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Abstract. This paper addresses the problem of repairing multiple cracked beams sub-
jected to static load using piezoelectric patches. First, the problem is formulated and
solved analytically for the case of two cracks that results in ratio of restoring moments
produced by employed piezoelectric patches. Since the ratio is dependent only on crack
positions but not their depth, the result obtained for case of two cracks has been extended
for the case of multiple cracks. This proposition is then validated by finite element sim-
ulation where repairing piezoelectric patches are replaced by mechanical moment load
equivalent to the restoring bending moments produced by the piezoelectric patches. The
excellent agreement between analytical solution and numerical simulation results in case
of single and double cracks allows making a conclusion that a piezoelectric patch could
productively repair a cracked beam by producing a restoring moment due to its piezoelec-
tricity. Thus, the problem of repairing multiple cracked beam using piezoelectric patches
is solved.
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1. INTRODUCTION

Damages or cracks appearing in a structure will inevitably reduce its serviceability
and might lead to serious accidence if the deteriorations would not be early detected
and repaired. Therefore, there are a lot of studies devoted to developing efficient tech-
niques for structural damage detection and major results obtained in the last decade
were reviewed in [1]. Recently, smart material such as piezoelectric one has found wide-
spread application in structural health monitoring and repair [2]. Wang and his cowork-
ers [3–10] have solved numerous problems of repairing cracked structures using piezo-
electric patches. The advantage of the piezoelectric material in repairing cracked struc-
tures consists of that effectiveness of the repair can be controlled when the output voltage
of the piezoelectric patch used as a sensor is applied to the repaired structure through a
collocated piezoelectric actuator. As a result, the repaired structure gets from the actu-
ator an action of a local bending moment that could restore the slope increased due to
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the crack. Obviously, the applied bending moment is dependent on external load ap-
plied to the structure, crack parameters and on the design parameters of the piezoelectric
patch. All the mentioned above parameters can be chosen to disregard the slope discon-
tinuity caused by the crack that is acknowledged as the principle for repairing cracked
structures. Some other problems were studied in Ref. [11, 12], however, there are absent
studies on the repair of multiple cracked structures.

Thus, the present study addresses the problem of repairing multiple cracked beams
subjected to static load by using piezoelectric patches as shown in Fig. 1. First, the prob-
lem of repairing beams with two and three cracks is analytically solved to establish re-
lationship between coefficients of the so-called restoring moments defined for repairing
the cracks. After finding that ratio of the restoring moment coefficients is dependent only
on crack positions, the restoring moment for every crack can be determined from the first
one. This hypothesis is further approved numerically by using the finite element method
that proposes to replace the repairing patches by applying mechanical bending moments
equal to the restoring moments so that an equivalent repair is achieved.

2. THEORETICAL DEVELOPMENT

Let’s consider a cantilever beam of length L (m), elastic modulus E (N/m2), mass
density ρ (kg/m3), cross section area D× H, subjected to a static load F at free end of the
beam, i.e. at the position L. Suppose furthermore that the beam is cracked at positions
L1, L2, L3, . . . and the cracks are repaired by bonding piezoelectric patches of thickness
δ1, δ2, δ3, . . . and length p1 + p2, p3 + p4, p5 + p6, . . . respectively to the beam at the crack
positions as shown in Fig. 1.

Fig. 1. Model of multiple cracked beam repaired by piezoelectric patches. 

2.1. Crack modelling 

The open edged cracks are represented by the well-known equivalent spring model with the spring 

stiffness defined and calculated as [13-14] 
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2.2. Effect of piezoelectric patches on beam 

Assuming that deflection curve of the beam under the load F is y(x) and considering the piezoelectric 

patch as sensor, electric charge induced in the patch is calculated as [15]   

31

0
2

,
pL

H
Q e D y dx

+
= −

 
 
 

             (2) 

where 31e  is piezoelectric constant and 𝛿, 𝐿𝑝 are the patch thickness and length, respectively. Therefore,

output voltage of the sensor is given by 
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with Cv is electric capacitance of the sensor. 

