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Abstract. The properties of Rayleigh-type surface wave in a linear, homogeneous and
transversely isotropic nonlocal micropolar piezoelectric solid half-space are explored. Dis-
persion relations for Rayleigh-type surface wave are derived for both charge free and elec-
trically shorted cases. Using an algorithm of iteration method in MATLAB software, the
wave speed of Rayleigh wave is computed for relevant material constants. The effects of
nonlocality, angular frequency, micropolarity and piezoelectricity are illustrated graphi-
cally on the propagation speed of Rayleigh wave.
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1. INTRODUCTION

In 1885, Lord Rayleigh [1] investigated the existence of waves propagating along
the boundary surface of an elastic solid half-space. In existing literature, these waves are
known as Rayleigh waves and are widely applicable in the fields of seismology, acoustics,
geophysics, telecommunications industry and material science. These waves are also
very useful in a variety of transducers which process radar, television and radio signals.
Rayleigh-type surface waves were studied extensively by many researchers in different
models of elastic half-space with additional fields and parameters. Notable among them
are Sveklo [2], Gold [3], Johnson [4], Royer and Dieulesaint [5], Destrade [6], Vinh and
Ogden [7], Rehman et al. [8], Abd-Alla et al. [9], Sudheer et al. [10], Kundu et al. [11],
Singh and Kaur [12, 13] and Kaur and Singh [14] .

In nonlocal elasticity theory, stress at a point is determined by both stress at that
point and spatial derivatives of it. Nonlocal elasticity theory has been widely applied to
the bending, vibration, and buckling behaviour of one-dimensional nanostructures in-
cluding nanobeams, nanorods, and carbon nanotubes. Nonlocal elasticity models have
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received considerable attention by the researches intending to analyze or design micro/-
nano structures. These models extend the main concepts in the classical theory of elastic-
ity to approximate the behaviour of particles, as small as molecules or atoms. Eringen [15]
observed that the lack of an internal characteristic length in the classical theory limits the
application of this theory in the modeling of physical problems with significant micro-
structural effects. Edelen and Laws [16], Edelen et al. [17], Eringen [18, 19], Eringen and
Edelen [20] and Eringen [21] developed the theories of nonlocal elasticity characterized
by the presence of nonlocality residuals fields like body force, mass, entropy and internal
energy. Some dynamical problems based on nonlocal elasticity were studied by various
prominent researchers including Chirita [22], Iesan [23], Eringen [24], Altan [25], Wang
and Dhaliwal [26] and Eringen [27].

Recently, various researchers explored some wave propagation problems in context
of nonlocal elasticity theories. Khurana and Tomar [28–31] studied the nonlocal effects
on the properties of plane and surface waves in micropolar and microstretch half-spaces.
Roy et al. [32] studied the effect of nonlocality on the Rayleigh-type surface wave in a
rotating magneto-elastic half-space. Kaur et al. [33, 34] discussed the nonlocal effects on
the properties of Rayleigh and Love waves in an elastic solid with voids. Tung [35] in-
vestigated the properties of Rayleigh surface wave in a nonlocal piezoelastic half-space.
Singh [36] explored the nonlocal effects on the propagation of Rayleigh waves in a gen-
eralized thermoelastic solid half-space with voids. Biswas [37] studied the surface waves
in an orthotropic porous medium in context of nonlocal thermoelastcity. Kaur and Singh
[38] explored the existence of the Rayleigh-type surface waves along the stress-free sur-
face of an isotropic nonlocal diffusive elastic half-space. Tung [39] studied the nonlocal
effects on reflection and transmission of plane waves at an imperfect interface between
two orthotropic micropolar half-spaces.

