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Abstract. In this study, the retraction and solidification of a fluid filament are studied by a
front-tracking method/finite difference scheme. The interface between two phases is han-
dled by connected points (Lagrangian grid), which move on a fixed grid domain (Eulerian
grid). The Navier-Stokes and energy equations are solved to simulate the problem. Ini-
tially, the fluid filament has a shape as half of a cylindrical capsule contact with a cold flat
surface. We consider the effect of the aspect ratio (Ar) on the solidification of the fluid
filament. It is found that an increase in the aspect ratio (Ar) in the range of 2 – 14 causes
the retraction length to increase. The rate of the solidification of a fluid filament decreases
when the Ar ratio increases. The solidification time, the solidification height and the tip
angle of the fluid filament under the influence of the aspect ratio are also considered. Af-
ter complete solidification, a small protrusion on the top of the solidified fluid filament is
found.

Keywords: front-tracking method, fluid filament, cold flat surface.

1. INTRODUCTION

There are a lot of industrial processes such as manufacturing drugs [1], food produc-
tion processes [2, 3] related to solidification of fluid drops. In addition, solidification of
fluid drops can be seen in life such as in the hail phenomenon, the cooling types of equip-
ment and the blades of aircraft and wind turbines [4,5]. Huang et al. [6] did experiments
on water drops placed on a cold plate. The authors tracked the solidification process of
the water drops by varying the wetting angle in the range of 97.2º – 154.9º. With similar
experiments, Pan et al. [7] considered the solidification of water drops laid on a cold plate
surface or an inclined surface with a tilt angle of 30º. The authors monitored the water
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drops with the variable wetting angle in the range of 77º – 145º. Zhang et al. [8] and Ju
et al. [9] did experiments on solidification of water drops on different curved surfaces.
Investigating the growth angle, Satunkin [10] used molten Silicon, Germanium and In-
dium antimonide solidified on a cold plate. The author found that the drop shape of
these materials after complete solidification is different because their growth angles are
not the same. Numerically, Schultz et al. [11] investigated a water droplet solidified on
a cold plate with a single triple point and growth angle assumed constant. Virozub et
al. [12] estimated and verified the growth angle of molten drops with a thermal model
of the materials e.g., water, silicon and germanium. Vu et al. [13] used a front-tracking
method to simulate the solidification of liquid drops on a cold plate. Some works about
the solidification of simple liquid drops can be found in [14–19]. These studies have only
considered the solidification of static drops. Considering the solidification of a break-up
drop under gravity force, Vu et al. [20, 21] performed simulations of solidification of a
drop stretched by a gravity force. However, all these studies have not considered and
taken into account the solidification process of a retracting fluid filament.

Considering the retraction of a fluid filament, Driessen et al. [22] studied the stabi-
lization of a viscous liquid filament. The authors found that each value of the aspect ratio,
Ohnesorge number and the relative perturbation amplitude leads to merge into a single
droplet or breakup into the sub-droplets. Dziedzic et al. [23] monitored the transition
from a non-breakup to a breakup of a fluid filament with the effect of substrates and pa-
rameters such as Ohnesorge number (Oh) and aspect ratio (Ar). Recently, the retraction
of a compound fluid filament leading to break up into sub-droplets and non-breakup was
studied by Ho et al. [24]. The inner aspect ratio (Ari) in the range of 5 – 30 and outer as-
pect ratio (Aro) in the range of 7.5 – 30 was considered. Many works about the retraction
of a fluid filament can be found in [24–29]. However, these works have not considered
the solidification process.

Although there are many applications in which solidification can appear along with
the retraction process of fluid filaments [30–32], the solidification process of a liquid fil-
ament has not considered in detail yet. This study aims to solve this missing gap. The
paper includes 4 sections. Section 1 introduces the aim of this study. Section 2 presents
the numerical model and method. Section 3 provide a grid resolution to simulate the
problem. Section 4 shows the numerical results and discussion. Finally, Section 5 pro-
vides the conclusions.

