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Abstract. Zhang and Shimizu (1998) proposed a numerical algorithm based on Newmark
method to calculate the dynamic response of mechanical systems involving fractional
derivatives. On the basis of Runge–Kutta–Nyström method and Newmark method, the
present study proposes two new numerical algorithms, namely, the improved Newmark
algorithm using the second order derivative and the improved Runge–Kutta–Nyström al-
gorithm using the second order derivative to solve the fractional differential equations
of vibration systems. The accuracy of new algorithms is investigated in detail by nu-
merical simulation. The simulation result demonstrated that the Runge–Kutta–Nyström
algorithm using the second order derivative for the vibration analysis of systems involv-
ing fractional derivatives is more effective than the Newmark algorithm of Zhang and
Shimizu.

Keywords: vibration, fractional differential equation, numerical algorithm, dynamical sys-
tems.

1. INTRODUCTION

A differential equation is called the fractional differential equation if it includes at
least one fractional-order derivative in the expression. Ordinary differential equations
involving fractional differential operators of Riemann–Liouville’s type or of Caputor’s
type are known to have many potential applications in mathematical modeling, in areas
like mechanics, and the life sciences [1–9].

Among the approximate methods for finding a solution of nonlinear fractional dif-
ferential equations, the decomposition method and the numerical method are often used.
The decomposition method is a nonnumerical method for solving nonlinear differential
equations [10–15]. The method was developed by George Adomian in 1984. Essentially,
it approximates the solution of a non-linear differential equation with a series of func-
tions. This method is getting into use for the solution of fractional differential equations.
By using the decomposition method, one needs to express nonlinear terms in the form
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of power series. That is a difficult problem for many nonlinear fractional differential
equations.

The use of numerical algorithms for the solution of differential equations involving
fractional derivatives has been discussed in several works [16–28]. Yuan and Agrawal
[22] have rewritten the definition of a fractional derivative and turned a fractional dif-
ferential equation into a system of linear differential equations. However, Schmidt and
Gaul [23] have shown that in some cases, this method loses the advantages of fractional
calculus over integer-order calculus.

Zhang and Shimizu [28] presented the numerical method for dynamic problems in-
volving fractional operators. Using the idea of Zhang and Shimizu, a new algorithm is
developed by incorporating one-step schemes of well-known Newmark types [29] into
its formula. Further, based on Riemann–Liouville’s definition of fractional derivatives
and the well-known Runge–Kutta–Nyström numerical method for calculating the solu-
tion of differential equations [30], we present a new algorithm for calculating nonlinear
fractional differential equations. It is shown that the proposed algorithm is very efficient
in many cases.

This study is organized into four sections. In Section 2, we present three numerical al-
gorithms for solving fractional differential equations, including a well-known algorithm
and two new algorithms. In Section 3, the effectiveness of the numerical algorithms is
studied in detail. Section 4 includes some concluding remarks of the study.

2. SOME NUMERICAL ALGORITHMS FOR CALCULATING RESPONSES OF
MECHANICAL SYSTEMS INVOLVING FRACTIONAL DERIVATIVES

2.1. Preliminaries
Fractional integrals and derivatives are deduced from the generalization of the integer-

order operations. It is usual to define the integral operator D−q as

aD−q
t x(t) =

1
Γ(q)

t∫
a

(t− τ)q−1x(τ)dτ, (1)

where q > 0 and Γ(x) is the Gamma function

Γ(x) =
∞∫

0

e−zzx−1dz. (2)

For a continuous x(t),

D−pD−qx(t) = D−(p+q)x(t), (3)

as given in [3] (if both p and q are non-negative).
With the fractional integral operator, fractional derivatives are easily introduced. For

a real α > 0, Dα is defined by the Riemann–Liouville definition [3], using the above



On two improved numerical algorithms for vibration analysis of systems involving fractional derivatives 173

fractional integral operator

aDα
t x(t) =

dn

dtn

(
d−(n−α)x(t)

dt−(n−α)

)
=

1
Γ(n− α)

dn

dtn

t∫
a

(t− τ)n−α−1x(τ)dτ. (4)

