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Abstract. Free vibration and buckling of three-phase bidirectional functionally graded
sandwich (BFGSW) plates are studied in this paper for the first time by using an efficient
nine-node quadrilateral (Q9) element. The core of the sandwich plates is pure ceramic,
while the two skin layers are of a three-phase bidirectional functionally graded material.
The element is derived on the basis of the Mindlin plate theory and linked interpolations.
Fundamental frequencies and buckling loads are computed for the plates with various
boundary conditions. Numerical result shows that convergence of the linked interpola-
tion element is faster compared to the conventional Lagrangian interpolation Q9 element.
Numerical investigations are carried out to highlight the influence of the material grada-
tion and the side-to-thickness ratio on the vibration and buckling behaviour of the plates.

Keywords: BFGSW plate, Q9 element, linked interpolation, vibration and buckling analy-
sis.

1. INTRODUCTION

Functionally graded materials (FGMs) with outstanding properties compared to con-
ventional composites in term of reducing thermal stresses are increasingly employed to
fabricate structural elements for use in severe conditions. Study on mechanical behaviour
of FGM structures subjected to different thermal and mechanical loadings is the subject of
investigations in the last few decades [1,2]. Recently, thanks to the advanced manufactur-
ing methods [3], the use of FGMs in sandwich construction for improving structural per-
formance and overcoming the inter-layer delaminating problems of conventional sand-
wich structures has been realized. Functionally graded sandwich (FGSW) structures with
high stiffness-to-weight ratio and continuous variation of material properties are widely
used in many modern engineering applications such as aerospace, marine and nuclear
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energy engineering. Analyses of FGSW structures in general, FGSW plates in particu-
lar are extensively carried out, contributions that are most relevant to present work are
briefly discussed below.

Bending, vibration and buckling analyses of sandwich plates with a homogeneous
core and transversely FGM faces were carried out by Zenkour [4, 5] on the basis of dif-
ferent plate theories. The influence of the material distribution, aspect ratio and relative
ratio of the core to the plate thickness on the behaviour of the plates was examined in
detail in the works. Thermal buckling loads of a FGSW plate was evaluated in [6] via
the sinusoidal shear deformation theory. Li et al. [7] studied free vibration FGSW rect-
angular plates on the basis of a three-dimensional linear theory of elasticity. The plate
displacements have been expanded into series of Chebyshev polynomials and the Ritz
method was used to obtain the vibration characteristics. Xiang et al. [8, 9] calculated nat-
ural frequencies of sandwich plates with homogeneous core and FGM face sheets using
the n-order shear deformation theory in combination with the meshless global colloca-
tion method. Neves et al. [10] presented a quasi-3D shear deformation theory for ana-
lyzing isotropic and FGSW plates, taking into account the extensibility in the thickness
direction. The collocation with radial basis functions was adopted by the authors to ob-
tain the static, buckling, and free vibration characteristics. The bending, buckling, and
free vibration of FGSW plates were investigated by Thai et al. [11–13], using the new
first-order and higher-order shear deformation theories. Results obtained by the authors
were compared with 3D and quasi-3D solutions and those predicted by other plate the-
ories. The refined zigzag theory was adopted by Iurlaro et al. [14] in formulating finite
element formulations for bending and free vibration analysis of FGSW plates. Numerical
investigations by the authors showed that the zigzag theory is superior to the first-order
and third-order shear deformation theories in predicting the mechanical behavior of the
plates. Pandey and Pradyumna [15] employed the higher-order layerwise theory to de-
rive an eight-node isoparametric element for static and dynamic analyses of FGSW plates.
The efficiency and accuracy of the element in evaluating bending and dynamic charac-
teristics of the plates were confirmed through a numerical study. Free vibration analysis
of FGSW plate was carried out by Belabed et al. [16] using a hyperbolic plate theory. The
influence of porosities on bending behaviour of a sandwich plate with a homogeneous
core and FGM face layers was studied by Daikh and Zenkour [17], using a high-order
shear deformation theory. The quasi-3D shear deformation theory, taking into account
the thickness stretching effect, was adopted by by Le et al. [18] in formulating a finite el-
ement formulation for computing natural frequencies and mode shapes of FGSW plates
partially supported by a Pasternak foundation.

Development of FGM structures with properties varying in two or more directions to
withstand complex loading is of practical demand [19]. Due to the coefficients of govern-
ing equations for bidirectional FGM (BFGM) plates varying in the longitudinal direction,
analytical methods is often difficult in dealing with BFGM plates. Development of effi-
cient finite element formulations, therefore is important in analysis of BFGM plates. In
addition, the concept of linked interpolation, which has been put forward by Zienkiewicz
et al. [20] in formulating a Mindlin plate element, leads to a simple, but efficient plate el-
ement. The concept can be easily extended to a triangle for bending analysis of both thin
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and thick plates [21]. An alternative quadrilateral element for Reissner-Mindlin plates,
extended the mixed formulation described in [20] was presented by Xu et al. [22], us-
ing the linked interpolations. Different from the linear quadrilateral element in [20], the
element in [22] used four internal rotation nodes and a linear approximation for trans-
verse shear forces. It was shown that the element passed various patch tests, did not
possess any zero-energy mode, and its performance was good for both thick and thin
plates. Higher-order linked interpolation quadrilateral and triangular elements for thick
homogeneous plate was derived by Ribaric [23, 24]. It was shown that the higher-order
elements, in general, are successful compared to lower-order elements in the problems
with the same total number of the degrees of freedom.