2. NUMERICAL MODEL AND METHOD

This paper considers the retraction and solidification of a fluid filament contacting on
a cold flat surface (Fig. 1). Initially, the fluid filament is assumed to a half of a symmetrical
capsule shape and its bottom contacts a cold flat surface (Fig. 1(a)). The initial length of a
fluid filament is L0 and its initial radius is R. In order to save the computational resources
and time, the fluid filament is assumed axisymmetric and simulated in a cylindrical coor-
dinate system. Fig. 1(b) describes a computational domain of the fluid filament with the
solidification process. The fluid and gas are assumed as incompressible, immiscible and
Newtonian fluids. Viscosity (µ), density (ρ), heat capacity (Cp) and thermal conductivity
(k) in each phase are assumed as constant properties. The governing equations are given as
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Fig. 1. A numerical configuration of the solidification of a fluid filament. (a) An initial fluid filament 

contacts a cold flat surface that leads to solidification. (b) The computational domain for the problem. 
Fig. 1. A numerical configuration of the solidification of a fluid filament.

(a) An initial fluid filament contacts a cold flat surface that leads to solidification.
(b) The computational domain for the problem
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where, u and p stand for the velocity vector and pressure, respectively. t and superscript
T are the time and the transpose. σ and κ correspond to the interfacial tension coefficient
and twice mean curvature. x is the position vector, subscript f represents the interface, n
is the unit normal vector to the interface. δ is the denotation of the Dirac delta function
and its value is 1 at the interface x f and 0 at the other positions. f is the external force
and used to apply the no-slip condition on the solid interface [33, 34], g is the gravity
acceleration, q̇ is the denotation of thermal flux at the solidification interface. Lh is the
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latent heat. T is the temperature. The dimensionless parameters used in this paper are
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where, Pr, St, Bo and Oh correspond to Prandtl, Stefan, Bond and Ohnesorge numbers.
θ0 is the denotation of the initial normalized temperature. Because we consider small
fluid filaments, the effect of gravity force plays minor role [23, 24, 35, 36]. Therefore, in
this study, we ignore the effect of gravity, i.e., Bo = 0. The ratios of the properties of
the phases are ρsl , ρgl – density ratios; µgl – viscosity ratio; ksl , kgl – thermal conductivity
ratios, Cpsl , Cpgl – heat capacity ratios. Subscripts s, l and g stand for solid, liquid and
gas phases, respectively. The aspect ratio is denoted by Ar. With τc = ρlCpl R2/kl , the
non-dimensional time is τ = t/τc.

The method used in this study is a front-tracking method [37–39]. This is one of the
powerful methods to solve a multiphase problem. The interfaces among the phases are
modeled by the chain of the Lagrangian points (x f ) laid on a fixed grid (Eulerian grid)
which is a staggered grid with uniformly distributed grid points.

Thanks to the interfacial points (x f ), we can compute the interfacial forces acting on
the interfaces and thus build the indicator functions to specify the properties of phases.
Here, we use two indicators I1 and I2 reconstructed from the position of the interfaces.
The value of each indicator is 1 in a phase and 0 in the other. With ϕ standing for the
properties of phases such as the density (ρ), the viscosity (µ), the thermal conductivity
(k), and the heat capacity (Cp), we have [40]

ϕ = [ϕs I1 + ϕl (1− I1)] I2 + ϕg (1− I2) . (8)

More details on our methods can be found in [38, 41].