In case if the piezoelectric patch is used as collocated sensor and actuator, the voltage applied to the 

patch is  
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where g is so-called gain factor and s = g/Cv. Under the voltage, axial stress induced along the piezoelectric 

patch can be expressed as 
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and, in consequence, bending moment applied to the beam will be 
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where G, defined as coefficient of restoring moment, is given by 
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2.3. Repair of beam with two cracks by piezoelectric patches 

Based on the theoretical development and the beam model given in Fig.1, equations for deflection in 

the beam segments divided by the patches and cracks can be written as 
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Fig. 1. Model of multiple cracked beam repaired by piezoelectric patches

2.1. Crack modelling
The open edged cracks are represented by the well-known equivalent spring model

with the spring stiffness defined and calculated as [13, 14]

Kr =
EI
LΘ

, Θ =
5.346H

L
f (z), (1)

where I is the moment of inertia and

f (z) = 1.8624z2 − 3.95z3 + 16.375z4 − 37.226z5 + 78.81z6 − 126.9z7 + 172z8 − 143.97z9 + 66.56z10.
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2.2. Effect of piezoelectric patches on beam
Assuming that deflection curve of the beam under the load F is y(x) and considering

the piezoelectric patch as sensor, electric charge induced in the patch is calculated as [15]

Q = −e31
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)
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where e31 is piezoelectric constant and δ, Lp are the patch thickness and length, respec-
tively. Therefore, output voltage of the sensor is given by
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with Cv is electric capacitance of the sensor.
In case if the piezoelectric patch is used as collocated sensor and actuator, the voltage

applied to the patch is
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where g is so-called gain factor and s = g/Cv. Under the voltage, axial stress induced
along the piezoelectric patch can be expressed as
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and, in consequence, bending moment applied to the beam will be
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where G, defined as coefficient of restoring moment, is given by
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2.3. Repair of beam with two cracks by piezoelectric patches
Based on the theoretical development and the beam model given in Fig. 1, equations

for deflection in the beam segments divided by the patches and cracks can be written as
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y′′4 =
F
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Solving the differential equations (8) gives
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The constants bi(i = 1, 2, 3, . . . , 14) would be determined from conditions at crack
sections, ends of piezoelectric patches and at the beam boundaries. Namely, the condi-
tions are

y1(L1 − p1) = y2(L1 − p1), y′1(L1 − p1) = y′2(L1 − p1), y3(L1 + p2) = y4(L1 + p2),

y′3(L1 + p2) = y′4(L1 + p2), y4(L2 − p3) = y5(L2 − p3), y′4(L2 − p3) = y′5(L2 − p3),

y6(L2 + p4) = y7(L2 + p4), y′6(L2 + p4) = y′7(L2 + p4),

y2(L1) = y3(L1), y′3(L1)− y′2(L1) = Θ1y′′3 (L1), y5(L2) = y6(L2),

y′6(L2)− y′5(L2) = Θ2y′′6 (L2), y1(0) = 0, y′1(0) = 0.
(10)

Substituting solutions (9) into conditions (10) leads to system of equations

[A]{b} = {C}, (11)

where matrix A is given in Appendix A, vectors {b} = {b3, b4, b5, b6, b7, b8, b9, b10, b11, b12,

b13, b14}T, b1 =
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2EI
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The cracked beam would be considered repaired if its slope at the cracks is continu-
ous, i.e.

y′3(L1)− y′2(L1) = Θ1y′′3 (L1) = 0, y′6(L2)− y′5(L2) = Θ2y′′6 (L2) = 0. (12)

The latter conditions yield b9− b7 = 0 and b13− b11 = 0 that in consequence allow one to
calculate restoring moment coefficients as

G1 = −2EI (L− L1)(
p2
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2
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(p2 − p1) (p2 − p1)
6= EI

p1 + p2 + Θ1
,

G2 = −2EI (L− L2)(
p2

3 − p2
4

) =
2EI (L− L2)

(p4 − p3) (p4 + p3)
6= EI

p3 + p4 + Θ2
,

(13)

or

G2/G1 =
(p2 + p1) (p2 − p1) (L− L2)

(p4 + p3) (p4 − p3) (L− L1)
. (14)

So that restoring moments and voltages of the piezoelectric patches are calculated as

M1 = −F (L− L1) , M2 = −F (L− L2) , V1 = − 2F (L− L1)

e31 (H + δ1)
, V2 = − 2F (L− L2)

e31 (H + δ2)
.