In this paper, vibration and buckling analysis of three-phase bidirectional function-
ally graded sandwich (BFGSW) plates is studied for the first time by using a nine-node
quadrilateral (Q9) element. To the authors’ best knowledge, this problem has not been
reported in the literature, and thus it is studied herein for the first time. The plates con-
sist of three layers, a pure ceramic core and two face sheets of three-phase BFGM. The
material properties of the face sheets are considered to vary in both the plate thickness
and length by power gradation laws. In order to improve the element performance, the
linked interpolations are employed in the derivation of the element stiffness and mass
matrices. Using the derived element, frequencies and buckling loads are computed for
the plates with various boundary conditions. The effects of material distribution and the
layer thickness ratio on the frequencies and buckling loads are studied and highlighted.
The influence of the side-to-thickness ratio on the behaviour of the plates is also examined
and discussed.

2. BFGSW PLATE

A rectangular BFGSW plate with length a, width b and thickness h, as depicted in
Fig. 1, is considered. The Cartesian system (x, y, z) in the figure is chosen such that the
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Fig. 1. A rectangular BFGSW plate: geometry and coordinates
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(x, y) plane is coincident with the mid-plane, and z-axis directs upward. The plate con-
sists of three layers, a homogeneous ceramic core and two FGM skin layers. Denoting
z0 = −h/2, z1, z2 and z3 = h/2 are, respectively, the vertical coordinates of the bottom
surface, the interfaces between the layers, and the top surface. The FGM layers are made
from three constituents, M1, M2 and M3, with volume fraction smoothly varying in both
the x- and z-directions according to [25, 26]



V1 =

(
z− z0

z1 − z0

)nz

,

V2 =

[
1−

(
z− z0

z1 − z0

)nz
] [

1−
( x

a

)nx
]

, for z ∈ [z0, z1]

V3 =

[
1−

(
z− z0

z1 − z0

)nz
] ( x

a

)nx
,

V1 = 1, V2 = V3 = 0, for z ∈ [z1, z2]

V1 =

(
z− z3

z2 − z3

)nz

,

V2 =

[
1−

(
z− z3

z2 − z3

)nz
] [

1−
( x

a

)nx
]

, for z ∈ [z2, z3]

V3 =

[
1−

(
z− z3

z2 − z3

)nz
] ( x

a

)nx
,

(1)

where V1, V2, and V3 are, respectively, the volume fraction of M1, M2, and M3; nx and nz
are the axial and transverse power-law indexes. It is easy to verify that if nx = 0 or M2
is identical to M3, Eq. (1) returns to volume fraction of the conventional two-phase FGM
sandwich plates in [5,13,27]. The thickness and longitudinal distribution of V1, V2 and V3
is shown in Fig. 2 for a (2-2-1) plate with nx = 0.5, nz = 1 and z1 = −h/10, z2 = 3h/10.
Noting that the three number in brackets are used herein to denote the layer thickness
ratio, e.g. (2-2-1) means that the thickness ratio of the bottom, core and the top layers is
2 : 2 : 1.
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The effective property (P) such as elastic modulus and mass density of the BFGM
skin layers evaluated by the Voigt’s model is of the form

P(x, z) = V1P1 + V2P2 + V3P3, (2)

with P1, P2, and P3 are the properties of the M1, M2 and M3, respectively.
Substituting (1) into (2), one gets

P(x, z) =



[P1 − P23(x)]
(

z− z0

z1 − z0

)nz

+ P23(x), for z ∈ [z0, z1]

P1, for z ∈ [z1, z2]

[P1 − P23(x)]
(

z− z3

z2 − z3

)nz

+ P23(x), for z ∈ [z2, z3]

(3)

where

P23(x) = P2 − (P2 − P3)
( x

a

)nx
, (4)

3. MATHEMATICAL FORMULATION

Based on Mindlin plate theory [28], the displacements of a point in x, y and z direc-
tions, u(x, y, z, t), v(x, y, z, t) and w(x, y, z, t), respectively, are given by

u(x, y, z, t) = u0(x, y, t) + zβx(x, y, t),

v(x, y, z, t) = v0(x, y, t) + zβy(x, y, t),

w(x, y, z, t) = w0(x, y, t),
(5)

where u0(x, y, t), v0(x, y, t) and w0(x, y, t) are, respectively, the in-plane and transverse
displacements of a point on the mid-plane; βx and βy are the rotations around the y-axis
and x-axis of a mid-plane normal, respectively. The positive directions of the displace-
ments and rotations are shown in Fig. 3.

Eq. (5) gives the strains in the forms

εεεb =


εx

εy

γxy

 =


ε0

x

ε0
y

γ0
xy

+ z


κx

κy

κxy

 = εεε0 + zκκκ, γγγs =

{
γxz

γyz

}
=

{
w0,x + βx

w0,y + βy

}
, (6)

where εεεb and γγγs are, respectively, the vectors of bending and shear strains, and

ε0
x = u0,x, ε0

y = v0,y, γ0
xy = u0,y + v0,x,

κx = βx,x, κy = βy,y, κxy = βx,y + βy,x.
(7)

In the above equation and hereafter, a subscript comma is used to denote the deriv-
ative with respect to the followed variable, e.g. w0,x = ∂w0/∂x.
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Fig. 3. Positive directions of u, v, w displacements (a) and rotations βx and βy
of a quadrilateral Mindlin plate element

Constitutive equations based on linear assumption of the material behaviour are

σσσb =


σx

σy

τxy

 =

Q11 Q12 0
Q12 Q11 0

0 0 Q22




εx

εy

γxy

 = Dbεεεb, (8)

τττs =

{
τxz

τyz

}
= ψ

[
Q22 0

0 Q22

]{
γxz

γyz

}
= Dsγγγs, (9)

where Q11(x, z) =
E(x, z)
(1− ν2)

; Q12(x, z) = νQ11(x, z); Q22(x, z) =
E(x, z)

2(1 + ν)
with Young’s

modulus E(x, z) is defined by Eqs. (3) and Poison’s ratio ν is assumed to be constant. The
shear correction factor ψ in (9) is chosen by 5/6 for the present plate.