Another choice is the Caputo definition

C
a Dα

t x(t) =
1

Γ(n− q)

x∫
a

(t− τ)n−α−1
[

dn

dτn x(τ)
]

dτ. (5)

In both cases (n− 1) < α < n.
Actually, the two definitions only differ in the consideration of conditions at the start

of the interval

aDα
t x(t) =C

a Dα
t x(t) +

1
Γ(n− α)

n−1

∑
k=0

Γ(n− α)

Γ(k− α + 1)
(t− a)k−αx(k)(a). (6)

The differential equation to be solved is the vibration equation with fractional damp-
ing, with one degree of freedom

mẍ(t) + bẋ(t) + µc(x)Dαx(t) + g(x) = f (t), 0 < α < 1, (7)

with the initial conditions
x(0) = x0, ẋ(0) = ẋ0. (8)

The existence and uniqueness of the solutions of Eq. (7) are presented in [4]. Note
that this study focuses on developing numerical algorithms for solving this equation.

In the applications, D practically always means 0Dt, and most authors use the
Riemann–Liouville, or the mathematically equivalent Gruenwald–Letnikov definition
(see [3] for precise conditions of equivalence). Also, since the Riemann–Liouville def-
inition has a singularity for non-zero initial conditions, the initial conditions are often
considered zero. For a physical interpretation of this singularity, see [5–7].

Using the step-size
h = ∆t = ti − ti−1, (9)

we have
tn = t0 + nh = t0 + n∆t, n = 1, 2, 3, . . . (10)

Using the notations x(ti) = xi, from Eq. (7) we have the following iterative compu-
tational scheme at the time tn as follows

mẍn + bẋn + µc(xn)Dqxn + kxn = f (tn), n = 1, 2, 3, . . . (11)

2.2. The Newmark-based algorithm proposed by Zhang and Shimizu: A review
Based on the single-step integration method by Newmark [29], Zhang and Shimizu

(1998) have obtained the following approximation formulas [28]

ẍn =
1

β∆t2 (xn − xn−1)−
1

β∆t
ẋn−1 −

(
1

2β
− 1
)

ẍn−1 = ψ2 (β, ẋn−1, ẍn−1, xn−1, xn) , (12)
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ẋn = ẋn−1 + (1− α)∆tẍn−1 + α∆tẍn =

(
1− α

β

)
ẋn−1 +

(
1− α

2β

)
∆tẍn−1

+
α

β∆t
(xn − xn−1) = ψ1 (α, β, ẋn−1, ẍn−1, xn−1, xn) .

(13)

Constants α, β are parameters associated with the quadrature scheme [28, 29]. The
numerical algorithm to calculate the fractional derivative at t = tn of Eq. (4) is

Dqx (tn) =
x(t0)

Γ(1− q)
t−q
n +

1
Γ(1− q)

 tn−1∫
0

ẋ(τ)dτ

(tn − τ)q +

tn∫
tn−1

ẋ(τ)dτ

(tn − τ)q


=

1
Γ(1− q)

(I0 + In−1 + ∆In) ,

(14)

where we denote

In−1 =

tn−1∫
0

ẋ(τ)dτ

(tn − τ)q ≈
h
2

[
ẋ0

tq
n
+

ẋn−1

hq + 2
n−2

∑
i=1

ẋ(ih)
(tn − ih)q

]
, (15)

∆In =

tn∫
tn−1

ẋ(τ)dτ

(tn − τ)q =
∆t1−q

1− q
ẋn−1 + (1− α)

∆t2−q

(1− q)(2− q)
ẍn−1 + α

∆t2−q

(1− q)(2− q)
ẍn.

(16)

By substituting ẍn in Eq. (12) into Eq. (16) we obtain

∆In =

tn∫
tn−1

ẋ(τ)dτ

(tn − τ)q

=
∆t1−q

(1− q)(2− q)

[
α

β∆t
(xn − xn−1) +

(
2− q− α

β

)
ẋn−1 +

(
1− α

2β

)
∆tẍn−1

]
.

(17)

Then, from Eq. (14) we have

Dqx (tn) =
1

Γ(1− p)
(I0 + In−1 + ∆In) = ψq (α, β, ẋ0, ẋ1, ẋ2, . . . , ẋn−1, ẍn−1, xn−1, xn) .