The micropolar theory of elasticity is an extension of classical elasticity with extra
independent degrees of freedom for local rotation. Eringen [40–42] introduced the linear
theory of micropolar elasticity where the motions of the particles are expressed in terms
of displacement and micro-rotation vectors. The theory of micropolar elasticity was fur-
ther applied by various researchers in piezoelectric materials including Cracium [43],
Ciumasu and Vieru [44], Vieru and Ciumasu [45], Zhilin and Kolpakov [46], Aouadi [47]
and Gales [48]. Recently, Singh and Sindhu [49, 50], Sangwan et al. [51], Singh et al. [52]
and Bijarnia et al. [53] studied the properties of plane and surface waves in micropolar
piezoelectric medium. However to the best of author’s knowledge, the effect of nonlo-
cality on the properties of Rayleigh-type surface waves in micropolar piezoelectric half-
space is not explored yet. The present paper is organized as follows: In context of the
nonlocal elasticity theories developed by Eringen [18, 19] and Eringen and Edelen [20]
and the theory of micropolar piezoelectricity presented by Aouadi [47], the governing
equations for a nonlocal transversely isotropic micropolar piezoelectric medium are spe-
cialized in a plane. In Section 3, the two-dimensional governing equations of motion are
solved to obtain the general Rayleigh surface wave solutions which decay with depth. In
Section 4, the relevant boundary conditions for charge free as well as electrically shorted
cases are applied to derive the dispersion relations. In Section 5, some particular cases
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are discussed which are found in agreement with the earlier published works. In Sec-
tion 6, the wave speed for one of the modes of Rayleigh wave is computed with MAT-
LAB software for relevant material parameters used in earlier investigations. The effects
of nonlocality, angular frequency, piezoelectricity and micropolarity on the wave speed
of Rayleigh wave are illustrated graphically. The last section summarizes the theoretical
and numerical findings.

2. FUNDAMENTAL EQUATIONS

Following Eringen [18, 19], Eringen and Edelen [20] and Aouadi [47], the funda-
mental system of field equations for linear theory of nonlocal micropolar piezoelectric
material in the absence of body forces and body couples consists of:

- The equations of the motion

σji,j = ρ
∂2ui

∂t2 , (1)

mik,i + ε ijkσij = ρj
∂2φk

∂t2 . (2)

- The equations of the electric fields

Dj,j = qe, Ek = −ψ,k. (3)

- The constitutive equations(
1 − τ2∇2) σij = cijklekl + bijklκkl + λijkEk, (4)(
1 − τ2∇2)mij = bklijekl + aijklκkl + βijkEk, (5)

Dk = −λijkeij − βijkκij + γkjEj. (6)

- The geometrical equations

eij = uj,i + ε ijk φk, κij = φj,i, (7)

where σij is the stress tensor, τ is nonlocal parameter, u⃗ is the displacement vector, ρ is
the mass density, φ⃗ is the microrotation vector, j is the micro-inertia, mij is the couple
stress tensor, ε ijk is the alternating symbol, Dk is the dielectric displacement vector, qe is
the volume charge density, Ej is the electric field vector, ψ is the electrostatic potential, eij
and κij are kinematic strain measures and aijkl , bijkl , cijkl , λijk, βijk and γjk are constitutive
coefficients. The symbol ∇2 is the Laplace operator. Superposed dot denote partial dif-
ferentiation with respect to the time t. Subscripts preceded by a comma denote partial
differentiation with respect to the corresponding Cartesian coordinates. The constitutive
coefficients satisfy the following symmetry relations

cijkl = cklij, aijkl = aklij, gij = gji. (8)

We consider a half-space occupying linear, homogeneous, transversely isotropic non-
local micropolar piezoelectric solid. Within the context of rectangular Cartesian coordi-
nate system Ox1x2x3, the boundary surface of the half-space is taken along x1-x2 plane
and the positive x3-axis is taken normal into the half-space. The half-space is assumed
to be transversely isotropic in such a manner that the plane of isotropy is perpendicular
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to the x3-axis. The x1-axis is chosen in the direction of propagation of waves so that all
particles on a line parallel to x2-axis are equally displaced. Here, all the field quantities
will be independent of x2-coordinate. For a plane deformation parallel to x1-x3 plane, we
take the components of the displacement and microrotation vector of the form

u⃗ = (u1, 0, u3) and φ⃗ = (0, φ2, 0) . (9)

With the help of Eq. (9), Eqs. (1) to (8) are written in x1-x3 plane as

A11
∂2u1

∂x2
1
+ (A13 + A56)

∂2u3

∂x1∂x3
+ A55

∂2u1

∂x2
3
+ K1

∂φ2

∂x3
− (λ15 + λ31)

∂2ψ

∂x1∂x3
= ρ

(
1 − τ2∇2

) ∂2u1

∂t2 , (10)

A66
∂2u3

∂x2
1
+ (A13 + A56)

