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Abstract. This work aims at presenting a novel four-node quadrilateral element, which is
enhanced by integrating with discrete shear gap (DSG), for analysis of Reissner–Mindlin
plates. In contrast to previous studies that are mainly based on three-node triangular el-
ements, here we, for the first time, extend the DSG to four-node quadrilateral elements.
We further integrate the fictitious point located at the center of element into the present
formulation to eliminate the so-called anisotropy, leading to a simplified and efficient cal-
culation of DSG, and that enhancement results in a novel approach named as “four-node
quadrilateral element with center-point based discrete shear gap - CP-DSG4”. The accu-
racy and efficiency of the CP-DSG4 are demonstrated through our numerical experiment,
and its computed results are validated against those derived from the three-node triangu-
lar element using DSG, and other existing reference solutions.

Keywords: discrete shear gap, four-node quadrilateral element, finite element method,
Reissner–Mindlin plate theory, CP-DSG4.

1. INTRODUCTION

The Reissner–Mindlin theory, known as the first order shear deformation theory -
FSDT, is popular and has been intensively used for investigating plate structures. In
terms of numerical simulation, the theory only requires the shape functions to satisfy
C0-continuity, which is much more convenient than either the Kirchhoff theory for thin
plates or higher-order shear deformation theories. Reissner–Mindlin theory is applicable
for both moderately thick and thin plates, it however is suffered from the so-called shear
locking problem in the sense of thin plates analysis. A simple remedy namely selective
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reduced integration [1] may be used, i.e., less number of integration points than as usual
are used for computation of the shear stiffness. However it is not versatile and thus,
development of other treatments is necessary.

A large number of techniques have been proposed so far to treat the shear locking
in the context of finite element method (FEM), i.e. various versions of the 8-node quadri-
lateral elements [2, 3], the family of MITC elements based on mixed formulation [4–6],
the assumed strain [7, 8], etc. The technique of discrete shear gap, originally proposed
by Bletzinger et al. [9] can also be considered as assumed strain, in which the shear gap
is approximated from the nodal displacements, i.e. deflection and rotations. The formu-
lation is quite straightforward, especially in the case of three-node triangular element.
However, it is pointed out in [10] that the performance is dependent to the order of node
sequence, which is called by “anisotropy”. Recently, Cui et al. [11] proposed the intro-
duction of a fictitious point located at the center of triangular element to eliminate the
issue of “anisotropy” and thus improve the accuracy.

Alternatively to FEM, many other numerical methods were developed including iso-
geometric analysis (IGA) [12, 13], meshfree methods [14, 15], and smoothed FEM [3, 16].
Each method has its own advantages and disadvantages. In the IGA, the continuity and
the order of the shape function is controllable, which is also effective to deal with the
shear locking. However, the desirable property of Kronecker delta is lost, leading to dif-
ficulty in imposition of boundary conditions. Similarly, the meshfree methods in most
of the cases possess higher order and higher continuity shape functions. Unfortunately,
only a few types of meshfree methods, e.g. the Radial Point Interpolation Method, sat-
isfy Kronecker delta. Nevertheless, computational time in meshfree analysis is gener-
ally higher than that of finite element analysis. The polygonal FEM and the smoothed
FEM are improved versions of traditional FEM. In polygonal FEM, elements of polygonal
shape being associated with higher order shape function are introduced to increase the
accuracy. New techniques of discretization (namely meshing) are required accordingly.
In the smoothed FEM, the compatible strain tensor is replaced by a smoothing strain
tensor, resulting in better approximation, with the price of more complicated computa-
tion. In order to effectively mitigate the shear locking, the polygonal FEM and smoothed
FEM still need to combine with techniques such as assumed strain [17] and discrete shear
gap [16, 18].

