y + H2

z )
∂2u2

∂x2 − cu
12(u2 − u1) = 0. (17)

By substituting the values as kup = 0 and ηm = 0, in Eq. (16) and Eq. (17) yield the
corrected governing equations for double-walled carbon nanotube for axial vibration.

3. DIFFERENTIAL TRANSFORM METHOD

Assuming the axial vibration is in the form of harmonic vibration and transforming
Eq. (16) and Eq. (17) in dimensionless form as,

d2U1

dX2 =
−Ω2

drU1 − αdr(U2 − U1)[
1 + Kupdr + ψm(1 + δ2

m)

] , (18)

d2U2

dX2 =

−Ω2
drU2 +

(
αdr
Adr

)
(U2 − U1)[

1 +
(

Kupdr
Adr

)
+

(
ψm(1+δ2

m)
Adr

)] , (19)

here the following dimensionless relations occur,

u1(x, t) = U1(x) eiωdrt, u2(x, t) = U2(x) eiωdrt, (20)

U1 =
U1

L
, U2 =

U2

L
, X =

x
L

, (21)

Ω2
dr =

ρω2
drL2

E
, αdr =

cu
12L2

EA1
, Kupdr =

kup

A1E
, Adr =

A2

A1
, (22)

ψm =
ηmH2

y

E
, δm =

Hy

Hz
, ψm(1 + δ2

m) =
ηm(H2

y + H2
z )

E
. (23)
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Applying Differential Transform to Eq. (18) and Eq. (19) by referring to Table 1 as

U1(k + 2) =
−Ω2

drU1(k)− αdr
[

U2(k)− U1(k)
]

(k + 1)(k + 2)
[

1 + Kupdr + ψm(1 + δ2
m)

] , (24)

U2(k + 2) =
−Ω2

drU2(k) +
(

αdr
Adr

)[
U2(k)− U1(k)

]
(k + 1)(k + 2)

[
1 +

(
Kupdr
Adr

)
+

(
ψm(1+δ2

m)
Adr

)] . (25)

Table 1. DTM Transformation

Original Function Transformed Function

Original B.C Transformed B.C

y(x) = λu(x) Y(k) = λU(k)a

y(x) = u(x)±v(x) Y(k) = U(k)±V(k)a

y(x) =
dnu(x)

dxn Y(k) = (k + 1)(k + 2)...(k + n)U(k + n)a

aZhou [26].

3.1. Boundary Conditions
The present investigation of double-walled nanotube for axial vibration effect deals

with two different boundary conditions: clamped-clamped and clamped-free.

3.1.1. Clamped-Clamped Support
The boundary conditions for double-walled with clamped-clamped support for axial

vibration effect satisfy the following requirements,

u1

∣∣∣∣
x=0

= 0, u1

∣∣∣∣
x=L

= 0, u2

∣∣∣∣
x=0

= 0, u2

∣∣∣∣
x=L

= 0, (26)

using Eq. (21) , the dimensionless form of Eq. (26) appears as,

U1

∣∣∣∣
X=0

= 0, U1

∣∣∣∣
X=1

= 0, U2

∣∣∣∣
X=0

= 0, U2

∣∣∣∣
X=1

= 0. (27)

The Differential Transform converts Eq. (27) with the assumption of unknown initial
conditions as c1 and c2 and boundary conditions for clamped-clamped support becomes,

U1(0) = 0, U1(1) = c1, U2(0) = 0, U2(1) = c2, (28)
∞

∑
k=0

U1(k) = 0,
∞

∑
k=0

U2(k) = 0. (29)
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3.1.2. Clamped-Free Support
The double-walled nanotube with axial vibration effect satisfies the following bound-

ary conditions for clamped-free support

u1

∣∣∣∣
x=0

= 0, N1

∣∣∣∣
x=L

= 0, u2

∣∣∣∣
x=0

= 0, N2

∣∣∣∣
x=L

= 0. (30)

Eq. (30) converts to dimensionless form using Eq. (21) as follows,

U1

∣∣∣∣
X=0

= 0, N1

∣∣∣∣
X=1

= 0, U2

∣∣∣∣
X=0

= 0, N2

∣∣∣∣
X=1

= 0, (31)

where

N1

∣∣∣∣
X=1

=
dU1

dX
, N2

∣∣∣∣
X=1

=
dU2

dX
. (32)