Eqs. (6), (8) and (9) give the strain energy U in the form

U =
1
2

∫
V

{
σσσb
τττs

}T{
εεεb
γγγs

}
dV =

1
2

∫ a

0

∫ b

0

εεε0

κκκ
γγγs


T I1 I2 0

I2 I3 0
0 0 I4

εεε0

κκκ
γγγs

dxdy, (10)

where V is the plate volume; I1, I2, I3 and I4 are the matrices of the plate rigidities, defined
as

(I1, I2, I3) =
∫ h/2

−h/2
Db(x, z)[1, z, z2]dz, I4 =

∫ h/2

−h/2
Ds(x, z)dz. (11)

In Eq. (10) and hereafter a superscript ‘T’ denotes the transpose of a vector or a ma-
trix. Using the technique in Ref. [26], explicit expressions for the rigidities in the above
equation (and the mass moments in Eq. (13) also) can be obtained.
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The kinetic energy of the plate resulted from Eq. (5) is of the form

T =
1
2

∫
V

ρ(x, y, z)
{

u̇2 + v̇2 + ẇ2}dV

=
1
2

∫ a

0

∫ b

0


u̇0
v̇0
ẇ0
β̇x
β̇y



T 
J1 0 0 J2 0
0 J1 0 0 J2
0 0 J1 0 0
J2 0 0 J3 0
0 J2 0 0 J3




u̇0
v̇0
ẇ0
β̇x
β̇y

dxdy,
(12)

where an over dot denotes the derivative with respect to the time variable t, and the mass
moments J1, J2, J3 are defined as

(J1, J2, J3) =
∫ h/2

−h/2
ρ(x, z)[1, z, z2]dz. (13)

Finally, the potential energy resulted by the in-plane load (P0
x , P0

y , P0
xy) is of the form

V =
1
2

∫ a

0

∫ b

0
(P0

x w2
0,x + P0

y w2
0,y + 2P0

xy w2
0,xy)dxdy

=
1
2

∫ a

0

∫ b

0

w0,x
w0,y
w0,xy


T P0

x 0 0
0 P0

y 0
0 0 2P0

xy

w0,x
w0,y
w0,xy

dxdy,
(14)

with (P0
x , P0

y , P0
xy) are negative for compressive loads.

4. LINKED INTERPOLATION Q9 ELEMENT

Fig. 4(a) shows a typical mesh for finite element analysis of a rectangular plate ob-
tained by an automatic meshing algorithm. A generic nine-node quadrilateral (Q9) ele-
ment of the mesh in global and a natural coordinates, (x, y) and (ξ, η), respectively, is de-
picted in Fig. 4(b). In the figure, (i.j), (i = 1÷ 3, j = 1÷ 3) are the nodes of the element;
ai and bj are, respectively, the distances between the nodes in the ξ- and η-directions. The
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nodal displacements uij
0 , vij

0 , wij
0 , β

ij
x , β

ij
y are taken herein as element degrees of freedom.

The vector of nodal displacements contains 46 components as

de
46×1

= {du dv dw dβx dβy wb}T, (15)

where du = {uij
0 } is the vector of nodal displacements in x-direction; dv, dw, dβx and dβy

are defined similarly as du; wb is an additional independent bubble degree of freedom.
The linked interpolation for the displacement w0 over the whole element domain are

given by [23]

w0 =
3

∑
j=1

3

∑
i=1

(
Nijw

ij
0 + Nij

wβx
β

ij
x + Nij

wβy
β

ij
y

)
+ Nwb wb

= Ndw + Nwβx dβx + Nwβy dβy + Nwb wb = Nwde,

(16)

while the interpolation for u0, v0, βx and βy takes the standard Lagrangian form as

u0 =
3

∑
j=1

3

∑
i=1

Niju
ij
0 = Ndu = Nude, v0 =

3

∑
j=1

3

∑
i=1

Nijv
ij
0 = Ndv = Nvde,

βx =
3

∑
j=1

3

∑
i=1

Nijβ
ij
x = Ndβx = Nβx de, βy =

3

∑
j=1

3

∑
i=1

Nijβ
ij
y = Ndβy = Nβy de,

(17)

where

Nij = Ijξ Iiη , Nwb =
ξ I2ξ

4
η I2η

4
,

Nij
wβx

= (−1)j+1ai cos φai Iiη(ξ − ξ3)k j + (−1)ibj cos φbj Ijξ(η − η3)ki,

Nij
wβy

= (−1)j+1ai sin φai Iiη(ξ − ξ3)k j + (−1)ibj sin φbj Ijξ(η − η3)ki,

(18)

with I1ξ = −ξ(1− ξ)/2; I2ξ = 1− ξ2; I3ξ = ξ(1+ ξ)/2; I1η , I2η and I3η are the correspond-
ing interpolation functions with the natural coordinates ξ and η; k1 = k3 = 1/12; k2 =
1/6; φai or φbj is the angle that the normal to the edge makes with the x-axis, that is
cos φai = −(yi3 − yi1)/ai, sin φai = (xi3 − xi1)/ai and cos φbj = −(y1j − y3j)/bj, sin φbj =

(x1j − x3j)/bj.
The matrices of interpolation Nu, Nv, Nw, Nβx and Nβy (size of 1× 46) in Eqs. (16),

and (17) are of the forms

Nu = {N [0] [0] [0] [0] 0},
Nv = {[0] N [0] [0] [0] 0},
Nw = {[0] [0] N Nwβx Nwβy Nwb},
Nβx = {[0] [0] [0] N [0] 0},
Nβy = {[0] [0] [0] [0] N 0}.

