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Yuchen Li1, Noël Challamel1,∗, Isaac Elishakoff2
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Abstract. In this paper, we study the stochastic behavior of some lattice beams, called
Hencky bar-chain model and their non-local continuous beam approximations. Hencky
bar-chain model is a beam lattice composed of rigid segments, connected by some homo-
geneous rotational elastic links. In the present stochastic analysis, the stiffness of these
elastic links is treated as a continuous random variable, with given probability density
function. The fundamental eigenfrequency of the linear difference eigenvalue problem is
also a random variable in this context. The reliability is defined as the probability that
this fundamental frequency is less than an excitation frequency. This reliability function is
exactly calculated for the lattice beam in conjunction with various boundary conditions.
An exponential distribution is considered for the random stiffness of the elastic links. The
stochastic lattice model is then compared to a stochastic nonlocal beam model, based on
the continualization of the difference equation of the lattice model. The efficiency of the
nonlocal beam model to approximate the lattice beam model is shown in presence of rota-
tional elastic link randomness. We also compare such stochastic function with the one of
a continuous local Euler–Bernoulli beam, with a special emphasis on scale effect in pres-
ence of randomness. Scale effect is captured both in deterministic and non-deterministic
frameworks.

Keywords: vibration, lattice elasticity, discrete beams, multibody system dynamics, nonlo-
cal beams.

1. INTRODUCTION

At a microscopic scale, the discontinuous nature of matter may be predominant.
However, continuous approximations may be used as a simplification to model the main
mechanical phenomenon at a macroscopic level. Periodic structures (see [1, 2]) may be
used efficiently to represent discrete microstructures.

Hencky [3] proposed to simulate the behavior of an elastic structure by a finite
number of elastically connected rigid segments. The model may be referred to Hencky
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bar-chain model. A Hencky bar-chain model comprises rigid bar segments (of length
a = L/n where L is the total length of beam and n is the number of segments) con-
nected by elastic rotational springs of stiffness EI/a where EI is the equivalent flexural
rigidity of the beam. For this model, the elasticity and the mass of the beam are con-
centrated at the hinges with rotational springs, as shown in Fig. 1. Hencky bar-chain
model could be viewed as a possible discrete model of Euler–Bernoulli beam. Silver-
man [4] discussed the physical meaning of Henchy bar-chain model and pointed out the
mathematical equivalence between the difference equations of Hencky bar-chain model
and the Finite Difference Formulation of continuous Euler–Bernoulli beam model for the
buckling problem. This equivalence was also shown by Leckie and Lindberg [5] for the
vibration problems. Leckie and Lindberg [5] calculated eigenvalues of deterministic lat-
tice beams with different boundary conditions by modeling them by Hencky bar-chain
models and other discrete beam models. In their research, they found that the eigen-
frequencies of the Hencky bar-chain models depend on the number of segments and
converge to the corresponding solutions of the continuous Euler–Bernoulli beam when
the number of segments becomes large enough. El Nachie [6] studied the bending and
buckling behaviors of Hencky bar-chain models. Zhang et al. [7] discussed the adap-
tation of Hencky bar-chain to non-uniform beams. Livesley [8] proposed another type
of discrete model by supposing that the stiffness may concentrate at the hinges and the
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Figure 1: Simply supported Henchy bar-chain models without and with deformation 735 
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Fig. 1. Simply supported Henchy bar-chain models without and with deformation
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mass may distribute along the length of the beam. Leckie and Lindberg [5] also proposed
the discrete models with the combinations of concentrated/distributed mass and concen-
trated/distributed stiffness. In this paper, we will only deal with the Hencky bar-chain
model based on concentrated mass and stiffness.

The Finite Difference Method (FDM) is an efficient method to solve continuous prob-
lem (see [9,10]). Therefore, Leckie and Lindberg [5] solved a fourth order difference equa-
tion applied to the vibration in order to find the eigenfrequencies for lattice beams. Wang
et al. [11] discussed about the equivalence between the FDM and the Hencky bar-chain
model for several elastic boundary conditions. Exact solutions of vibration equation for
lattice beams by FDM in trigonometric and hyperbolic functions are found (see [12–15]).
Elishakoff and Santoro (2005) [12] studied the accuracy of FDM for bar elements in a
stochastic view. In their study, the stiffness on elastic springs is treated as a continuous
random variable, with a given probability density function. Santoro and Elishakoff [13]
made a similar study for uniform beam elements. Zhang et al. [15] got analytical so-
lutions of buckling and vibration problems for Hencky bar-chain models with different
boundary conditions.