In this paper, the discrete shear gap (DSG) is incorporated into four-node quadrilat-
eral element, in order to alleviate shear locking and improve performance, while calcu-
lation is kept as simple as possible. It is noted that the DSG formulation proposed in [9]
is applicable to four-node quadrilateral element. The element, namely DSG4, is reported
in [9] to be equivalent to the element with assumed natural strain. However, the imple-
mentation was not mentioned in details. Being inspired by the work of Cui et al. [11]
for three-node triangular elements, the current study also exploits the fictitious point to
eliminate the so-called “anisotropy” and to achieve a simple calculation of DSG. Theoret-
ically, the fictitious point can be any point within the element. However, selection of the
center point would be convenient and helps to increase computational efficiency. Hence,
the proposed element is named by “four-node quadrilateral element with center-point
based discrete shear gap” (CP-DSG4).
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2. BRIEF ON REISSNER-MINDLIN PLATE THEORY

According to the Reissner–Mindlin plate theory, the displacement fields
[
ux, uy, uz

]T

at an arbitrary point can be estimated by

ux(x, y, z) = −zβx(x, y), (1)

uy(x, y, z) = −zβy(x, y), (2)

uz(x, y, z) = w(x, y), (3)

in which w is the vertical displacement at the mid-surface (namely deflection) and βx,
βy are the rotations about y- and x-axes, respectively. The strain components are then
obtained by

Bending strains: εb =
[
εxx, εyy, 2εxy

]T
=
[
−zβx,x,−zβy,y,−z

(
βx,y + βy,x

)]T , (4)

Shear strains: εs =
[
2εxz, 2εyz

]T
=
[
w,x − βx, w,y − βy

]T . (5)

The Galerkin weak form for static bending analysis of Reissner–Mindlin plates is given
as follows: ∫

Ω

(δεb)TDbεbdΩ +
∫
Ω

(δεs)TDsε
sdΩ =

∫
Ω

δuTbdΩ, (6)

where u =
[
w, βx, βy

]T is the vector of unknown displacement components; b = [q, 0, 0]
is the vector of distributed load; and Ω is the plate domain.

For homogeneous and isotropic materials, the material matrices Db and Ds charac-
teristic for bending and shearing, respectively, are given by

Db =
Et3

12 (1 − ν2)

1 ν 0
ν 1 0

0 0
1 − ν

2

 , (7)

Ds = κt
[

µ 0
0 µ

]
. (8)

In the above equations, the material parameters are the Young modulus E, the Poisson’s

ratio ν and the shear modulus µ =
E

2 (1 + ν)
, while t is the thickness of the plate. A shear

correction factor κ =
5
6

is usually taken in practice.

3. FORMULATION OF DISCRETE SHEAR GAP

3.1. Brief on existing implementation of DSG
The terminology of shear gap was introduced in [9] for a two-node Timoshenko

beam element by integration of shear strain along the element, i.e.

v(x) =
∫

εsdx = w(x)− w(x1)−
x∫

x1

βdx, (9)
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where x1 is one node of the beam element. Noting that w(x)− w(x1) is the actual deflec-

tion at point x, while
x∫

x1

βdx takes into account the displacement due to pure bending,

v(x) is named as the “shear gap” to refer to the displacement due to transverse shear
deformation. The shear gap is then discretized into nodes

v(x) =
2

∑
i=1

Niv̂i, (10)

where Ni is the shape function and v̂i is the nodal value of discrete shear gap at node i,
which is defined by

v̂i = v(xi) = ŵi − ŵ1 −
xi∫

x1

βdx. (11)

Here ŵi = w(xi) and ŵ1 = w(x1) are the nodal values of deflection at node i and node
1, respectively. The rotation β can also be interpolated from nodal values, hence the
discretized form of shear strain is rewritten by

εs =
dv
dx

= BDSGû, (12)

where û is the vector of nodal displacements and BDSG needs to be determined for each
type of element.