(19)
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The relation between two coordinate systems (x, y) and (ξ, η) is as follows

{x, y} =
3

∑
j=1

3

∑
i=1

Nij{xij, yij} = N{Xe, Ye}, (20)

with Xe = {xij}, Ye = {yij} (size 9× 1) are the column vectors of the nodal global coordi-
nates of the element. Noting that{

(.),ξ
(.),η

}
=

[
x,ξ y,ξ
x,η y,η

]{
(.),x
(.),y

}
= J

{
(.),x
(.),y

}
or

{
(.),x
(.),y

}
= J−1

{
(.),ξ
(.),η

}
, (21)

and dxdy =
∥∥J
∥∥dξdη, with

∥∥J
∥∥ is the determinant of Jacobian matrix.

Using the above interpolations, one can write the strain energy of the plate in Eq. (10)
in the form

U =
1
2

NE

∑ dT
e ke de, (22)

where NE is the total number of elements; ke is the element stiffness matrix, which can
be written as

ke
46×46

=
∫

Ωe

B”0

Bˇ
Bfls


T I1 I2 0

I2 I3 0
0 0 I4

B”0

Bˇ
Bfls

dxdy =
∫

Ωe

fK(x, y)dxdy, (23)

with Ωe is the area of the element domain, and

Bε0

3×46
=

 Nu,x
Nv,y

Nu,y + Nv,x

, Bκ
3×46

=


Nβx ,x
Nβy,y

Nβx ,y + Nβy,x

, Bγs
2×46

=

{
Nw,x + Nβx

Nw,y + Nβy

}
. (24)

The kinetic energy of the plate in Eq. (26) can also be written in the form

T =
1
2

NE

∑ dT
e me de, (25)

where me is the element mass matrix, which can be written in matrix form as

me
46×46

=
∫

Ωe


Nu
Nv
Nw
Nβx

Nβy



T 
J1 0 0 J2 0
0 J1 0 0 J2
0 0 J1 0 0
J2 0 0 J3 0
0 J2 0 0 J3




Nu
Nv
Nw
Nβx

Nβy

dxdy =
∫

Ωe

fM(x, y)dxdy. (26)

The potential energy V in Eq. (14) is now of the form

V =
1
2

NE

∑ dT
e kG

e de, (27)
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with kG
e is the element geometric stiffness matrix with the following forms

kG
e

46×46
=
∫

Ωe

(NT
w,x P0

x Nw,x + NT
w,y P0

y Nw,y + 2 NT
w,xy P0

xy Nw,xy)dxdy

=
∫

Ωe

Nw,x
Nw,y
Nw,xy


T P0

x 0 0
0 P0

y 0
0 0 2P0

xy

Nw,x
Nw,y
Nw,xy

dxdy =
∫

Ωe

fG(x, y)dxdy.
(28)

In terms of the natural coordinates, the above matrices ke, me and kG
e take the forms

ke =
∫ 1

−1

∫ 1

−1
fK(x(ξ, η), y(ξ, η))

∥∥J
∥∥dξdη,

me =
∫ 1

−1

∫ 1

−1
fM(x(ξ, η), y(ξ, η))

∥∥J
∥∥dξdη,

kG
e =

∫ 1

−1

∫ 1

−1
fG(x(ξ, η), y(ξ, η))

∥∥J
∥∥dξdη.

(29)

Gauss quadrature with 6×6 points along the ξ- and η-directions is employed to eval-
uate the integrals in Eq. (29). More points have been used, but no improvement in the
numerical results was seen.

Hamilton’s principle applied to the plate is of the form

δ
∫ t2

t1

(T − U − V)dt = 0. (30)

By assuming a harmonic form for the vector of nodal displacements, the Hamilton’s prin-
ciple leads to the following discrete equation of motion

(K− PcrKG −ω2M)D̄ = 0, (31)

where M, K and KG are, respectively, the global mass, stiffness and geometric matrices;
Pcr, ω and D̄ are the critical buckling load, the frequency and the eigenvector of nodal
displacements corresponding to an eigenvalue, respectively.

5. NUMERICAL INVESTIGATION

Numerical investigation is carried out in this section to show the accuracy and per-
formance of the derived Q9 element as well as the influence of the material distribution
and plate geometry on the vibration and buckling behaviour. Otherwise stated, a BFGSW
plate made from alumina (Al2O3) as M1, stainless steel (SUS304) as M2, and aluminum
(Al) as M3 is considered. The properties of these constituents are given in Table 1 [26].