3. GRID REFINEMENT

This method was carefully validated in our previous works [37]. Therefore, the val-
idation of the method is not conducted here. We here only consider the grid refinement.
The parameters are used as Pr = 7, St = 0.1, Oh = 0.2, θ0 = 1, ρsl = 0.9, ρgl = 0.05, µgl =
0.04, Ar = 3, ksl = 4, kgl = 0.05, Cpsl = 0.5, Cpgl = 0.24, and growth angle φgr = 0°
along with the domain size W × H = 4R × 6R. Three grid resolutions are considered 128
× 192, 192 × 288 and 256 × 384. Fig. 2 shows grid convergence results of the different grid
resolutions. We use the average solidification interface height (ha) given as

ha =

Ns

∑
i=1

zsi

Ns
(9)
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where zsi is the axial coordinate of the point i on the solidification interface and Ns is the
number of points on the solidification interface. Figs. 2(a) and 2(b) correspond to the fluid
filament in the solidification process and the average solidification interface height (ha)
of three grid resolutions. Accordingly, we see that the results of the grid resolutions 192 ×
288 and 256 × 384 are almost identical and grid resolution 128 × 192 has some difference
compared to the other grid resolutions. Specifically, in Fig. 2(b), the mean error of the
solidification interface height (ha) of the grid resolution 128 × 192 compared with the grid
resolution 256 × 384 is 0.623%. Meanwhile, the mean error of the grid resolution 192 ×
288 is 0.208% compared to the grid resolution 256 × 384. To save computation time and
still ensure accuracy, the grid resolution 192 × 288 is chosen to simulate this problem.
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Fig. 2. Grid refinement. (a) The shape of fluid filaments in the solidification process with different grid 

resolutions. (b) The average solidification interface height (ha) of the fluid filaments over time with the 
different grid resolutions. 

Fig. 2. Grid refinement. (a) The shape of fluid filaments in the solidification process with different
grid resolutions. (b) The average solidification interface height (ha) of the fluid filaments over time

with the different grid resolutions

4. RESULTS AND DISCUSSION

The solidification process of the fluid filaments Ar = 4 and Ar = 8 is presented in
Fig. 3. The parameters are Pr = 7, St = 0.1, Oh = 0.2, θ0 = 1, ρsl = 0.9, ρgl = 0.05, µgl =
0.04, ksl = 4, kgl = 0.05, Cpsl = 0.5, Cpgl = 0.24, and φgr = 0°. Fig. 3(a) shows the fluid
filaments at the initial time (τ = 0). At τ = 0.15 (Fig. 3(b)), the left fluid filament (Ar = 4)
has finished its retraction and is in the process of oscillation presented by the counter-
clockwise velocity field. Meanwhile, the right fluid filament (Ar = 8) is in the process
of retraction described by its velocity field. This indicates the process of retraction of the
fluid filament Ar = 4 faster than that of the fluid filament Ar = 8. It is understandable
that the fluid filament with Ar = 4 has a shorter retraction distance than the one with
Ar = 8. Next is the process of stabilization and complete solidification. This process
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takes the longest time. In this process, the fluid filaments no longer oscillate much ex-
cept for the expansion of the phase change (because the density of the liquid phase is
greater than that of the solid phase). Fig. 3(c) shows the solidification of the fluid fila-
ment in the stabilization and complete solidification process at τ = 5.1. It can be seen
that the solidification interface height of the fluid filament with Ar = 4 is higher than
that with Ar = 8. When the stabilization and complete solidification process ends, the
fluid filaments are completely solidified (Fig. 3(d)). In Fig. 3(d), the fluid filament with
Ar = 4 completes the solidification earlier than the fluid filament with Ar = 8 (τs = 8.49
compared to τs = 21.45) and the solidification height of the fluid filament with Ar = 8 is
higher than that of the fluid filament with Ar = 4. This is understandable that because
the height of the fluid filament with Ar = 4 is lower than that of the fluid filament with
Ar = 8. Therefore, the volume of the fluid filament with Ar = 4 is smaller than that of
the fluid filament with Ar = 8, leading to the left fluid filament (Ar = 4) finishing the so-
lidification first and its solidification height lower than the right fluid filament (Ar = 8).
Because of the expansion of the volume upon solidification, the solidified fluid filament
has a small protrusion at its top like the solidification of simple droplets [16] with a tip
angle denoted by αt (see in Fig. 3(d)).
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Fig. 3. The solidification process of fluid filaments Ar = 4 (left) and Ar = 8 (right) with the normalized 

temperature field θ	=	(T – Tc)/(Tm – Tc). (a) The fluid filaments at the initial time (t = 0). (b) The fluid 
filaments at t = 0.15. (c) The fluid filament at t = 5.1. (d) The fluid filament Ar = 4 is complete solidification 

at t = ts = 8.49 and the fluid filament Ar = 8 solidifies completely at t = ts = 21.45. In (b) and (c), the 
velocity field is normalized by Uc = kl/(ρlCplR). 