(18)
From Eqs. (12), (13) and (18) we can rewrite Eq. (11) in the following form

mψ2 (β, ẋn−1, ẍn−1, xn−1, xn) + bψ1 (α, β, ẋn−1, ẍn−1, xn−1, xn)

+ µc(xn)ψq (α, β, ẋ0, ẋ1, ẋ2, . . . , ẋn−1, ẍn−1, xn−1, xn) + kxn = f (tn).
(19)

Eq. (19) is a nonlinear algebraic equation to find unknown xn. We can then calculate
ẋn, ẍn according to the following formulas

ẋn = ẋn−1 + (1− α)∆tẍn−1 + α∆tẍn,

ẍn =
1

β∆t2 (xn − xn−1)−
1

β∆t
ẋn−1 −

(
1

2β
− 1
)

ẍn−1.
(20)
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2.3. The improved Runge–Kutta–Nyström (RKN) algorithm
From the definition of the Liouville–Riemann’s fractional derivative, Eq. (4), we can

apply the composition rule to Dqx(t) [1–3], that is

Dqx (tn) =
1

Γ (1− q)
d
dt

tn∫
t0

x (τ)
(tn − τ)q dτ =

x (t0)

Γ (1− q)
t−q
n +

1
Γ (1− q)

tn∫
0

ẋ (τ)
(tn − τ)q dτ

=
x(t0)

Γ(1− q)
t−q
n +

1
Γ(2− q)

− ẋ (τ) (tn − τ)1−q
∣∣∣ tn

0
+

tn∫
0

ẍ (τ) (tn − τ)1−qdτ


=

x(t0)

Γ(1− q)
t−q
n +

1
Γ(2− q)

ẋ(t0)t
1−q
n +

tn∫
0

ẍ(τ)(tn − τ)1−qdτ


=

1
Γ(1− q)

I0 +
1

Γ(2− q)
(J0 + J(tn)) ,

(21)
where we denote

J0 = ẋ(t0)t
1−q
n , J(tn) =

tn∫
0

ẍ(τ)(tn − τ)1−qdτ =

tn∫
0

ytn(τ)dτ. (22)

We approximate the integrals according to Eq. (22) for every instance tn by trapezoid
numerical integration with an accuracy of O(t3) as follows

J(t0) = 0,

J (tn) ≈
n−1

∑
j=0

h
2
[
ytn(τj) + ytn(τj+1)

]
=

n−2

∑
j=0

h
2
[
ytn(τj) + ytn(τj+1)

]
+

h
2

ytn(tn−1), (n ≥ 1),

J
(

tn +
h
2

)
≈

n−1

∑
j=0

h
2
[
ytn+h/2(τj) + ytn+h/2(τj+1)

]
+

h
4

ytn+h/2(tn), (n ≥ 0),

(23)
Thus, the formulas for determining the level fractional derivatives at tn, tn+h�2

and tn+h
have the following forms

Dqx (tn) = ψ1 (x0, ẋ0, ẍ0, ẍ1, ẍ2, . . . , ẍn−1) ,

Dqx (tn + h/2) = ψ2 (x0, ẋ0, ẍ0, ẍ1, ẍ2, . . . , ẍn−1) ,

Dqx (tn + h) = Dqx (tn+1) = ψ3 (x0, ẋ0, ẍ0, ẍ1, ẍ2, . . . , ẍn) .
(24)

From the approximation formula determining Dqx (tn) at step t = tn, Eq. (7) can be
rewritten in the following form

mẍn + bẋn + µc(xn)ψ1 (x0, ẋ0, ẍ0, ẍ1, ẍ2, . . . , ẍn−1) + kxn = f (tn),

ẍn =
1
m

( f (tn)− bẋn − µc(xn)ψ1 (x0, ẋ0, ẍ0, ẍ1, ẍ2, . . . , ẍn−1)− kxn) = g(tn, xn, ẋn),
(25)
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It should be noted that when implementing expansion (21) we have used the assumption

on convergence of integral I =
t∫

0

ẋ (τ)
(t− τ)q dτ if 0 < q < 1. Indeed, since the function ẋ(t)

is continuous on each finite time interval, so we have

|ẋ(τ)| ≤ M⇒ I =
t∫

0

ẋ(τ)
(t− τ)q dτ ≤ M

t∫
0

dτ

(t− τ)q . (26)