∂2u1

∂x1∂x3
+ A33

∂2u3

∂x2
3
+ K2

∂φ2

∂x1
− λ15

∂2ψ

∂x2
1
− λ33

∂2ψ

∂x2
3
= ρ

(
1 − τ2∇2

) ∂2u3

∂t2 , (11)

B77
∂2 φ2

∂x2
1

+ B66
∂2 φ2

∂x2
3

− χφ2 − K1
∂u1

∂x3
− K2

∂u3

∂x1
− β14

∂2ψ

∂x2
1
− β36

∂2ψ

∂x2
3
= ρj

(
1 − τ2∇2

) ∂2 φ2

∂t2 , (12)

λ15
∂2u3

∂x2
1
+ λ33

∂2u3

∂x2
3
+ (λ15 + λ31)

∂2u1

∂x1∂x3
+ β14

∂2 φ2

∂x2
1

+ β36
∂2 φ2

∂x2
3

+ γ11
∂2ψ

∂x2
1
+ γ33

∂2ψ

∂x2
3
= 0, (13)

where ∇2 =
∂2

∂x2
1
+

∂2

∂x2
3

, A11 = C1111, A55 = C3131, A13 = C1133 = C3311, A56 = C3113 =

C1331, A66 = C1313, A33 = C3333, K1 = A56 − A55 = C3113 − C3131, K2 = A66 − A56 =
C1313 − C1331, χ = K2 − K1, B77 = a1212, B66 = a3232, λ31 = λ311, λ33 = λ333, λ15 = λ131 =
λ113, λ35 = λ313 = λ331, β14 = β121, β36 = β323.

3. RAYLEIGH WAVE SOLUTIONS

For Rayleigh wave propagation on surface along x1-direction and diminishing quickly
with x3-direction, we consider the solutions of Eqs. (10) to (13) in the following form

[u1, u3, φ2, ψ] (x1, x3, t) = [ũ1 (x3) , ũ3 (x3) , φ̃2 (x3) , ψ̃ (x3)] exp [ik(x1 − ct)] , (14)

where i =
√
−1; k is the wave number and c is the phase speed.

Substituting these into Eqs. (10) to (13), we obtain a homogeneous system of four
equations in ũ1 (x3) , ũ3 (x3) , φ̃2 (x3) and ψ̃ (x3) as

(AD2 − Lk2)ũ1 + ikGDũ3 + K1Dφ̃2 − ikFDψ̃ = 0, (15)

ikGDũ1 + (BD2 − Nk2)ũ3 + ikK2 φ̃2 −
(
λ33D2 − λ15k2) ψ̃ = 0, (16)

− K1Dũ1 − ikK2ũ3 + (CD2 − Pk2)φ̃2 −
(

β36D2 − β14k2) ψ̃ = 0, (17)

ikFDũ1 + (λ33D2 − λ15k2)ũ3 + (β36D2 − β14k2)φ̃2 + (γ33D2 − γ11k2)ψ̃ = 0, (18)

where D =
d

dx3
and

A = A55 − ρτ2ω2, B = A33 − ρτ2ω2, C = B66 − ρjτ2ω2,

L = A11 − ρτ2ω2 − ρc2, N = A66 − ρτ2ω2 − ρc2,

P = B77 +
χ

k2 − ρjτ2ω2 − ρjc2, G = A13 + A56, F = λ15 + λ31.
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From the above four equations, we obtain

[H0D8 − H1D6 + H2D4 − H3D2 + H4](ũ1, ũ3, φ̃2, ψ̃) = 0, (19)

where the coefficients Hj (j = 0, 1, 2, 3, 4) are given in Appendix A. A most general solu-
tion of Eq. (19) is

u1 (x1, x3, t) =

(
4

∑
j=1

Aje−mjx3 +
4

∑
j=1

A∗
j emjx3

)
exp [ik(x1 − ct)] , (20)

where Aj, A∗
j are constants and mj are the roots of the equation

H0m8 − H1m6 + H2m4 − H3m2 + H4 = 0. (21)

Eq. (21) is bi-quadratic equation in m2 and hence its roots are given by m2
j (j = 1, . . . , 4)

such that

m2
1 + m2

2 + m2
3 + m2

4 =
H1

H0
, m2

1m2
2 + m2

2m2
3 + m2

3m2
4 + m2

4m2
1 =

H2

H0
,

m2
1m2

2m2
3 + m2

2m2
3m2

4 + m2
3m2

4m2
1 =

H3

H0
, m2

1m2
2m2

3m2
4 =

H4

H0
.