Stochastic mechanics includes some randomness in a mechanical formulation (see
[16, 17]). Elishakoff and Soize [16] comprehensively elaborated stochastic models for
vibration problems, when there is a random excitation such as earthquake load. Gao
et al. [18–20] made the stochastic analysis of beam-type structures and showed the im-
portance of stochastic analysis. There are papers about the stochastic analysis on the
Euler–Bernoulli beams (see [21, 22]). Silva Junior et al. [22] made a stochastic analysis on
Euler–Bernoulli beams by using Askey–Wiener scheme and Galerkin method where the
Young modulus is considered as a random variable. Elishakoff and Santoro [12] along
with Santoro and Elishakoff [13] studied the performance of the FDM for solving the vi-
bration eigenvalue problems in which the Young modulus is also considered random.
They proved that the accuracy of FDM, which is equivalent to the Hencky bar-chain
model depends on the number of segments for a stochastic problem.

Nonlocal mechanics captures specific scale effects for repetitive structures which
could be used for analysis of micro-structures or large-scale structures such as civil en-
gineering structures. Eringen’s nonlocal model (see [23]) used a difference equation to
express the relationship between the stress and the strain. Wattis [24] showed how quasi-
continuum methods could be used to get approximate solutions of nonlinear differential
equations. Andrianov et al. [25] showed that the discrete problem might be analysed by
a continuous method based on Padé approximation. Some researchers focused on the
scale effects of nonlocal models and found the length scale parameters for lattice models
(see [15,26,27]). Duan et al. [26] calculated the length scale parameter from a microstruc-
tured Timoshenko element (Timoshenko lattice). Some researchers discuss the adaptation
of nonlocal model to different types of problems (see [14, 15, 28, 29]). Reddy [28] discuss
the nonlocal theories for bending, buckling and vibration problems for beam models of
different beam theories. Challamel et al. [29] and Zhang et al. [15] focused on identifying
nonlocal scale parameters for the lattice beams. They discussed the nonlocal scale param-
eters by comparing the eigenvalues of beams modeling by Eringen’s nonlocal model and
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Hencky bar-chain model with different boundary conditions for buckling and vibrations
problem.

Few works deal with stochastic nonlocal structural models. Potapov [30] analyzed
the dynamic stability of Euler–Bernoulli beam based on the nonlocal elasticity theory and
nonlocal damping under a stochastic excitation. Alotta et al. [31] introduced a numerical
approach to calculate the stochastic response of the nonlocal fractional Timoshenko beam
under Gaussian white noise.

In this paper we calculate the eigenvalues by solving in detail the finite difference
equations for lattice beams modeling by Hencky bar-chain. There are other approxi-
mations for lattice structure such as Myklestad Model [5] with distributed rigidity and
concentrated mass but that would be another research. We will study the lattice structure
by giving a solution of Hencky bar-chain model based on the finite difference method.
Then, the reliabilities of the lattice beams will be determined and compared with those of
Euler–Bernoulli beams in a stochastic view. Afterwards, we also calculate the eigenvalues
for nonlocal beam approximations as well as their reliabilities. Finally, the accuracies and
reliabilities of lattice beams and nonlocal beams will be compared. All these eigenvalues
and comparisons are based on scale effect.

2. HENCKY BAR-CHAIN MODEL

Hencky bar-chain model was originally proposed to replace the Euler continuum
beam model so that one can obtain solutions by solving a set of algebraic equations in-
stead of a differential equation. Fig. 2 shows part of a uniform beam modeling by Hencky
bar-chain model. The length of each segment is a. vi represents the deflection on the hinge
i. The rotation of each segment can be defined in terms of difference of deflection

θi−1/2 =
wi − wi−1

a
. (1)

The elastic constitutive law for each elastic connection is given by

Mi = C∗∆θi with C =
EI
a

. (2)

Then the discrete bending moment can be rewritten in terms of deflection

Mi = C∗
(

θi+ 1
2
− θi− 1

2

)
= C∗wi+1 − 2wi + wi−1

a
= EI

wi+1 − 2wi + wi−1

a2 . (3)
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Figure 2: Basic elements of a uniform Hencky bar-chain beam model with deformation 738 
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Figure 3: Eigen value R& of the first mode with an increase of Q for lattice beams 740 
of simply supported-simply supported/clamped-clamped/clamped-free/simply 741 

supported-clamped   742 
 743 

�

�

	