From the above inequality we deduce that the integral I =

t∫
0

ẋ (τ)
(t− τ)q dτ converges if

0 < q < 1. Then we can develop

I =
tn∫

0

ẋ (τ)
(tn − τ)q dτ =

1
1− q

− ẋ (τ) (tn − τ)1−q
∣∣∣ tn

0
+

tn∫
0

ẍ (τ) (tn − τ)1−qdτ


=

1
1− q

ẋ(t0)t
1−q
n +

tn∫
0

ẍ(τ)(tn − τ)1−qdτ

 .

(27)

Applying the Runge–Kutta–Nyström algorithm with an accuracy of O(t4) to the differ-
ential equation (25), we have a straightforward schema [30] as below.

ẍn = g(tn, xn, ẋn), x (t0) = x0, ẋ (t0) = ẋ0, (28)

xn+1 = xn + hẋn +
h
3
(k1 + k2 + k3) ,

ẋn+1 = ẋn +
1
3
(k1 + 2k2 + 2k3 + k4) ,

ẍn+1 = g(tn + h, xn+1, ẋn+1).

(29)

where

k1 =
h
2

g (tn, xn, ẋn) ,

k2 =
h
2

g
(

tn +
h
2

, xn +
h
2

ẋn +
h
4

k1, ẋn + k1

)
,

k3 =
h
2

g
(

tn +
h
2

, xn +
h
2

ẋn +
h
4

k1, ẋn + k2

)
,

k4 =
h
2

g (tn + h, xn + hẋn + hk3, ẋn + 2k3) .

(30)

2.4. The improved Newmark algorithm
Using the second-order derivative by numerical integral we propose an algorithm

based on the well-known Newmark algorithm [28, 29] to find the solution of Eq. (7).
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Firstly, we have rewritten the Eqs. (12) and (13) as follows

ẍn =
1

β∆t2 (xn − xn−1)−
1

β∆t
ẋn−1 −

(
1

2β
− 1
)

ẍn−1 = ψ2 (β, ẋn−1, ẍn−1, xn−1, xn) , (31)

ẋn = ẋn−1 + (1− α)∆tẍn−1 + α∆tẍn

=

(
1− α

β

)
ẋn−1 +

(
1− α

2β

)
∆tẍn−1 +

α

β∆t
(xn − xn−1)

= ψ1 (α, β, ẋn−1, ẍn−1, xn−1, xn) .

(32)

The numerical algorithm to calculate the fractional derivative at t = tn of Eq. (7) is

Dqx (tn) =
x(t0)

Γ(1− q)
t−q
n +

1
(1− q)Γ(1− q)

ẋ(t0)t
1−q
n +

tn∫
0

ẍ(τ)(tn − τ)1−qdτ


=

1
Γ(1− q)

I0 +
1

(1− q)Γ(1− q)
(J0 + J(tn)) ,

(33)

where

J0 = ẋ(t0)t
1−q
n , J(tn) =

tn∫
0

ẍ(τ)(tn − τ)1−qdτ =

tn∫
0

ytn(τ)dτ. (34)

Similarly, we approximate the integrals in Eq. (34) for every instance tn by trapezoid
numerical integration as follows

J(t0) = 0,

J (tn) ≈
n−1

∑
j=0

h
2
[
ytn(τj) + ytn(τj+1)

]
=

n−2

∑
j=0

h
2
[
ytn(τj) + ytn(τj+1)

]
+

h
2

ytn(tn−1), (n ≥ 1)

⇒ Dqx (tn) = ψq (x0, ẋ0, ẍ0, ẍ1, ẍ2, . . . , ẍn−1) .
(35)

From Eqs. (31), (32) and (35), we can rewrite Eq. (7) in the following form

mψ2 (β, ẋn−1, ẍn−1, xn−1, xn) + bψ1 (α, β, ẋn−1, ẍn−1, xn−1, xn)