In general, the roots mj (j = 1, . . . , 4) are complex. For the propagation of surface waves,
we choose only those mj (j = 1, . . . , 4) whose real parts are positive and which satisfies
the decay conditions u1 → 0, u3 → 0, φ2 → 0, ψ → 0 as x3 → ∞. The particular solutions
satisfying the decay conditions in the half-space (x3 ≥ 0) are obtained as

u1 (x1, x3, t) =
4

∑
j=1

Aje−mjx3 exp [ik(x1 − ct)] , (22)

u3 (x1, x3, t) =
4

∑
j=1

ηj Aje−mjx3 exp [ik(x1 − ct)] , (23)

φ2 (x1, x3, t) =
4

∑
j=1

ξ j Aje−mjx3 exp [ik(x1 − ct)] , (24)

ψ (x1, x3, t) =
4

∑
j=1

ζ j Aje−mjx3 exp [ik(x1 − ct)] , (25)

where the coupling coefficients ηj,
ξ j

k
and ζ j (j = 1, 2, 3, 4) between displacement compo-

nents, microrotation component and electric potential are obtained from Eqs. (15) to (18)
and are given in Appendix B.

4. DERIVATION OF DISPERSION RELATIONS

Following Eringen [54], the required boundary conditions at stress-free surface x3 =
0 of nonlocal micropolar piezoelectric half-space are the vanishing of nonlocal normal
force stress component, nonlocal tangential force stress component, nonlocal tangential
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couple stress component, normal dielectric displacement component and electrostatic
potential i.e.

σ33 = 0, σ31 = 0, m32 = 0, (26)
D3 = 0, (Charge Free Case) (27)
ψ = 0, (Electrically Shorted Case) (28)

where (
1 − τ2∇2) σ33 = A13

∂u1

∂x1
+ A33

∂u3

∂x3
− λ35

∂ψ

∂x1
− λ33

∂ψ

∂x3
,(

1 − τ2∇2) σ31 = A56
∂u3

∂x1
+ A55

∂u1

∂x3
+ K1φ2 − λ31

∂ψ

∂x1
− λ35

∂ψ

∂x3
,(

1 − τ2∇2)m32 = B66
∂φ2

∂x3
− β36

∂ψ

∂x3
,

D3 = λ15
∂u1

∂x1
+ λ33

∂u3

∂x3
+ β36

∂φ2

∂x3
+ γ33

∂ψ

∂x3
.

The particular solutions (22) to (25) satisfy the boundary conditions given by (26) to
(28) at stress-free surface x3 = 0 and we obtain the following dispersion relation∣∣∣∣∣∣∣∣

Ã1 Ã2 Ã3 Ã4
B̃1 B̃2 B̃3 B̃4
C̃1 C̃2 C̃3 C̃4
D̃1 D̃2 D̃3 D̃4

∣∣∣∣∣∣∣∣ = 0, (29)

where

Ãj = iA13 − A33ηj

(
mj

k

)
+ ζ j

(
λ33

mj

k
− iλ35

)
,

B̃j = iηj A56 − A55
mj

k
+ K1

ξ j

k
+ ζ j

(
λ35ζ j

mj

k
− iλ31

)
,

C̃j = β36ζ j

(
mj

k

)
− kB66

(
ξ j

k

)(
mj

k

)
,

D̃j = iλ15 − λ33ηj

(
mj

k

)
− kβ36

(
ξ j

k

)(
mj

k

)
− γ33ζ j

(
mj

k

)
, (Charge Free Case)

D̃j = ζ j, (Electrically Shorted Case)

Eq. (29) is the frequency equation of Rayleigh waves in a nonlocal transversely isotropic
micropolar piezoelectric half-space. The coefficients of frequency Eq. (29) are complex in
nature and depend on angular frequency and nonlocal parameter.

5. SPECIAL CASES

1. In the absence of nonlocal parameter i.e. τ = 0, Eq. (29) reduces to the dispersion
relations for Rayleigh wave in micropolar piezoelectric medium which agree with Singh
and Sindhu [49].
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2. In absence of piezoelectric parameters i.e.