By using suitable unknown values as c1 and c2, the boundary conditions for clamped-free
support takes form with the assistance of the Differential Transform approach,

U1(0) = c1, U1(1) = 0, U2(0) = c2, U2(1) = 0. (33)

∞

∑
k=0

U1(k) = 0,
∞

∑
k=0

U2(k) = 0. (34)

4. COMPUTATION OF DIFFERENTIAL TRANSFORMATION METHOD

The computation of double-walled carbon nanotube’s axial vibrational frequencies
for clamped-clamped support involves by writing Eq. (28) and Eq. (29) in matrix form as[

An
11
(
Ω2

dr
)

An
12
(
Ω2

dr
)

An
21
(
Ω2

dr
)

An
22
(
Ω2

dr
)] {c1

c2

}
=

{
0
0

}
, (35)

∣∣∣∣An
11
(
Ω2

dr
)

An
12
(
Ω2

dr
)

An
21
(
Ω2

dr
)

An
22
(
Ω2

dr
)∣∣∣∣ = 0, (36)

[Ωdr]
2 =

[
Ω(n)

drj

]2
, j = 1, 2, 3, . . . , n (37)∣∣∣∣[Ω(n)

drj

]2
−

[
Ω(n−1)

drj

]2
∣∣∣∣ ≤ ε. (38)

The tolerance parameter ε value as 0.0001 in Eq. (38) determines the axial vibration com-
putation with four decimal accuracy for clamped-clamped supported double-walled nan-
otube. Similarly, for the clamped-free boundary conditions, by using Eq. (33) and Eq. (34)
in matrix form yields the axial vibrational frequencies for double-walled nanotube fol-
lowing the steps from Eq. (35) to Eq. (38).
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5. DISCUSSIONS

The double-walled nanotube’s properties [4] used in this analysis are Young’s mod-
ulus E = 1.0 TPa, van der Waals coefficient c = c12 = 0.06943 TPa, inner mean ra-
dius of nanotube R1 = 0.35 nm, outer mean radius of nanotube R2 = 0.70 nm, cross
sectional area of first nanotube A1 = 7.476990×10−19 m2 and cross sectional area of
second nanotube A2 = 1.495398×10−18 m2, Adr = A2/A1 = 2, inner mean diameter
d1 = 2×R1 = 0.7 nm, outer mean diameter Do = 2×R2 = 1.4 nm and nanotube thick-
ness t = 0.34 nm. The present study considers the value of the van der Waals coefficient

as cu
12 = cRatio×

320×(2R1) erg/cm2

0.16a2
C−C

or c′ = cRatio×0.06943 TPa. The values of cRatio [31]

varies from 0.01 to 0.1. The differential transform method estimates the dimensionless
axial frequencies. Fig. 1 shows, the convergence of the first six dimensionless axial fre-
quencies happens at n = 40 for double-walled nanotube with clamped-clamped bound-
ary conditions. The dimensionless axial frequencies of the first nanotube appear from
the first, third, and fifth modes. Also, the second, fourth, and sixth modes correspond to
dimensionless axial frequencies of the second nanotube. The first and second modes for
clamped-clamped support appear at n=16 terms. Emergences of third and fourth mode
happen at n = 26 terms. Finally, the fifth and sixth modes evolve at n = 36 terms. How-
ever, Fig. 1 represents that the difference between the first and second modes is negligible.
But it is seen from Table 2 that the first frequency is different from the second frequency.
So the difference between first and second frequencies is not ignorable. Similar obser-
vations happen from third to sixth modes. The axial frequencies of the double-walled
nanotube with clamped-free support show identical phenomena compared to clamped-
clamped results of the convergency study using Fig. 2.
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Table 2. Critical Buckling Loads of DWCNTs for various boundary conditions in nN,
c12 = 71.11 GPa, L/d2 = 10

No L/Do
DTM First Nanotube Second Nanotube Single Nanorod
Ωdr Ωdr Ωdr Ωsr [38]

1 5 3.1416 3.1416(1) - 3.141
2 3.1524 - 3.1524(1) -
3 6.2832 6.2832(2) - 6.284
4 6.2886 - 6.2886(2) -
5 9.4248 9.4248(3) - 9.425
6 9.4284 - 9.4284(3) -

1 25 3.1416 3.1416(1) - 3.141
2 3.4023 - 3.4023(1) -
3 6.2832 6.2832(2) - 6.284
4 6.4175 - 6.4175(2) -
5 9.4248 9.4248(3) - 9.425
6 9.5149 - 9.5149(3) -

1 50 3.1416 3.1416(1) - 3.141
2 4.0859 - 4.0859(1) -
3 6.2832 6.2832(2) - 6.282
4 6.8047 - 6.8047(2) -
5 9.4248 9.4248(3) - 9.425
6 9.7802 - 9.7802(3) -

(1)First Vibrational Mode; (2)Second Vibrational Mode; (3)Third Vibrational Mode.