+µc(xn)ψq (ẋ0, ẋ1, ẋ2, . . . , ẋn−1, xn−1) + kxn = f (tn).
(36)

Eq. (36), a nonlinear algebraic equation of an unknown xn, can be solved by the Newton–
Raphson method of iteration. The variables ẋn, ẍn can then be determined by

ẋn = ẋn−1 + (1− α)∆tẍn−1 + α∆tẍn,

ẍn =
1

β∆t2 (xn − xn−1)−
1

β∆t
ẋn−1 −

(
1

2β
− 1
)

ẍn−1.
(37)

3. NUMERICAL RESULTS

To compare the accuracy of the numerical algorithms, these motion equations of a
one-degree-of-freedom oscillator would be considered to evaluate.



178 Nguyen Van Khang, Duong Van Lac, Pham Thanh Chung

Example 1: Consider the following system

ẍ (t) + 0.8D0.5x (t) + x3 = f (t) , (38)

where

f (t) = 2
(

t− 9
10

)(
t− 7

10

)
+ 4t

(
t− 7

10

)
+ 4t

(
t− 9

10

)
+ 2t2

+
8

10Γ (0.5)

(
128
35

√
t7 − 128

25

√
t5 +

42
25

√
t3

)
+

[
t2
(

t− 9
10

)(
t− 7

10

)]3

,
(39)

and the initial conditions are
x (0) = 0, ẋ (0) = 0. (40)

The exact solution of this equation is known as [11, 13, 25] (see Fig. 1).

xexact = t2
(

t− 9
10

)(
t− 7

10

)
. (41)

7 
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Fig. 1. Exact solution x of Eq. (38)

Three numerical algorithms considered in Section 2 are then applied to find the ap-
proximate solution of Eq. (38) to evaluate their accuracy. Table 1 and Table 2 show numer-
ical values of the solution to Eq. (38) by our algorithms, exact solution, and the solution
obtained by Ray et al. [13], and Atanackovic et al. [25]. Table 1 shows the five numerical
solutions in comparison with the exact solution and their relative errors in percentage. It
can be seen that the results of the improved Newmark and Newmark method in [28] are
quite similar. However, the improved Runge–Kutta–Nyström algorithm shows the finest
results with the highest accuracy over other algorithms.
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Table 1. The exact solution, numerical solutions, and error in percentage of Eq. (38)
(time step size ∆t = 0.001)

Time xexact xAtanackovic [25] xRay [13] xZhang–Shimizu [28] ximproved Newmark ximproved RKN

0.25 0.01828125
0.018253191
(0.153486%)

0.0182813
(0.000274%)

0.018507464
(1.237407%)

0.018508641
(1.243849%)

0.018281311
(0.000332%)

0.5 0.02
0.019851524
(0.742382%)

0.0200026
(0.013000%)

0.020643625
(3.218126%)

0.020647787
(3.238937%)

0.020000016
(0.000080%)

0.75 −0.00421875
−0.004492587
(6.490951%)

−0.00419593
(0.540919%)

−0.003348193
(20.635433%)

−0.003343554
(20.745378%)

−0.004218918
(0.003975%)

1 0.03
0.029380011
(2.066632%)

0.0300995
(0.331667%)

0.030526185
(1.753949%)

0.030530651
(1.768835%)

0.029999869
(0.000437%)

Noted: The parentheses (.) indicate the relative errors (i.e.,
|xmethod − xexact|

xexact
× 100%) of the numerical results, in which

the lowest error (highest accuracy) is underlined.

Example 2: To further evaluate these methods, let’s consider the below system [31]

ẍ (t) + 0.8D0.5x (t) + x(t)2 = f (t) , (42)

where

f (t) = 2
(

t− 3
10

)(
t− 8

10

)
+ 4t

(
t− 3

10

)
+ 4t

(
t− 8

10

)
+ 2t2

+
8

10
√

π

(
128
35

√
t7 − 88

25

√
t5 +

16
25

√
t3

)
+

[
t2
(

t− 3
10

)(
t− 8

10

)]2

,
(43)

and the initial conditions are
x (0) = 0, ẋ (0) = 0. (44)

9 
 

 
Fig. 2. Exact solution of Eq. (42) 

 
Table 2. The exact solution, numerical solutions, and error in percentage of Eq. (42) (time 
step size ∆t = 0.001). 