λ15 = 0, λ33 = 0, λ31 = 0, λ35 = 0, β14 = 0, β36 = 0, γ11 = 0, γ33 = 0,

the dispersion relations in Eq. (29) reduce for the case of Rayleigh wave in transversely
isotropic nonlocal micropolar medium which agree with those derived by Khurana and
Tomar [30] in absence of transverse isotropy.

3. In absence of micropolarity i.e.

B77 = 0, B66 = 0, K1 = K2 = 0, χ = 0, β14 = 0, β36 = 0,
A11 = c11, A33 = c33, A55 = A56 = A66 = c44, A13 = c13,

Eq. (29) reduces to the dispersion relations for Rayleigh wave in nonlocal transversely
isotropic piezoelectric medium which agree with Tung [35].

6. NUMERICAL RESULTS AND DISCUSSION

For the purpose of numerical computation of speed of Rayleigh wave, the following
relevant material parameters are used (Singh and Sindhu [49, 50], Sangwan et al. [51])

A11 = 17.8 × 1010 Nm−2, A33 = 18.43 × 1010 Nm−2, A13 = 7.59 × 1010 Nm−2,

A56 = 1.89 × 1010 Nm−2, A55 = 4.357 × 1010 Nm−2, A66 = 4.42 × 1010 Nm−2,

B77 = 0.278 × 109 N, B66 = 0.268 × 109 N, λ15 = 37 Cm−2, λ31 = 12 Cm−2,

λ33 = 1.33 Cm−2, λ35 = 0.23 Cm−2, β14 = 0.0001 C, β36 = 0.0002 C,

γ11 = 85.2 C2N−1m−2, γ33 = 28.7 C2N−1m−2, ρ = 1.74 × 103 Kg m−3, j = 0.196 m2.

For above values of physical constants, Eq. (29) is numerically solved to compute the
real part of Rayleigh wave speed. An iteration method in MATLAB software is used for
numerical solutions of Eq. (29).

To illustrate the effect of frequency on wave speed of Rayleigh wave, the speeds c
of Rayleigh wave are plotted against nonlocal parameter τ in Fig. 1 for charge free (CF)
case when angular frequency ω = 2000 (solid), 4000 (dotted), 8000 (dashed) respectively.
For case ω = 2000, 4000 and 8000, the value of wave speed c at τ = 0 is 10823.12 m s−1

and it decreases very sharply to values 10460.15 m s−1 at τ = 1.225, 10459.52 m s−1 at
τ = 0.6131 and 10459.62 m s−1 at ε = 0.3065, respectively. It is observed from this figure
that the wave does not exist beyond a critical value of τ for a given angular frequency ω.
The range of nonlocal parameter τ decreases as ω increases.

To illustrate effect of nonlocal parameter on speed of Rayleigh wave, the speeds c of
Rayleigh wave are plotted against angular frequency ω in Fig. 2 and Fig. 3 for charge free
(CF) and electrically shorted (ES) cases respectively. In Fig. 2 (for charge free case), the
wave speed decreases monotonically against ω for τ = 0.1 (dotted) and τ = 0.2 (dashed).
For local case (τ = 0), it remains almost invariant. The variations of speed in Fig. 3 for ES
case are found almost similar to those given in Fig. 2. From these figures, it is observed
that the range of ω decreases as τ increases.
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Fig. 3. Variations of wave speed c against angular frequency ω for different values of nonlocal
parameter τ in electrically shorted case

The variations of wave speed shown in Fig. 4 and Fig. 5 for different τ are obtained
after neglecting piezoelectric and microrotation in Fig. 2 or Fig. 3. The comparisons of
speed variations in Fig. 4 with those given in Fig. 2 or Fig. 3 show the effect of piezoelec-
tricity for different values of nonlocal parameter τ. The comparison of speed variations
in Fig. 5 with those given in Fig. 2 or Fig. 3 show the effect of microrotation for different
values of τ.
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Fig. 3. Variations of wave speed against angular frequency for different values of nonlocal 
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The dispersion relations are obtained for charge free as well as electrically shorted cases. The 
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1. The speed variations of the Rayleigh wave are found similar for charge free as well as 
electrically cases.  