Fig. 3. The solidification process of fluid filaments Ar = 4 (left) and Ar = 8 (right) with the
normalized temperature field θ = (T − Tc)/(Tm − Tc). (a) The fluid filaments at the initial time
(τ = 0). (b) The fluid filaments at τ = 0.15. (c) The fluid filament at τ = 5.1. (d) The fluid
filament Ar = 4 is complete solidification at τ = τs = 8.49 and the fluid filament Ar = 8 solidifies
completely at τ = τs = 21.45. In (b) and (c), the velocity field is normalized by Uc = kl/(ρlCpl R)

4.1. Retraction of fluid filaments during the solidification with various aspect ratios
Fig. 4 illustrates the variation of the retraction length (h0 − h) (h0 and h defined be-

low) with various aspect ratios (Ar) in the range of 2 – 14. The other parameters are
kept constant such as Pr = 7, St = 0.1, Oh = 0.2, θ0 = 1, ρsl = 0.9, ρgl = 0.05, µgl =
0.04, ksl = 4, kgl = 0.05, Cpsl = 0.5, Cpgl = 0.24, and φgr = 0°. Considering the solidifi-
cation of the fluid filaments with Ar = 6 and Ar = 10 at τ = 3 in Fig. 4(a), we see that
although the height of the left fluid filament (Ar = 6) is lower than that of the right fluid
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filament (Ar = 10), the solidification front height is almost identical at τ = 3. With the
initial height of the fluid filaments (h0 = L0) and the height of the fluid filaments (h) at τ,
Fig. 4(b) shows the retraction length corresponding to the aspect ratio (Ar) in the range
of 2 – 14 over time (τ). In the initial stage, the retraction length of the fluid filaments
increases sharply. Increasing the Ar ratio increases the retraction length and the time for
the initial stage. Interestingly, in this stage, the rate of retraction, i.e., the speed of retrac-
tion, is independent of the variation of the Ar ratio. The next stage is oscillation after the
filament retracts to a certain length. In this stage, the oscillation of the fluid filaments is
damped overtime. The lower the aspect ratio (Ar), the shorter the oscillation period. It
is due to the inertia force of the fluid filaments when they retract. The smaller the aspect
ratio (Ar), the smaller the retraction time and the smaller the inertia force. The final stage
is stabilization and complete solidification. In this stage, the fluid filaments keeps solidi-
fying until complete solidification. The height of the fluid filaments is slightly increased
because of the expansion of volume. Therefore, the final retraction length of the fluid
filaments decreases a little.
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Fig. 4. Retraction length of fluid filaments in solidification. (a) The fluid filaments in the solidifi-
cation process with Ar = 6 (left) and Ar = 10 (right) along with the normalized temperature field
θ at τ = 3. (b) The retraction length of fluid filaments over time with the aspect ratio (Ar) in the
range of 2 – 14. In (a), the velocity field is normalized by Uc and the arrow in (b) is the increase of

the aspect ratio (Ar)

4.2. Average solidification interface height, solidification time, solidification height
and tip angle with various aspect ratios
Fig. 5 describes the average solidification interface height (ha), the solidification time