An application of DSG idea into three-node triangular element (i.e. DSG3 element)
would result in an explicit form of BDSG, which only involves the length of element edges
and the element area, as can be seen in [9]. In fact for a three-node triangular element,
the discrete shear gap at node i can be chosen to be calculated based on either node 1, 2,
or 3. The performance of the element is affected by the choice, which is an issue named
by “anisotropy” in [10,11]. In order to overcome the issue, a fictitious point located at the
center of the triangular element is proposed to be the base-point in [11].

3.2. Formulation of the DSG in four-node quadrilateral element
A direct application of the original formulation of DSG to four-node quadrilateral

element, i.e. DSG4 [9], would also be suffered from the same “anisotropy” issue. Hence,
in this research, the idea of fictitious point located at the center of the element is adopted.
The formulation is presented in details in the followings.

Taking the base-point O into account, the discrete shear gap at node i (one of the four
node of a quadrilateral element) can be written similarly to Eq. (11) by

v̂i = ŵi − wO −
li∫

0

β(l)dl, (13)

where the rotation β perpendicular to the line Oi connecting point O and node i can be
calculated from the field variables βx and βy (see Fig. 1)

β = βx cos αi + βy sin αi. (14)
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Fig. 1. Rotation β can be calculated from βx and βy

The components of shear strain εs =
[
2εxz, 2εyz

]T are obtained simply by taking the
first order derivatives of shear gap v with respect to the x- and y- directions. Within each
element, the follow expressions hold

2εxz =
4

∑
i=1

∂Ni

∂x
v̂i =

4

∑
i=1

∂Ni

∂x

[
4

∑
j=1

Nj (xi, yi) ŵj −
4

∑
j=1

Nj (xO, yO) ŵj

]

−
4

∑
i=1

∂Ni

∂x

[∫ li

0

4

∑
j=1

Nj(l) cos αi β̂xjdl +
∫ li

0

4

∑
j=1

Nj(l) sin αi β̂yjdl

]
,

(15)

2εyz =
4

∑
i=1

∂Ni

∂y
v̂i =

4

∑
i=1

∂Ni

∂y

[
4

∑
j=1

Nj (xi, yi) ŵj −
4

∑
j=1

Nj (xO, yO) ŵj

]

−
4

∑
i=1

∂Ni

∂y

[∫ li

0

4

∑
j=1

Nj(l) cos αi β̂xjdl +
∫ li

0

4

∑
j=1

Nj(l) sin αi β̂yjdl

]
.

(16)

In the above equations, the approximation within each element has been used, i.e. ŵi =
4

∑
j

Nj (xi, yi) ŵj, wO =
4

∑
j

Nj (xO, yO) ŵj, βx(l) =
4

∑
j

Nj(l)β̂xj and βy(l) =
4

∑
j

Nj(l)β̂yj. The

compact form similar to Eq. (12) can be written by

εs =

[
2εxz
2εyz

]
= BDSGû, (17)

where the vector of nodal displacements is u =
[
ŵ1, βx1, βy1, ŵ2, ..., ŵ4, βx4, βy4

]T. The
matrix BDSG is calculated as follows

BDSG =
[
BDSG

1 BDSG
2 BDSG

3 BDSG
4

]
, (18)
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where

BDSG
i =



∂Ni

∂x
− NO

i

4

∑
j=1

∂Nj

∂x
∂Ni

∂y
− NO

i

4

∑
j=1

∂Nj

∂y

−
4

∑
j=1

(
∂Nj

∂x
cos αj

∫ lj

0
Ni(l)dl

)
−

4

∑
j=1

(
∂Nj

∂y
cos αj

∫ lj

0
Ni(l)dl

)
−

4

∑
j=1

(
∂Nj

∂x
sin αj

∫ lj

0
Ni(l)dl

)
−

4

∑
j=1

(
∂Nj

∂y
sin αj

∫ lj

0
Ni(l)dl

)



T

, (19)

in which NO
i = Ni (xO, yO).