Table 2 compares the first six dimensionless axial frequencies of the double-walled
nanotube using a nanorod model with a single nanorod. It is evident from Table 2 that
the dimensionless axial frequency parameter increases with various L/Do ratios. It im-
plies that the length of the nanotube plays a crucial role in the increase in dimensionless
frequency compared to short-length nanotubes. This phenomenon happens in the sec-
ond nanotube alone. For the first nanotube, the dimensionless axial frequency parameter
is insensitive to L/Do ratios. Also, the dimensionless frequency of the first nanotube and
the single nanorod are the same. Similar observations happen in the dimensionless ax-
ial frequencies of the double-walled nanotube with clamped-free support by referring to

Table 3 and Fig. 2. Using the relation Ω2
dr =

ρω2
drL2

E
, the computation of angular fre-

quency happens easily. Fig. 3 demonstrates, the L/Do ratios influence the dimensionless
frequency parameter of the second nanotube significantly for the clamped-clamped sup-
port. Notably, the first mode of the second nanotube increases with the length of the
nanotube compared to the second and third modes. A similar trend continues in the di-
mensionless axial frequencies of the double-walled nanotube with clamped-free support,
as shown in Fig. 4.
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Table 3. First six dimensionless axial frequency parameter (Ωdr) of double-walled nanotube
with clamped-free support (cu

12 = 0.01×c12)

No L/Do
DTM First Nanotube Second Nanotube Single Nanorod
Ωdr Ωdr Ωdr Ωsr [38]

1. 5 1.5708 1.5708(1) - 1.570
2. 1.5924 - 1.5924(1) -
3. 4.7124 4.7124(2) - 4.712
4. 4.7196 - 4.7196(2) -
5. 7.8540 7.8540(3) - 7.853
6. 7.8583 - 7.8583(3) -

1. 25 1.5708 1.5708(1) - 1.570
2. 2.0430 - 2.0430(1) -
3. 4.7124 4.7124(2) - 4.712
4. 4.8901 - 4.8901(2) -
5. 7.8540 7.8540(3) - 7.853
6. 7.9619 - 7.9619(3) -

1. 50 1.5708 1.5708(1) - 1.570
2. 3.0484 - 3.0484(1) -
3. 4.7124 4.7124(2) - 4.712
4. 5.3881 - 5.3881(2) -
5. 7.8540 7.8540(3) - 7.853
6. 8.2771 - 8.2771(3) -

(1)First Vibrational Mode; (2)Second Vibrational Mode; (3)Third Vibrational Mode.
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From Fig. 5, the dimensionless axial frequencies increase for higher modes for
clamped-clamped support of double-walled nanotube. Interestingly, the first, third, and
fifth modes are insensitive with the various value of L/Do ratio. These are the dimen-
sionless axial frequency of the first nanotube, which doesn’t change with the length of
the nanotube. But for the second nanotube, the dimensionless axial frequency parameter
changes. The reason for this is due to the contribution of the van der Waals force. Fig. 6
shows similar phenomena for clamped-free support. Fig. 7 shows the influence of van
der Waals force over dimensionless axial frequency for clamped-clamped support. Again
the second nanotube’s dimensionless axial frequency increase as the van der Waals effect

0.02 0.04 0.06 0.08 0.1
2

4

6

8

10

12

14

16

cu
12
/c12

Ω
d
r

 

 

1
stMode
2
ndMode
3
rdMode
4
thMode
5
thMode
6
thMode

Fig. 7. Effect of van der Waals in dimension-
less frequency (Ω) for Clamped-Clamped sup-
port of Double-walled Carbon Nanorod with

cu
12 = 0.1×c12 and L/Do = 10

0.02 0.04 0.06 0.08 0.1

2

4

6

8

10

12

14

cu
12
/c12

Ω
d
r

 

 

1
stMode

2
ndMode

3
rdMode

4
thMode

5
thMode

6
thMode

Fig. 8. Effect of van der Waals in dimension-
less frequency (Ω) for Clamped-Free support
of Double-walled Carbon Nanorod with cu

12 =
0.1×c12 and L/Do = 10



40 V. Senthilkumar

expands. In Fig. 8, though similar trends happen in clamped-free support, the dimen-
sionless axial frequencies of the second nanotube significantly increase compared with
the clamped-clamped boundary condition.