(15)
It can be seen from Eq. (15) that M2/M1 = (L− L2) / (L− L1) and in case if the

piezoelectric patches have the same design, we obtain also

G2/G1 = (L− L2) / (L− L1) , V2/V1 = (L− L2) / (L− L1) . (16)
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Since the ratios obtained above are dependent only on crack positions but not crack
depths, it can be proposed that for any subsequent crack at position Ln one obtains

Gk = G1
(L− Ln)

(L− L1)
, k = 2, 3, . . . , n (17)

and voltages and restoring moments can be calculated as

V1 = − 2F (L− L1)

e31 (H + δ1)
, V2 = − 2F (L− L2)

e31 (H + δ2)
, . . . , Vn = − 2F (L− Ln)

e31 (H + δn)
,

M1 = −F (L− L1) , M2 = −F (L− L2) , . . . , Mn = −F (L− Ln) .
(18)

This fact will be approved by using finite element simulation performed in subsequent
section.

2.4. Repairing cracked beam by applying restoring moments – the finite element sim-
ulation
This subsection is devoted to study static response of the cracked beam subjected

to static force F and bending moments (18) by the well-known finite element method
(FEM) [16–18]. The aim of this study is to verify the fact that multiple cracked beam could
be repaired by applying bending moments (18) instead of using piezoelectric patches. So,
the finite element model of cracked beam can be established as following: the beam is
divided to Ne elements of the same length Le and stiffness matrix [19]

Ke
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The nodal load vector for an element is calculated as [19]

Pe =
∫
Le

NTq(x)dx +
nQ

∑
i=1

NT(xQi)Qi +
nM

∑
i=1

d
dx

NT(xMi)Mi, (20)
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where q(x) is distributed load density; Qi is concentrated load at position xQi , Mi is con-
centrated moment at section xMi , nQ and nM are the numbers of concentrated loads and
moments. Shape function vector

NT (x) =
{

1− 3
x2

L2
e
+ 2

x3

L3
e

, x− 2
x2
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+

x3
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e

, 3
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e
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.

Assembling element load vectors and stiffness matrices one obtains equation

[K]{q} = {P}, (21)

that can be solved using the CAFEM toolbox [19] and results in nodal displacement vec-
tor {q} including both deflection and slope at the nodes.

3. NUMERICAL RESULTS AND DISCUSSION

Let’s consider cantilevered beam with E = 210 GPa, L = 1.0 m, rectangular cross
section of high H = 0.05 m and wide D = 0.1 m. Concentrated load F = 100 N applied
to free end of the beam L = 1.0 m and piezoelectric patches, made of PZT-4 with e31 =
−9.29, have thickness δ = 0.15H and p1 = 0.0249 mm, p2 = 0.025 mm [4]. Deflection
and slope diagrams in case of single, two, three and four cracks obtained by both the
analytical solution and FEM are depicted in Figs. 2–5. In Fig. 6 there is given dependence
of voltage needed to repair single crack on crack position along the beam length.

uncracked , cracked beam without patch, cracked beam with patch, 

cracked beam with restoring moments (FEM with 20 elements) 

Fig. 3. Deflection (a) and slope (b) of beam with two cracks of L1 = 0.175m, L2 = 0.375m, 1=2=0.05. 

uncracked , cracked beam without patch, cracked beam with patch, 

cracked beam with restoring moments (FEM with 20 elements). 

Fig. 4. Deflection (a) and slope (b) of beam with three cracks at positions L1 = 0.175m, L2=0.375m, 

L3=0.575m and 1=2=3=0.05. 

uncracked , cracked beam without patch, cracked beam with patch, 

cracked beam with restoring moments (FEM with 20 elements). 

Fig. 2. Deflection (a) and slope (b) of beam with single crack of L1 = 0.175m, Θ = 0.05

Observing the graphics given in Figs. 2–5 allows one to make following remarks: (1)
both deflection and slope curves calculated for beam with piezoelectric patches (dot lines)
and those computed (by FEM) for beam subjected to restoring moments (dash-pot lines)
are overlapped. This implies equivalence of piezoelectric repair and action of mechanical
moments; (2) deflection of beam repaired by piezoelectric patches is really decreased in
comparison with not repaired beam and even with uncracked beam that demonstrates
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Fig. 2. Deflection (a) and slope (b) of beam with single crack of L1= 0.175m,  = 0.05.

uncracked , cracked beam without patch, cracked beam with patch, 

cracked beam with restoring moments (FEM with 20 elements). 

 uncracked ,  cracked beam without patch,  cracked beam with patch, 

cracked beam with restoring moments (FEM with 20 elements) 

Fig. 4. Deflection (a) and slope (b) of beam with three cracks at positions L1 = 0.175m, L2=0.375m, 

L3=0.575m and 1=2=3=0.05. 

uncracked , cracked beam without patch, cracked beam with patch, 

cracked beam with restoring moments (FEM with 20 elements). 