Fig. 2. Transformation of an element from physical space to reference space.

In implementation, the integrals
∫ lj

0
Ni(l)dl can be transformed from the physical

space into the space of reference element, see Fig. 2. The line integrals in the reference
space are pre-computed only once. Therefore, it is efficient to evaluate Eq. (19). The
finite element procedure does not change, except that the shear strain components εs are
approximated by Eq. (17) instead of Eq. (5), and thus the shear-related component of
stiffness matrix is modified, while the bending-related component remains unchanged.
Furthermore it is noticed that the following holds in every element

4

∑
j

∂Nj(x)
∂x

=
4

∑
j

∂Nj(x)
∂y

= 0. (20)

Finally, a stabilization term is introduced into Eq. (8), as recommended by [19]

D̂s =
κt3

t2 + αh2
e

[
µ 0
0 µ

]
, (21)

where he is the longest side of the element and α is a user-defined positive parameter. For
simplicity, α is fixed at 0.1 in this paper.

4. NUMERICAL EXAMPLES

In this section, the performance of the proposed CP-DSG4 element is demonstrated
via three numerical examples:

- A patch test.



A 4-node quadrilateral element with center-point based discrete shear gap (CP-DSG4) 325

- A simply supported square plate subjected to uniform pressure.
- A clamped circular plate subjected to uniform pressure.
- A simply supported thin skew plate subjected to uniform pressure.
Properties of CP-DSG4 (e.g. the ability to avoid shear locking, the accuracy in case of

mesh distortion and computational efficiency) are investigated, in comparison with other
approaches such as Q4 (conventional four-node quadrilateral element), Q4I (Q4 element
with selective reduced integration), DSG3 (three-node triangular element with discrete
shear gap) [9] and CP-DSG3 (central-point based DSG3) [11]. The well-known MITC4
element [4] is also taken as reference. By DSG3 [9] and CP-DSG3 [11], we mean that those
elements are implemented using the explicit formulation presented in the associated doc-
uments. Whenever stabilization term Eq. (21) is used, a suffix “stabilized” will be added
into the notation. The same isotropic material properties are adopted in all numerical
examples: Young’s modulus E = 200 GPa and Poisson’s ratio ν = 0.3.

4.1. Patch test
The patch test is introduced to verify the convergence of the proposed element, CP-

DSG4. The patch is given by a simple square plate model being meshed by five quadri-
lateral elements of irregular shapes, as depicted in Fig. 3. The thickness of the plate is
t = 0.001 m. The boundary deflection is assumed to be

wexact = (1 + x + y +
1
2

x2 + xy +
1
2

y2)× 10−4 [m]. (22)

Fig. 3. Meshed model of the patch test. Nodal coordinates are: 1 (0, 0); 2 (0.1, 0.1); 3 (0, 0.1);
4 (0, 0.1); 5 (0.02, 0.02), 6 (0.08, 0.03), 7 (0.08, 0.07), 8 (0.04, 0.07)

The results reported in Table 1 exhibit that the analytical solution is reproduced in
the interior nodes. Thus the patch test is passed.

Table 1. Results of interior nodes of the patch test

Node w wexact βx βexact
x βy βexact

y

5 0.000104 0.000104 0.000104 0.000104 0.000104 0.000104
6 0.000111 0.000111 0.000111 0.000111 0.000111 0.000111
7 0.000115 0.000115 0.000115 0.000115 0.000115 0.000115
8 0.000111 0.000111 0.000111 0.000111 0.000111 0.000111



326 Minh Ngoc Nguyen, Tinh Quoc Bui, Vay Siu Lo, Nha Thanh Nguyen

4.2. A square plate subjected to uniform pressure
In this example, a square plate of size a × a with a = 1 m subjected to uniform pres-

sure q = 1 N/m2 is considered. The maximum deflection, wc, obtained at the center of the
plate is normalized by w̃ = wc · 100D0/(qa4), where D0 = Et3/(12(1 − ν2)), with t being
the plate thickness. Taking the analytical solution given by Timoshenko and Woinowsky-
Krieger [20] as reference, the accuracy of results obtained by CP-DSG4 in regular meshes
(i.e. 8 × 8, 12 × 12, 16 × 16, 20 × 20, 32 × 32, 48 × 48 and 64 × 64 elements) are demon-
strated in Fig. 4 for the case that all edges are simply supported (SSSS). Notice that the
triangular meshes are achieved by dividing each quadrilateral element into two triangles.