Table 1. Properties of constituent materials of BFGSW plate

Materials Role E (GPa) ρ (kg/m3) ν

Alumina (Al2O3) M1 380 3800 0.3
Steel (SUS304) M2 210 7800 0.3
Aluminum (Al) M3 70 2707 0.3
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Three types of boundary conditions (B.C.), namely simply supported at all edges
(SSSS), simply supported at two longer edges and clamped at the others (SCSC), and
clamped at all edges (CCCC), are considered. The constraints for these boundaries are as
follows:

- u0 = w0 = βy = 0 at x = 0, a; v0 = w0 = βx = 0 at y = 0, b for SSSS.
- u0 = v0 = w0 = βx = βy = 0 at all edges for CCCC.
- v0 = w0 = βx = 0 at y = 0, b; u0 = v0 = w0 = βx = βy = 0 at x = 0, a for SCSC.
For the convenience of discussion, the following non-dimensional frequency and

buckling load parameters [5, 27] are used

µ =
ωa2

h

√
ρ0

E0
, P∗cr = Pcr

a2

100h3E0
, (32)

with ω is the fundamental frequency, and E0 = 1 GPa, ρ0 = 1 kg/m3.

5.1. Convergence and accuracy studies
The convergence and accuracy of the derived element are firstly verified. To this end,

the frequencies and buckling loads of (2-1-2) SSSS and CCCC BFGSW plates with a/b = 2
and a/h = 10 are computed using different meshes of the linked Q9 and a conventional
(without linked interpolation) Mindlin Q9 element, and the results are shown in Fig. 5.
Noting that, the Mindlin Q9 element differs only from linked Q9 element in which the
interpolation for w uses the standard Lagrangian form, the same as u and v. As seen from
the figure, convergence of the Linked Q9 is much faster than that of the conventional
Q9 element, regardless of the B.C. and the power-law indexes. The convergence can be
achieved by using 54 linked elements or a mesh of 3×3×6. Regarding the computational
cost, a mesh of 54 linked elements needs 3.196 s to get accurate fundamental frequency
of the SSSS plate when a core i5 desktop with RAM 8G is used, while the corresponding
time for a mesh of 96 conventional elements is 5.8847 s. Thus, the computational time can
be improved significantly by using the linked element.

Since there is no data on the BFGSW plate in the literature, the accuracy of the de-
rived Linked Q9 element is verified herewith by comparing the fundamental frequencies
and buckling loads of unidirectional FGSW plate obtained herein with the published
data. Table 2 presents the fundamental frequency and biaxial buckling load parameters
of simply supported FGSW square plate with a/h = 10 of the present work with that
of Refs. [5, 7, 13, 27]. The sandwich plate in the references is a special case of the present
BFGSW plate when nx = 0. The maximum relative error of the parameters in Table 2, de-

fined as errormax(%) =
|resultpresent − resultreference|

resultreference
× 100%, is only 0.21 and 0.36% for

the µ and P∗cr, respectively. Thus, a good agreement between the frequencies and buck-
ling loads of the present work with that of Ref. [5, 7, 13, 27] can be noted from Table 2,
regardless of the B.C. and the layer thickness ratio.
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Fig. 5. A mesh convergence study for rectangular (2-1-2) BFGSW plates with a/h = 10

Table 2. Comparison of frequency and biaxial buckling load parameters of simply supported
FGSW square plate with a/h = 10

µ P∗cr

nz Refs. (2-1-2) (1-1-1) (1-2-1) Refs. (2-1-2) (1-1-1) (1-2-1)

0.5

Ref. [5] 1.4816 1.5170 1.5727 Ref. [5] 3.9566 4.2052 4.5976
Ref. [13] 1.4841 1.5192 1.5745 Ref. [13] 3.9702 4.2181 4.6081
Ref. [7] 1.4861 1.5213 1.5767 Ref. [27] 3.9707 4.2184 4.6083
Present 1.4843 1.5195 1.5751 Present 3.9709 4.2190 4.6110

1

Ref. [5] 1.2973 1.3507 1.4372 Ref. [5] 2.9069 3.2195 3.7418
Ref. [13] 1.3000 1.3533 1.4393 Ref. [13] 2.9193 3.2320 3.7528
Ref. [7] 1.3018 1.3552 1.4414 Ref. [27] 2.9204 3.2326 3.7532
Present 1.2991 1.3526 1.4391 Present 2.9147 3.2279 3.7512

5

Ref. [5] 0.9787 1.0418 1.1716 Ref. [5] 1.5113 1.7798 2.3574
Ref. [13] 0.9796 1.0435 1.1735 Ref. [13] 1.5141 1.7855 2.3652
Ref. [7] 0.9810 1.0453 1.1757 Ref. [27] 1.5218 1.7901 2.3674
Present 0.9804 1.0436 1.1735 Present 1.5163 1.7858 2.3647

5.2. Parametric study
A rectangular BFGSW plate with a/b = 2 and various symmetric and non-symmetric

thickness ratios and three values of the side-to-height, a/h = 5, a/h = 20 and a/h =
100, are considered in this subsection. The fundamental frequency and buckling load
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parameters of the plate obtained by the derived element are given in Tables 3–8. The
following remarks can be drawn from the tables.