�

��

��

��

�	

��

��

��

��

� � 	 � �� �� �� �	 �� ��

R




R&,Ñ = 9.8696	°iñ	jm‚® „	j‰®®iñ}GÂ − jm‚® „	j‰®®iñ}GÂ	^GO‚

R&,Ñ = 22.3729	°iñ	h O‚®GÂ − h O‚®GÂ	^GO‚

R&,Ñ = 3.5156	°iñ	h O‚®GÂ − °ñGG	^GO‚

R&,Ñ = 3.5156	°iñ	h O‚®GÂ − jm‚® „	j‰®®iñ}GÂ		^GO‚

Fig. 2. Basic elements of a uniform Hencky bar-chain beam model with deformation
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The equilibrium equation for a Hencky bar-chain model is given by

Mi+1 − 2Mi + Mi−1

a2 + ρAẅi = 0. (4)

Eqs. (3) and (4) lead to a fourth order linear difference equation in space. Based on
the elastic constitutive law and the equilibrium equation, one gets a mixed differential-
difference equation

EI
wi+2 − 4wi+1 + 6wi − 4wi−1 + wi−2

a4 + ρAẅi = 0. (5)

Eq. (5) is proposed in [5] and used in [29].
For harmonic motion, the equation of vibration can be expressed as: wi = viejωt with

j2 = −1. The free vibration problem is then governed by a linear fourth-order difference
equation

EI
vi+2 − 4vi+1 + 6vi − 4vi−1 + vi−2

a4 − ρAω2vi = 0. (6)

Eq. (6) equivalently corresponds to the finite difference formulation of the vibration of a

continuous Euler–Bernoulli beam. With a = L/n and by setting Ω2 =
ρAω2L4

EI
, Eq. (6)

turns to be

vi+2 − 4vi+1 + 6vi − 4vi−1 + vi−2 −
Ω2

n4 vi = 0. (7)

By setting vi = Aλi, one gets

Aλi+2 − 4Aλi+1 + (6− Ω2

n4 )Aλi − 4Aλi−1 + Aλi−2 = 0, (8a)

(λ + λ−1)2 − 4(λ + λ−1) + (4− Ω2

n4 ) = 0. (8b)

By setting λ + λ−1 = x and 4− Ω2

n4 = b, Eq. (8b) turns into

x2 − 4x + b = 0, (9)

x = 2±
√

4− b. (10)

Retaking λ + λ−1 = x, one gets

λ + λ−1 = 2±
√

4− b, (11)

λ1,2 =
2 +
√

4− b±
√

4− b + 4
√

4− b
2

, (12a)

λ3,4 =
2−
√

4− b±
√

4− b− 4
√

4− b
2

. (12b)
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Bringing back 4− Ω2

n4 = b, Eqs. (12) turn to be

λ1,2 = 1 +
Ω

2n2 ±
√
(1 +

Ω
2n2 )

2 − 1, (13a)

λ3,4 = 1− Ω
2n2 ±

√
(1− Ω

2n2 )
2 − 1. (13b)

By setting

cosφ = 1− Ω
2n2 , (14a)

coshθ = 1 +
Ω

2n2 . (14b)

vi can be expressed as

vi = A1cos (iφ) + A2sin (iφ) + A3cosh (iθ) + A4sinh (iθ) . (15)

Eq. (15) has been formulated in [5] and practiced in [14, 15, 32].

2.1. For simply supported-simply supported beam
The boundary conditions of a simply supported-simply supported lattice beam are

v0 = 0
vn = 0
M0 = 0⇒ v−1 = −v1

Mn = 0⇒ vn−1 = −vn+1

(16)

Coupling Eq. (15) with Eq. (16) and setting the determinant of homogeneous coefficient
matrix to zero in order to make the expression of vi meaningful, one gets the following
determinant

1 0 1 0
cos (nφ) sin (nφ) cosh (nθ) sinh (nθ)

2cosφ 0 2coshθ 0
2cosφcos (nφ) 2cosφsin (nφ) 2coshθcosh (nθ) 2coshθsinh (nθ)

 = 0. (17)

Eq. (17) can be simplified and solved

4sin (nφ) sinh(nθ) (coshθ − cosφ)2 = 0, (18a)

sin (nφ) = 0 or sinh(nθ) = 0 or coshθ − cosφ = 0. (18b)
Therefore

nφ = kπ or nθ = 0 or coshθ = cosφ. (19)
With Eqs. (14a) above, only nφ = kπ leads to a non-trivial solution. Ω can be expressed as

cos
(

kπ

n

)
= 1− Ω

2n2 , (20a)

Ω = 4n2 sin2
(

kπ

2n

)
, (20b)
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which has been obtained as well by Leckie and Lindberg [5]. With Ω2 =
ρAω2L4

EI
, one

obtains the eigen circular frequency

ω =
4n2 sin2

(
kπ
2n

)
L2

√
EI
ρA

with k = 1, 2, 3 . . . (21)

One finds that the eigen circular frequency of each mode is a function of the number of
segments n. When n approaches infinity, Eq. (21) turns to be

ω =

(
kπ

L

)2
√

EI
ρA

with k = 1, 2, 3 . . . (22)

Eq. (22) coincides with the frequency of a continuous simply supported-simply sup-
ported Euler–Bernoulli beam given in [33].