Fig. 4. Numerical results of normalized central deflection obtained by SSSS boundary conditions
with two cases: thick plate (a/t = 10) and thin plate (a/t = 1000)

It is evidently shown that all types of elements considered (i.e. Q4, Q4I, DSG3,
MITC4, CP-DSG3 and CP-DSG4) work well in case of thick plate (a/t = 10), though
Q4 has a little bit less accuracy when the mesh is coarse. For thin plate (a/t = 1000),
Q4 is unable to deliver reasonable solution due to shear locking, as expected. All the
other elements have good performance. The accuracy of CP-DSG4, Q4I and MITC4 are
almost equivalent and they outperform both DSG3 and CP-DSG3 in coarse meshes. With
simple formulation, Q4I seems to be the most efficient element type for regular mesh.
It is also observed that stabilization term is not necessary in thick plate analysis, as the
performance of CP-DSG3/CP-DSG4 and their stabilized versions are almost equivalent.
For thin plate, stabilization improves accuracy in coarse meshes, especially for triangular
elements.

Next, the performance of the elements with discrete shear gap is verified in irregular
mesh. The irregular meshes are created from regular meshes by a small perturbation of
the nodal positions. An illustration of regular and irregular mesh of 16 × 16 elements is
depicted in Fig. 5. The convergence of central deflection with respect to mesh fineness is
exhibited in Fig. 6. It is evidently shown that the Q4I element is severely affected by mesh
distortion, while the DSG-enhanced elements are not. Hence it is more reliable to use
DSG instead of reduced integration. Among the three types (DSG3, CP-DSG3 and CP-
DSG4), CP-DSG4 has the best performance. The accuracy of CP-DSG3 is a little bit better
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than that of DSG3. The accuracy of CP-DSG3 can be greatly improved by consideration
of stabilization term. Without stabilization, CP-DSG4 is much better than CP-DSG3. For
CP-DSG4, stabilization is only really useful in coarse meshes.

Fig. 5. The regular and irregular meshes of 16 × 16 quadrilateral elements

Fig. 6. Numerical results of normalized central
deflection obtained by SSSS boundary condi-
tions with thin plate (a/t = 1000) and irregu-

lar meshes

Fig. 7. Computational time with respect to
mesh density of the three element types:

DSG3, CP-DSG3 and CP-DSG4

Regarding time efficiency, it is obvious that more computational effort is required
to calculate the element stiffness matrix of CP-DSG4 than that of DSG3 and CP-DSG3,
where the matrices are expressed explicitly. However, given the same number of nodes,
the number of triangular elements is much larger than that of quadrilateral elements.
The graphs of computational time versus mesh density (represented by number of nodes
per edge) are depicted in Fig. 7, clearly demonstrate the efficiency of CP-DSG4. For
coarse mesh, elapsed time of CP-DSG4 is higher than that of DSG3 and CP-DGS3, but
the difference is not significant. In fine mesh, the computational process would even be
faster with CP-DSG4.
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4.3. A circular plate subjected to uniform pressure
The performance of the DSG-enhanced elements is further investigated in analysis

of a clamped thin circular plate of radius R = 1 m being subjected to uniform load q =

1 N/m2, as depicted in Fig. 8. The plate thickness is t = L/500. Analytical solution of this
problem was presented in [21]. For meshing, the circular domain is firstly partitioned into
five sub-domains. Each edge is then split into 5, 10, 15, 20 segments in order to generate
125, 500, 1125 and 2000 quadrilateral elements, respectively. The mesh of 125 elements is
depicted in Fig. 8. Triangular meshes are obtained by splitting every quadrilaterals into
two triangles.