Table 3. Frequency parameters of rectangular BFGSW plate with a/h = 5

nx nz
SSSS SCSC CCCC

(2-1-2) (1-1-1) (2-2-1) (2-1-2) (1-1-1) (2-2-1) (2-1-2) (1-1-1) (2-2-1)

0.3

0.3 3.2249 3.2758 3.3131 3.3851 3.4374 3.4747 4.6164 4.6825 4.7229
0.5 3.0261 3.1000 3.1558 3.1840 3.2602 3.3158 4.3885 4.4863 4.5463
1 2.7021 2.8106 2.8982 2.8545 2.9672 3.0540 4.0053 4.1549 4.2479
5 2.1512 2.2846 2.4315 2.2848 2.4280 2.5721 3.2782 3.5010 3.6552

0.5

0.3 3.2052 3.2593 3.2977 3.3634 3.4192 3.4578 4.5825 4.6538 4.6966
0.5 3.0037 3.0809 3.1373 3.1588 3.2386 3.2952 4.3465 4.4501 4.5126
1 2.6836 2.7936 2.8799 2.8321 2.9468 3.0328 3.9607 4.1144 4.2089
5 2.1565 2.2886 2.4266 2.2855 2.4274 2.5639 3.2565 3.4773 3.6278

1

0.3 3.1693 3.2290 3.2693 3.3230 3.3849 3.4259 4.5214 4.6017 4.6486
0.5 2.9634 3.0459 3.1035 3.1123 3.1982 3.2565 4.2724 4.3853 4.4520
1 2.6492 2.7618 2.8460 2.7895 2.9074 2.9924 3.8833 4.0429 4.1396
5 2.1558 2.2865 2.4120 2.2751 2.4160 2.5415 3.2132 3.4303 3.5746

5

0.3 3.0986 3.1681 3.2119 3.2423 3.3152 3.3604 4.4028 4.4983 4.5523
0.5 2.8867 2.9778 3.0371 3.0227 3.1184 3.1795 4.1344 4.2613 4.3344
1 2.5853 2.7009 2.7811 2.7093 2.8315 2.9137 3.7451 3.9113 4.0099
5 2.1449 2.2735 2.3794 2.2455 2.3845 2.4929 3.1318 3.3395 3.4720

- The frequency parameter decreases by increasing the axial indexes nx as well as
the transverse index nz. On the other hand, the buckling load parameter decreases by
increasing the transverse index nz while it increases by increasing the index nx, regardless
of the B.C., the layer thickness ratio and the side-to-height ratio. The influence of the
power-law indexes on the buckling load can be explained by the change of the constituent
percentage. As seen from Eq. (1), the percentage of M1 and M2 increases by the increase
of nx and nz, and thus the rigidities of the plate increase, and this leads to the increase of
the buckling load.

- The thickness ratio has a significant influence on the frequencies and buckling loads
of the plate. The frequency and buckling load are higher for the plate associated with a
larger core thickness. This is understandable since the core is made from high elastic
modulus alumina, which results in a high stiffness plate.

- The frequency and buckling parameters are higher for the plate associated with
a higher a/h ratio, regardless of the power-law indexes and the boundary conditions.
The results in Tables 7 and 8 show the ability of the derived Q9 element in assessing the
frequencies and buckling loads of the thin plate.
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Table 4. Buckling load parameters of rectangular BFGSW plate with a/h = 5

nx nz
SSSS SCSC CCCC

(2-1-2) (1-1-1) (2-2-1) (2-1-2) (1-1-1) (2-2-1) (2-1-2) (1-1-1) (2-2-1)

0.3

0.3 8.5918 8.8680 9.0688 9.3095 9.6049 9.8141 15.2290 15.6888 15.9749
0.5 7.5711 7.9516 8.2378 8.2339 8.6419 8.9392 13.6858 14.3363 14.7447
1 6.0317 6.5410 6.9550 6.6055 7.1546 7.5819 11.2573 12.1762 12.7685
5 3.7494 4.2794 4.8651 4.1653 4.7498 5.3446 7.2302 8.3723 9.2163

0.5

0.3 8.7128 8.9757 9.1667 9.4384 9.7192 9.9180 15.3946 15.8349 16.1088
0.5 7.7411 8.1044 8.3771 8.4169 8.8054 9.0882 13.9153 14.5411 14.9337
1 6.2703 6.7596 7.1557 6.8677 7.3928 7.8003 11.5773 12.4673 13.0405
5 4.0610 4.5845 5.1519 4.5241 5.0970 5.6699 7.6589 8.7906 9.6201

1

0.3 8.9254 9.1649 9.3385 9.6671 9.9218 10.1020 15.7046 16.1083 16.3590
0.5 8.0405 8.3729 8.6217 8.7418 9.0954 9.3522 14.3452 14.9240 15.2866
1 6.6925 7.1453 7.5090 7.3340 7.8157 8.1874 12.1770 13.0117 13.5479
5 4.6219 5.1295 5.6622 5.1675 5.7160 6.2477 8.4623 9.5722 10.3709

5

0.3 9.3964 9.5805 9.7141 10.1682 10.3635 10.5016 16.4982 16.7926 16.9768
0.5 8.7226 8.9770 9.1674 9.4660 9.7362 9.9323 15.5170 15.9384 16.2043
1 7.7072 8.0516 8.3277 8.4073 8.7740 9.0564 13.9463 14.5654 14.9637
5 6.1523 6.5526 6.9547 6.7798 7.2119 7.6160 11.0921 12.0271 12.6639

Table 5. Frequency parameters of rectangular BFGSW plate with a/h = 20

nx nz
SSSS SCSC CCCC

(2-1-2) (1-1-1) (2-2-1) (2-1-2) (1-1-1) (2-2-1) (2-1-2) (1-1-1)

0.3

0.3 4.0014 4.0687 4.1225 4.4270 4.5006 4.5582 7.6205 7.7460 7.8389
0.5 3.7198 3.8162 3.8956 4.1198 4.2254 4.3097 7.1052 7.2861 7.4202
1 3.2728 3.4101 3.5321 3.6309 3.7819 3.9097 6.2793 6.5399 6.7377
5 2.5607 2.7109 2.9059 2.8475 3.0146 3.2132 4.9336 5.2304 5.5191