Fig. 3. Deflection (a) and slope (b) of beam with two cracks
of L1 = 0.175 m, L2 = 0.375 m, Θ1 = Θ2 = 0.05

Fig. 2. Deflection (a) and slope (b) of beam with single crack of L1= 0.175m,  = 0.05.

uncracked , cracked beam without patch, cracked beam with patch, 

cracked beam with restoring moments (FEM with 20 elements). 

Fig. 3. Deflection (a) and slope (b) of beam with two cracks of L1 = 0.175m, L2 = 0.375m, 1=2=0.05. 

uncracked , cracked beam without patch, cracked beam with patch, 

cracked beam with restoring moments (FEM with 20 elements). 

, 
uncracked , cracked beam without patch, cracked beam with patch, 

cracked beam with restoring moments (FEM with 20 elements) 

Fig. 4. Deflection (a) and slope (b) of beam with three cracks at positions
L1 = 0.175 m, L2 = 0.375 m, L3 = 0.575 m and Θ1 = Θ2 = Θ3 = 0.05.

productiveness of the repair; (3) the slope diagrams show clearly that discontinuity of
slope at cracked section has disappeared after repairing and the aim of the repair is thus
achieved. Moreover, Fig. 6 shows that voltage needed for repairing crack decreases as
the crack moves to free end of beam.
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uncracked , cracked beam without patch, 

cracked beam with restoring moments (FEM with 20 elements) 

Fig. 5. Deflection (a) and slope (b) of beam with four cracks at positions
L1 = 0.175 m, L2 = 0.375 m, L3 = 0.575 m, L4 = 0.775 m and Θ1 = Θ2 = Θ3 = Θ4 = 0.05

 

Fig. 5. Deflection (a) and slope (b) of beam with four cracks at positions L1=0.175m, L2 = 0.375m, 

L3=0.575m, L4=0.775m and 1=2=3= 4=0.05. 

  uncracked ,  cracked beam without patch,  cracked beam with patch, 

cracked beam with restoring moments (FEM with 20 elements). 

 

Fig. 6. Restoring voltage in dependence on the crack position 

(L=1.0m, H=0.05m, e31=-9.29,  = 0.15H, F = 100N). 

Observing the graphics given in Figs. 2-5 allows one to make following remarks: (1) both deflection 

and slope curves calculated for beam with piezoelectric patches (dot lines) and those computed (by FEM) 

for beam subjected to restoring moments (dash-pot lines) are overlapped. This implies equivalence of 

piezoelectric repair and action of mechanical moments; (2) deflection of beam repaired by piezoelectric 

patches is really decreased in comparison with not repaired beam and even with uncracked beam that 

demonstrates productiveness of the repair; (3) the slope diagrams show clearly that discontinuity of slope 

at cracked section has disappeared after repairing and the aim of the repair is thus achieved. Moreover, Fig. 

6 shows that voltage needed for repairing crack decreases as the crack moves to free end of beam. 

4. Conclusion 

The obtained in this study results demonstrated that beam with arbitrary number of open transverse 

cracks under static concentrated load can be productively repaired by using piezoelectric patches bonded 

to the beam segments surrounding cracks. Moreover, it was approved in the study that repair of multiple 

cracked beam by piezoelectric patches is equivalent to applying mechanical bending moments equal to so-

called restoring moments calculated from the piezoelectric patches. In the context, the equivalent finite 

element method-based technique was proposed for static repair of multiple cracked beam. 
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Fig. 6. Restoring voltage in dependence on the crack position
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4. CONCLUSION

The obtained in this study results demonstrated that beam with arbitrary number
of open transverse cracks under static concentrated load can be productively repaired
by using piezoelectric patches bonded to the beam segments surrounding cracks. More-
over, it was approved in the study that repair of multiple cracked beam by piezoelectric
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patches is equivalent to applying mechanical bending moments equal to so-called restor-
ing moments calculated from the piezoelectric patches. In the context, the equivalent fi-
nite element method-based technique was proposed for static repair of multiple cracked
beam.
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