6. EFFECT OF PASTERNAK MEDIUM AND MAGNETIC EFFECT

The Pasternak medium for axial vibration (Mohammadimehr et al. [33]) of nanorod
in the literature discusses viscous effects. As per Mohammadimehr et al. [33], the Paster-
nak medium [34] impacts the non-dimensional frequencies of micro-rod. In the present
analysis, the double-walled nanotube includes the Pasternak medium using the nanorod
models as shown in Eqs. (16) and (17). The dimensionless Pasternak constant takes form

using Eq. (3.18) as Kupdr =
kup

A1E
. The present investigation considers three different

values of kup as 1.0e-7 N, 2.0e-7 N and 3.0e-7 N [39]. The corresponding dimensionless
Pasternak constant values of Kupdr are 0.13, 0.27 and 0.40. These dimensional values are
not dependent on the length of the nanotube, and it is constant for each Pasternak con-
stant kup. So the dimensionless Pasternak constant without depending on the nanotube’s
length term is not acceptable because it must be in the function of nanotube length. So
the Pasternak medium support effect for axial vibration of nanorod is not understood
properly in the literature, and more understanding is required. Since the dimensional
Pasternak constant is not depending on the nanotube’s length, the Pasternak effect won’t
yield any meaningful impact over the dimensional axial frequencies of the double-walled
nanotube for clamped-clamped and clamped-free support.

Further, this study focuses on the impact of magnetic forces (Murmu et al. [35]) on
axial vibrational frequencies of double-walled nanotubes using the nanorod model. Ac-
cording to Murmu et al. [35], the magnetic effect significantly affects the axial vibration
frequencies of a single nanorod. The magnetic forces modify the mathematical model to
predict the dimensionless axial vibrational frequencies as shown in Eq. (16) and Eq. (17).

The dimensionless magnetic parameter converts as ψm(1 + δ2
m) =

ηm(H2
y + H2

z )

E
. It is in-

teresting to observe that even this dimensionless magnetic parameter does not vary with
the length of the nanotube. So the dimensionless axial vibrational frequencies can not be
influenced by magnetic effects. Again, further work is required to understand magnetic
force effects for axial vibrational modelling for double-walled nanotube for clamped-
clamped and clamped-free support.

7. CONCLUSIONS

In the present study, the erroneous terms ρ in the inertial force are taken care of as
ρA1 and ρA2 to predict the dimensionless axial vibrational frequencies of double-walled
nanotube correctly. Unlike solving the coupled model by assuming a relative displace-
ment function, the present approach estimated the dimensionless axial frequencies as
a coupled model using the differential transform method. The dimensionless axial fre-
quencies don’t depend on the area of the first or second nanotube. Though the double-
walled nanotube model predicts the dimensionless axial frequencies, the first nanotube’s
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frequencies are the same as the single nanotube’s frequencies. But the second nanotube’s
dimensionless axial frequencies are different from the first nanotube predicted by the
present model. The dimensionless axial frequencies increase with the shorter length of
the nanotube to the longer length of the nanotube. Further, an increase in the linear van
der Waals coefficient increases the dimensionless frequencies. So the van der walls force
plays a crucial role in the second nanotube’s frequency. Also, for the higher modes, the
dimensionless axial frequencies of the second nanotube change with the various L/Do
values. Again, this happens for the second nanotube’s dimensionless axial frequencies
alone. Since the dimensionless Pasternak constant doesn’t depend on the length of the
nanotube, it remains a constant value, and it is not acceptable. So the Pasternak medium
effects for axial vibrational frequency analysis remain a challenge, and still more to be
done in understanding this effect. Similarly, the dimensional magnetic parameter is in-
sensitive to the length of the nanotube. So the magnetic effect on axial vibration of the
double-walled nanotube is incorrectly done, and it needs further understanding for cor-
rect modelling.
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