2. As the value of nonlocal parameter or angular frequency increases, the Rayleigh wave 
speed slows down at an increasing rate. The wave does not appear beyond a critical value of or . 
The critical value of  depends on the value of angular frequency and it decreases with an increase 
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3. In absence of piezoelectric or micropolar parameters, the Rayleigh wave speed becomes fast 
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Fig. 5. Variations of wave speed c against an-
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7. CONCLUSIONS

A theoretical analysis of Rayleigh wave on a boundary of a nonlocal micropolar
piezoelectric half-space is performed. The general surface wave solutions are obtained
which decay with the depth. The dispersion relations are obtained for charge free as
well as electrically shorted cases. The dispersion relations show the relations between
wave speed, nonlocality, angular frequency, piezoelectric and micropolar parameters.
For given angular frequency, nonlocal, piezoelectric and micropolar parameters, the wave
speed is computed. From the numerical simulations and graphical illustrations, the ef-
fects of nonlocality, piezoelectricity and micropolarity are observed and some specific
observations are made as follows:

- The speed variations of the Rayleigh wave are found similar for charge free as well
as electrically cases.

- As the value of nonlocal parameter τ or angular frequency ω increases, the Rayleigh
wave speed slows down at an increasing rate. The wave does not appear beyond a critical
value of τ or ω. The critical value of τ depends on the value of angular frequency ω and it
decreases with an increase in value of angular frequency. In a similar manner, the critical
value of ω depends on the value of nonlocal parameter τ.

- In absence of piezoelectric or micropolar parameters, the Rayleigh wave speed be-
comes fast at each value of angular frequency ω for different nonlocal parameter.
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APPENDIX A

The expressions for Hj (j = 0, 1, 2, 3, 4) are

H0 = ABCγ33 + ABβ2
36 + ACλ2

33,

H1 = [ABCγ11 + (BCL + ACN + ABP − CG2)γ33 + 2ACλ15λ33 + 2ABβ14β36 − 2CGFλ33

+ (BL + AN − G2)β2
36 + (CL + AP)λ2

33 + BCF2] k2 − K2
1λ2

33 − BK2
1γ33,

H2 = [(ABP + ACN + BCL − CG2)γ11 + (ANP + BLP + CLN − PG2)γ33 + 2(AP + CL)λ15λ33

+ 2(AN + BL − G2)β14β36 − 2CGFλ15 − 2PGFλ33 + ABβ2
14 + LNβ2

36 + ACλ2
15 + LPλ2

33

+ (BP + CN)F2]k4 + [2K1K2Gγ33 + 2K1K2Fλ33 − 2K2
1λ15λ33 − AK2

2γ33 − BK2
1γ11 − NK2

1γ33]k2,

H3 = [(ANP + BLP + CLN − PG2)γ11 + LNPγ33 + 2LPλ15λ33 + 2LNβ14β36 − 2PGFλ15

+ (BL + AN − G2)β2
14 + (AP + CL)λ2

15 + NPF2]k6 + [2K1K2Fλ15 + 2K1K2Gγ11

− LK2
2γ33 − (NK2

1 + AK2
2)γ11 − K2

1λ15 − K2
2 F2]k4,

H4 = [LNPγ11 + LPλ2
15 + LNβ2

14]k
8 − LK2

2γ11k6.

APPENDIX B

The expressions of the coupling coefficients ηh,
ξh

k
and ζh (h = 1, 2, 3, 4) obtained

from Eqs. (15) to (18) given as

ηh =
(α1hα2h − α3hα6h)

(α2hα4h + α3hα5h)
, ζh =

(α1h − α4hηh)

α3h
,

ξh

k
=

[
α7h − i (Gηh − Fζh)

(mh
k

)]
K1
(mh

k

) ,

where

α1h = i (AK2 − GK1)
(mh

k

)2
− iK2L,

α2h =

{
β36

(mh

k

)2
− β14

}2

+

{
γ33

(mh

k

)2
− γ11

}{
C
(mh

k

)2
− P

}
,

α3h = (FK2 − λ15K1)
(mh

k

)
+ λ33K1

(mh

k

)3
,

α4h = (NK1 − MK2)
(mh

k

)
− BK1

(mh

k

)3
,

α5h = −i
(

K2

k

){
β36

(mh

k

)2
− β14

}
−
{

λ33

(mh

k

)2
− λ15

}{
C
(mh

k

)2
− P

}
,

α6h =

(
K1

k

)(mh

k

){
β36

(mh

k

)2
− β14

}
+ iF

(mh

k

){
C
(mh

k

)2
− P

}
,

α7h = A
(mh

k

)2
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