0.5

0.3 3.9846 4.0556 4.1101 4.4075 4.4853 4.5439 7.5854 7.7182 7.8133
0.5 3.7031 3.8031 3.8824 4.0999 4.2096 4.2943 7.0690 7.2570 7.3928
1 3.2653 3.4042 3.5234 3.6204 3.7734 3.8991 6.2594 6.5232 6.7199
5 2.5853 2.7348 2.9184 2.8711 3.0378 3.2263 4.9761 5.2709 5.5510

1

0.3 3.9524 4.0299 4.0859 4.3685 4.4539 4.5144 7.5208 7.6662 7.7651
0.5 3.6705 3.7766 3.8560 4.0590 4.1761 4.2616 7.0027 7.2026 7.3409
1 3.2465 3.3884 3.5033 3.5928 3.7498 3.8722 6.2198 6.4889 6.6834
5 2.6118 2.7620 2.9286 2.8912 3.0593 3.2327 5.0282 5.3225 5.5885

5

0.3 3.8870 3.9764 4.0348 4.2873 4.3868 4.4511 7.3925 7.5604 7.6659
0.5 3.6057 3.7224 3.8015 3.9758 4.1057 4.1923 6.8755 7.0950 7.2364
1 3.2079 3.3544 3.4611 3.5350 3.6983 3.8141 6.1431 6.4199 6.6076
5 2.6454 2.7982 2.9372 2.9087 3.0807 3.2294 5.0935 5.3907 5.6291
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Table 6. Buckling load parameters of rectangular BFGSW plate with a/h = 20

nx nz
SSSS SCSC CCCC

(2-1-2) (1-1-1) (2-2-1) (2-1-2) (1-1-1) (2-2-1) (2-1-2) (1-1-1) (2-2-1)

0.3

0.3 12.3967 12.8268 13.1738 14.6194 15.1242 15.5226 36.2553 37.5097 38.4498
0.5 10.6840 11.2601 11.7422 12.6171 13.2934 13.8421 31.3278 33.0219 34.3022
1 8.2155 8.9467 9.6140 9.7316 10.5897 11.3368 24.1350 26.3170 28.0225
5 4.8994 5.5455 6.4131 5.8617 6.6196 7.5541 14.2519 16.2490 18.2591

0.5

0.3 12.6074 13.0170 13.3475 14.8686 15.3486 15.7279 36.8341 38.0329 38.9335
0.5 10.9739 11.5240 11.9846 12.9631 13.6073 14.1311 32.1137 33.7403 34.9742
1 8.6077 9.3107 9.9522 10.2084 11.0295 11.7464 25.1787 27.2913 28.9529
5 5.3875 6.0215 6.8702 6.4810 7.2176 8.1275 15.5303 17.5026 19.5101

1

0.3 12.9782 13.3512 13.6525 15.3109 15.7465 16.0916 37.9226 39.0158 39.8409
0.5 11.4862 11.9897 12.4116 13.5791 14.1656 14.6439 33.5978 35.0943 36.2374
1 9.3079 9.9581 10.5518 11.0636 11.8162 12.4762 27.1676 29.1413 30.7110
5 6.2839 6.8888 7.6956 7.6141 8.3053 9.1614 18.0258 19.9331 21.9116

5

0.3 13.7962 14.0841 14.3179 16.2767 16.6123 16.8799 40.5823 41.3850 42.0028
0.5 12.6485 13.0355 13.3626 14.9469 15.3975 15.7690 37.4312 38.5211 39.3791
1 10.9857 11.4808 11.9403 13.0249 13.6000 14.1142 32.7904 34.2183 35.4114
5 8.7171 9.1682 9.7908 10.4185 10.9417 11.6146 26.1528 27.5794 29.1813

Table 7. Frequency parameters of rectangular BFGSW plate with a/h = 100

nx nz
SSSS SCSC CCCC

(2-1-2) (1-1-1) (2-2-1) (2-1-2) (1-1-1) (2-2-1) (2-1-2) (1-1-1) (2-2-1)

0.3

0.3 4.0956 4.1648 4.2206 4.6804 4.7585 4.8198 8.2710 8.4104 8.5163
0.5 3.8043 3.9034 3.9856 4.3535 4.4654 4.5549 7.6864 7.8861 8.0380
1 3.3433 3.4840 3.6099 3.8349 3.9947 4.1296 6.7593 7.0440 7.2656
5 2.6132 2.7657 2.9662 3.0082 3.1849 3.3925 5.2836 5.5961 5.9125

0.5

0.3 4.0792 4.1522 4.2087 4.6608 4.7433 4.8057 8.2376 8.3846 8.4926
0.5 3.7883 3.8910 3.9731 4.3338 4.4501 4.5399 7.6538 7.8608 8.0141
1 3.3371 3.4794 3.6024 3.8254 3.9872 4.1199 6.7468 7.0346 7.2546
5 2.6397 2.7917 2.9804 3.0351 3.2113 3.4085 5.3411 5.6513 5.9585

1

0.3 4.0476 4.1273 4.1850 4.6215 4.7120 4.7763 8.1756 8.3358 8.4475
0.5 3.7567 3.8657 3.9477 4.2930 4.4171 4.5077 7.5933 7.8128 7.9682
1 3.3200 3.4654 3.5839 3.7994 3.9655 4.0948 6.7197 7.0128 7.2297
5 2.6690 2.8218 2.9931 3.0601 3.2378 3.4195 5.4171 5.7271 6.0190