As the first eigenfrequency is usually the most important for a structure, k is set to 1
which corresponds to the first mode. With the increase of n, the value of Ω1 of the first
mode as a representative mode when k = 1 can be seen in Fig. 3. In the paper, the results
are mainly based on the first mode. By setting k = 2, 3, . . . , one can get the results based
on the second, the third mode, etc. When n equals to 20, Ω1 = 9.8513 is close to that of a
continuous Euler–Bernoulli beam whose Ω1,∞ = π2 = 9.8696 given in [32, 33].
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Figure 2: Basic elements of a uniform Hencky bar-chain beam model with deformation 738 
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Figure 3: Eigen value R& of the first mode with an increase of Q for lattice beams 740 
of simply supported-simply supported/clamped-clamped/clamped-free/simply 741 

supported-clamped   742 
 743 

�

�

	

�

��

��

��

�	

��

��

��

��

� � 	 � �� �� �� �	 �� ��

R




R&,Ñ = 9.8696	°iñ	jm‚® „	j‰®®iñ}GÂ − jm‚® „	j‰®®iñ}GÂ	^GO‚

R&,Ñ = 22.3729	°iñ	h O‚®GÂ − h O‚®GÂ	^GO‚

R&,Ñ = 3.5156	°iñ	h O‚®GÂ − °ñGG	^GO‚

R&,Ñ = 3.5156	°iñ	h O‚®GÂ − jm‚® „	j‰®®iñ}GÂ		^GO‚

Fig. 3. Eigen value Ω1 of the first mode with an increase of n for lattice beams of simply
supported-simply supported/clamped-clamped/clamped-free/simply supported-clamped
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2.2. For clamped-clamped beam
The boundary conditions of a clamped-clamped lattice beam are

v0 = 0
vn = 0
θ 1

2
+ θ− 1

2
= 0⇒ v−1 = v1

θn+ 1
2
+ θn− 1

2
= 0⇒ vn−1 = vn+1

(23)

Coupling Eq. (15) with Eq. (23) and setting the determinant of homogeneous coefficient
matrix to zero in order to make the expression of vi meaningful, one gets

1 0 1 0
cos (nφ) sin (nφ) cosh (nθ) sinh (nθ)

0 2sinφ 0 2sinhθ
−2sinφsin (nφ) 2sinφcos (nφ) 2sinhθsinh (nθ) 2sinhθcosh (nθ)

 = 0. (24)

Eq. (??) can be simplified as

[2− 2cos (nφ) cosh (nθ)] sinφsinhθ +
(

sinh2θ − sin2φ
)

sinh (nθ) sin (nφ) = 0. (25)

For comparison, we practice the method in [5] by setting the origin point on the middle
of the beam for the number of segments n, the boundary conditions change to

v n
2
= 0

v− n
2
= 0

θ− n
2 +

1
2
+ θ− n

2−
1
2
= 0⇒ v− n

2−1 = v− n
2 +1

θ n
2 +

1
2
+ θ n

2−
1
2
= 0⇒ v n

2−1 = v n
2 +1

(26)

If one considers only the symmetrical vibration modes about the origin point, Eq. (15)
can be simplified as

vi = A1cos (iφ) + A3cosh (iθ) . (27)
Coupling Eq. (26) with Eq. (27) and setting the determinant of homogeneous coefficient
matrix to zero in order to make the expression of vi meaningful, one gets cos

(
nφ

2

)
cosh

(
nθ

2

)
2sinφsin

(
nφ

2

)
−2sinhθsinh

(
nθ

2

)
 = 0. (28)

Eq. (28) can be simplified as

sinhθ∗tanh
(

nθ

2

)
+ sinφ∗tan

(
nφ

2

)
= 0, (29)

which is obtained by Leckie and Lindberg [5] with 2n elements instead of n elements
considered in this paper. Simultaneously, Eq. (25) can be changed to[

sinhθtanh
(

nθ

2

)
+ sinφtan

(
nφ

2

)]
∗
[

tan
(

nφ

2

)
sinhθ − tanh

(
nθ

2

)
sinφ

]
= 0. (30)
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One notices that the first part of the left side of Eq. (30) coincides with Eq. (29). In fact, the
first part of the left side of Eq. (30) describes the characteristic of the symmetrical modes
and the second part describes the characteristic of the asymmetric modes. By coupling
Eqs. (14) with Eq. (30), one can find the Ω value by a function of k and n.