Fig. 8. Sketch of circular plate and the mesh of 125
quadrilateral elements

Fig. 9. Convergence of ratio w0/wre f with
respect to mesh density

Denoting w0 the computed deflection at the center of the plate (which is also the
maximum value), and wre f the analytical results, the convergence of ratio w0/wre f with
respect to mesh density is exhibited in Fig. 9. Similarly to the example of square plate
in Subsection 4.2, the accuracy of CP-DSG4 is higher than that of CP-DSG3, for the both
cases: with and without stabilization. It is clearly observed that in general CP-DSG4
and CP-DSG3 are better than DSG3, even without stabilization. The CP-DSG4 is even
equivalent to the stabilized CP-DSG3. The accuracy of CP-DSG4 can be improved by sta-
bilization, especially in the coarsest mesh. MITC4 exhibits good quality in all the meshes
being considered. Except for the coarsest mesh, the difference between MITC4 and CP-
DSG4/CP-DSG4-stabilized is not significant.

4.4. A skew plate subjected to uniform pressure
In this example, a rhombic plate of side L = 1 m with zero deflection (w = 0) on

boundaries, being subjected to uniform load q = 1 N/m2 is investigated, see Fig. 10.
This problem is served to study the performance of CP-DSG3, CP-DSG4 and MITC4 in
the case of thin plate (thickness is t = 0.001 m) with skew geometry. Regular meshes
with increasing fineness (8, 12, 16, 20, 32, 48, and 64 elements per edge) are adopted. The
normalized central deflection w̃ = wc · 1000D0/(qL4) ≈ 0.408 given by Ref. [22] is taken
as reference. Results of all the element types being considered tend to converge with
respect to mesh fineness. Although the normalized deflections obtained by CP-DSG3 and
MITC4 at very coarse meshes (e.g. 8 × 8, 12 × 12 and 16 × 16 elements) are closer to the
reference solution, fluctuation in the curves indicates that they are not quite reliable. For
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this particular example, performance of CP-DSG4 is slightly better than both CP-DSG3
and MITC4. Both stabilized versions of CP-DSG3 and CP-DSG4 have good agreement
with the reference. However, the outcomes of stabilized CP-DSG4 are much closer.

Fig. 10. The skew plate problem: Geometry and numerical results of normalized
central deflection

5. CONCLUSION

The central point-based discrete shear gap has been successfully extended into four-
point quadrilateral element for analysis of Reissner–Mindlin plates. The followings have
been shown:

- The Q4 element is suffered from shear locking, as expected.
- The Q4I is computationally efficient in uniform mesh. However its performance

severely deteriorates in case of distorted mesh. The elements with discrete shear gap are
not much affected by mesh distortion.

- CP-DSG4 has better accuracy than both DSG3 and CP-DSG3.
- Time efficiency of CP-DSG4 in general is comparable to DSG3 and CP-DSG3. In

fine mesh, CP-DSG4 even requires less computational time.
With simple formulation and good performance (in terms of accuracy, time efficiency

and immunity to mesh distortion), the CP-DSG4 is a strong candidate for further investi-
gation on plate structures analysis based on Reissner–Mindlin theory.

The authors are aware that a good choice of base-point for DSG4 may lead to an ele-
ment equivalent to the famous MITC4 [4], as already mentioned in [9]. The performance
of CP-DSG4 is almost equivalent to MITC4 in the numerical examples being considered.
Furthermore, it is expected that the approach of center-point based discrete shear gap
would be extendable for polygonal elements, in which element can take the shape of
n-sided polygons. This research has been scheduled for future works.
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