5

0.3 3.9831 4.0749 4.1350 4.5394 4.6448 4.7127 8.0518 8.2363 8.3539
0.5 3.6935 3.8134 3.8948 4.2102 4.3477 4.4391 7.4770 7.7175 7.8749
1 3.2842 3.4345 3.5444 3.7452 3.9179 4.0400 6.6668 6.9680 7.1762
5 2.7068 2.8628 3.0058 3.0870 3.2685 3.4247 5.5234 5.8389 6.1007
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Table 8. Buckling load parameters of rectangular BFGSW plate with a/h = 100

nx nz
SSSS SCSC CCCC

(2-1-2) (1-1-1) (2-2-1) (2-1-2) (1-1-1) (2-2-1) (2-1-2) (1-1-1) (2-2-1)

0.3

0.3 12.8681 13.3167 13.6814 15.9406 16.4929 16.9299 40.9486 42.3868 43.4893
0.5 11.0735 11.6728 12.1782 13.7466 14.4846 15.0840 35.2136 37.1375 38.6240
1 8.4989 9.2558 9.9523 10.5994 11.5322 12.3430 26.9718 29.4078 31.3557
5 5.0713 5.7319 6.6304 6.4098 7.2301 8.2329 15.9694 18.1118 20.3456

0.5

0.3 13.0904 13.5174 13.8648 16.2168 16.7416 17.1576 41.6511 43.0217 44.0761
0.5 11.3793 11.9514 12.4341 14.1303 14.8327 15.4046 36.1753 38.0147 39.4437
1 8.9133 9.6401 10.3094 11.1301 12.0208 12.7983 28.2663 30.6107 32.5021
5 5.5913 6.2376 7.1151 7.1088 7.9015 8.8761 17.6004 19.6948 21.9187

1

0.3 13.4812 13.8700 14.1865 16.7093 17.1848 17.5628 42.9670 44.2099 45.1723
0.5 11.9193 12.4424 12.8844 14.8165 15.4544 15.9762 37.9840 39.6620 40.9785
1 9.6520 10.3229 10.9415 12.0845 12.8978 13.6123 30.7259 32.8876 34.6605
5 6.5428 7.1559 7.9879 8.3893 9.1247 10.0379 20.7861 22.7637 24.9336

5

0.3 14.3394 14.6399 14.8860 17.7823 18.1476 18.4402 46.0475 46.9686 47.6966
0.5 13.1351 13.5379 13.8814 16.3321 16.8210 17.2259 42.3734 43.6077 44.6087
1 11.3982 11.9104 12.3910 14.2492 14.8687 15.4258 37.0807 38.6494 40.0131
5 9.0562 9.5120 10.1572 11.4655 12.0173 12.7373 29.9665 31.3685 33.1068

2

0

2.5

0
1

3

1

3.5

2

n
z

2

n
x

4

3 3

4.5

4 4
5 5

4

0

6

01

8

1

10

P
* c
r

2

n
z

12

2

n
x

3

14

3
4 4

5 5

Fig. 6. Variation of frequency and buckling load parameters with power-law indexes
of (2-1-2) BFGSW plates

The influence of the material distribution on the vibration and buckling behaviour of
the BFGSW beam can also be seen clearly from Fig. 6, where the variation of the frequency
and buckling load parameters with the power-law indexes is depicted for a rectangular
symmetric (2-1-2) plate with a/h = 10. As can be seen from the figure, the influence
of the transverse index nz on the frequency and buckling load is more significant than
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that of the axial index nx. In addition, the influence of the index nx on the vibration and
buckling of the beam is more pronounced for 0 ≤ nz ≤ 2.

Finally, the effect of the side-to-thickness ratio a/h on the fundamental frequency and
buckling load of the BFGSW plate is studied. To this end, Fig. 7 shows the dependence
of the frequency and buckling parameters on the side-to-thickness ratio of a symmetric
(2-1-2) rectangular plate with different boundary conditions and power-law indexes. The
frequency and buckling load parameters steadily increase by increasing the aspect ratio,
and the increase is the most significant for a/h smaller 20, regardless of the boundary
conditions and the power-law indexes.

0 50 100 150

a/h

2

3

4

5

6

7

8

SSSS, n
x
=n

z
=0.5

SCSC, n
x
=n

z
=0.5

CCCC, n
x
=n

z
=0.5

SSSS, n
x
=n

z
=5

SCSC, n
x
=n

z
=5

CCCC, n
x
=n

z
=5

0 50 100 150

a/h

5

10

15

20

25

30

35

40

P
* c
r

SSSS, n
x
=n

z
=0.5

SCSC, n
x
=n

z
=0.5

CCCC, n
x
=n

z
=0.5

SSSS, n
x
=n

z
=5

SCSC, n
x
=n

z
=5

CCCC, n
x
=n

z
=5

Fig. 7. Dependence of frequency and buckling load parameters on side-to-thickness ratio
of (2-1-2) BFGSW plate

6. CONCLUSIONS

A Q9 element has been formulated and used in computing natural frequencies and
buckling loads of BFGSW rectangular plates. The core of the sandwich plates is pure ce-
ramic, while the face layers are of three-phase BFGM. The efficiency of the element has
been improved by using the linked interpolations. The numerical investigation shows
that the linked Q9 is accurate and its convergence element is faster compared to the con-
ventional Q9 element. Using the derived element, fundamental frequencies and buckling
loads of BFGSW rectangular plates have been computed, and the effects of the material
distribution and plate geometry have been studied in detail and highlighted.
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