Time     

0.25 0.00171875 0.001858277 

(8.1179263%) 

0.001858493 

 (8.1305000%) 

0.001718750 

(0.0000077%) 

0.5 -0.015 -0.014694001 

 (2.0399913%) 

-0.014694632 

 (2.0357850%) 

-0.015000092 

(0.0006150%) 

0.75 -0.01265625 -0.012534713 

 (0.9602941%) 

-0.012537936 

 (0.9348281%) 

-0.012656366 

(0.0009155%) 

1 0.14 0.139197963 

 (0.5728838%) 

0.139202096 

(0.5699317%) 

0.140000451  

(0.0009155%) 

 
Similar to the results of example 1, table 2 shows the five numerical solutions in comparison 
with the exact solution and the relative error between them. The improved RKN also indicates 
robustness with the highest calculating accuracy.  Therefore,  the above comparison of the 
calculation accuracy leads to the following remark: the accuracy of the Runge-Kutta-Nyström 
algorithm using the second-order derivative is very good and better than the other 
aforementioned methods. 

4. CONCLUSIONS 
       Using the idea of Zhang and Shimizu [28], two new numerical algorithms for finding the 
solution of nonlinear fractional differential equations are introduced in this paper. Based on 
Liouville-Riemann definition of fractional derivatives, and using the well-known Newmark 
numerical integration method [29], the well-known Runge-Kutta-Nyström integration method 

exactx Zhang Shimizux - improved Newmarkx improved RKNx

Fig. 2. Exact solution x of Eq. (42)
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The exact solution of this equation as indicated in [31] is (see Fig. 2)

xexact = t2
(

t− 3
10

)(
t− 8

10

)
. (45)

Table 2. The exact solution, numerical solutions, and error in percentage of Eq. (42)
(time step size ∆t = 0.001)

Time xexact xZhang–Shimizu ximproved Newmark ximproved RKN

0.25 0.00171875 0.001858277
(8.1179263%)

0.001858493
(8.1305000%)

0.001718750
(0.0000077%)

0.5 −0.015 −0.014694001
(2.0399913%)

−0.014694632
(2.0357850%)

−0.015000092
(0.0006150%)

0.75 −0.01265625 −0.012534713
(0.9602941%)

−0.012537936
(0.9348281%)

−0.012656366
(0.0009155%)

1 0.14 0.139197963
(0.5728838%)

0.139202096
(0.5699317%)

0.140000451
(0.0009155%)

Similar to the results of Example 1, Table 2 shows the five numerical solutions in
comparison with the exact solution and the relative error between them. The improved
RKN also indicates robustness with the highest calculating accuracy. Therefore, the above
comparison of the calculation accuracy leads to the following remark: the accuracy of the
Runge–Kutta–Nyström algorithm using the second-order derivative is very good and
better than the other aforementioned methods.

4. CONCLUSIONS

Using the idea of Zhang and Shimizu [28], two new numerical algorithms for find-
ing the solution of nonlinear fractional differential equations are introduced in this pa-
per. Based on Liouville–Riemann definition of fractional derivatives, and using the well-
known Newmark numerical integration method [29], the well-known Runge–Kutta
–Nyström integration method [30] for differential equations, we proposed two new nu-
merical algorithms for solving the second-order systems containing fractional deriva-
tive components, namely, the improved Newmark algorithm and the improved Runge–
Kutta–Nyström algorithm.

Compared to the aforementioned algorithms, two new algorithms have advantages
in simplicity in the approximation of the fractional derivative components (see Eqs. (23)
and (35)) and calculating scheme (see Eqs. (28)–(30)). The accuracy of these methods
was verified by two examples in Section 3. It reveals that the improved Runge–Kutta–
Nyström is very accurate for the vibration analysis of systems involving fractional deriva-
tives. Noted that the improved RKN method could be easily extended for other systems
with higher degrees of freedom as indicated in [32], and Duffing and Vander Pol systems
as implemented in [33]. However, the problem of convergence and error in the calculat-
ing procedure is required for further investigation.
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