(τs), the solidification height (hs) and the tip angle (αt) with various aspect ratios (Ar) in
the range of 2 – 14. The other parameters are the same as those in the previous figure.
Fig. 5(a) the shows that when the aspect ratio (Ar) increases, the height of the solidified
fluid filament (hs = ha(τ = τs)) increases. This can be explained that an increasing
aspect ratio (Ar) leads to an increase in the volume of fluid filaments. Interestingly, at the
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same time τ > 2.0, the smaller the aspect ratio (Ar), the higher the average solidification
interface height (ha). It means that the rate of solidification of the fluid filaments increases
when the aspect ratio (Ar) decreases. This is because a fluid filament with a small aspect
ratio (Ar) has a smaller thermal boundary layer around the fluid filament than that with
a large aspect ratio (Ar) (see in Fig. 4(a)). This causes the solidification interface near
the triple point of the fluid filament with a small aspect ratio (Ar) to move faster than
that with a large aspect ratio (Ar) (see in Fig. 3(c)). In addition, Fig. 5(a) also illustrates
that the solidification time (τs) increases when the aspect ratio (Ar) increases. For further
demonstration, Fig. 5(b) shows the solidification time (τs), solidification height (hs) and
tip angle (αt) with the aspect ratio (Ar) varying in the range of 2 – 14. We see that the
solidification time (τs) and solidification height (hs) increase sharply when the aspect ratio
(Ar) increases in the range of 2 – 14. In contrast, the tip angle (αt) is almost unchanged
(αt ≈ 76.49°) with the aspect ratio (Ar) varying in the range of 2 – 14. In other words,
varying the aspect ratio (Ar) does not affect the tip angle [42, 43].
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after complete retraction and solidification. The solidification process can be divided into three stages. 
Stage 1 is the retraction process – this process is very fast. Stage 2 is the oscillation process – in this 
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complete solidification – the height of fluid filament increases a bit over time in this process. Varying 
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Fig. 5. (a) The average solidification interface height (ha) over time (t) with the various aspect ratios (Ar) in 

the range of 2 - 14. (b) The solidification time (ts), solidification height (hs) and tip angle (at) of the fluid 
filaments with the various aspect ratios (Ar) in the range of 2 – 14. The arrow in (a) shows the increase of Ar. 

In (b) the solidification time increases with the aspect ratio (Ar) by ts ≈ 3.3872Ar – 4.8451 and the 
solidification height increases with the aspect ratio (Ar) by hs/R ≈ 1.5807ln(Ar) + 0.7775 

Fig. 5. (a) The average solidification interface height (ha) over time (τ) with the various aspect
ratios (Ar) in the range of 2 - 14. (b) The solidification time (τs), solidification height (hs) and tip
angle (αt) of the fluid filaments with the various aspect ratios (Ar) in the range of 2 – 14. The
arrow in (a) shows the increase of Ar. In (b) the solidification time increases with the aspect ratio
(Ar) by τs ≈ 3.3872Ar − 4.8451 and the solidification height increases with the aspect ratio (Ar)

by hs/R ≈ 1.5807 ln(Ar) + 0.7775

5. CONCLUSIONS

We have presented the solidification of fluid filaments retracting under the influence
of the various aspect ratios (Ar) in the range of 2 – 14 by using the front-tracking method.
Like the solidification of simple droplets on a cold plate, the small protrusion on the top
of solidified fluid filament has appeared after complete retraction and solidification. The
solidification process can be divided into three stages. Stage 1 is the retraction process
– this process is very fast. Stage 2 is the oscillation process – in this process, the fluid
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filament is in damped oscillation. Finally, stage 3 is the process of stabilization and com-
plete solidification – the height of fluid filament increases a bit over time in this process.
Varying the aspect ratio (Ar) in the range of 2 – 14, the retraction length (h0− h) increases
when the Ar ratio increases. The retraction and oscillation stages take place longer when
the aspect ratio (Ar) increases. An increase in the aspect ratio leads to an increase in the
height of the solidified fluid filament but a decrease in the solidification rate. In addition,
the solidification time increases with the aspect ratio (Ar). Meanwhile, varying the aspect
ratio (Ar) in the range of 2 – 14 has no effect on the tip angle (αt).
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