With the increase of n, the value of Ω1 of the first mode when k = 1 can be seen in
Fig. 3. When n equals to 20, Ω1 = 22.2907 is close to that of a continuous Euler–Bernoulli
beam whose Ω1,∞ = 22.3729 given in [32, 33].

2.3. For clamped-free beam
For a clamped-free beam, considering that at the end i = 0 of the beam is clamped

and at the end i = n is free, the boundary conditions are
v0 = 0
θ 1

2
+ θ− 1

2
= 0⇒ v−1 = v1

Mn = 0⇒ vn+1 − 2vn + vn−1 = 0
Mn+1 −Mn−1 = 0⇒ vn+2 − 2vn+1 + 2vn−1 − vn−2 = 0

(31)

Coupling Eq. (15) with Eq. (31) and setting the determinant of homogeneous coefficient
matrix to zero in order to make the expression of vi meaningful, one gets

1 0 1 0
0 2sinφ 0 2sinhθ

2cos (nφ) (cosφ− 1) 2sin (nφ) (cosφ− 1) 2cosh(nθ)(coshθ − 1) 2sinh(nθ)(coshθ − 1)
F1 F2 F3 F4

 = 0,

F1 = 4sinφsin (nφ) (1− cosφ) ,

F2 = 4sinφcos (nφ) (cosφ− 1) ,

F3 = 4sinhθsinh (nθ) (coshθ − 1) ,

F4 = 4sinhθcosh (nθ) (coshθ − 1).
(32)

By coupling Eqs. (14) with Eq. (32), one can find the Ω value by a function of k and n.
With the increase of n, the value of Ω1 of the first mode when k = 1 can be seen

in Fig. 3. When n equals to 20, Ω1 = 3.5066 is close to the that of a continuous Euler–
Bernoulli beam whose Ω1,∞ = 3.5156 given in [33].

2.4. For clamped-simply supported beam
For a clamped-simply supported beam, considering that at the end i = 0 of the beam

is clamped and at the end i = n is simply supported, the boundary conditions are
v0 = 0
vn = 0
θ 1

2
+ θ− 1

2
= 0⇒ v−1 = v1

Mn = 0⇒ vn−1 = −vn+1

(33)
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Coupling Eq. (15) with Eq. (33) and setting the determinant of homogeneous coefficient
matrix to zero in order to make the expression of vi meaningful, one gets

1 0 1 0
cos (nφ) sin (nφ) cosh (nθ) sinh (nθ)

0 2sinφ 0 2sinhθ
2cosφcos (nφ) 2cosφsin (nφ) 2coshθcosh (nθ) 2coshθsinh (nθ)

 = 0. (34)

Eq. (34) can be simplified as

(cosφ− coshθ) [sinφcos (nφ) sinh (nθ)− sinhθsin (nφ) cosh (nθ)] = 0. (35)

By coupling Eqs. (14) with Eq. (35), one can find the Ω value by a function of k and n.
With the increase of n, the value of Ω1 of the first mode when k = 1 can be seen

in Fig. 3. When n equals to 20, Ω1 = 15.3437 is close to the that of a continuous Euler–
Bernoulli beam whose Ω1,∞ = 15.4182 given in [33]. Exact formula of eigenfrequen-
cies of Hencky-chain bar under various boundary conditions (including the hinge-hinge,
clamped-free, clamped-clamped and clamped-hinge boundary conditions) are available
in Wang et al. (2017) [34] and in Wang et al. (2020) [35].

3. STOCHASTIC ANALYSIS OF THE LATTICE BEAMS

The purpose to get the eigenfrequency is to avoid the resonance. The circular eigen-
frequency of the first mode ω1 should be less than an excitation circular frequency ω0.

ω1 < ω0. (36)

In the stochastic analysis, each of the stiffness of elastic links between the segments is
treated as a continuous random variable. As the fundamental eigenfrequency is a func-
tion of the stiffness, it also turns out to be a random variable.

3.1. For simply supported-simply supported beam
Based on Eq. (22), the circular eigenfrequency of the first mode is

ω1 =
4n2sin2 ( π

2n

)
L2

√
EI
ρA

=
π2

L2

√
EI
ρA

sin2 ( π
2n

)(
π
2n

)2 . (37)

The reliability R (see [36]) of the beam can be defined as the probability that the square of
this fundamental frequency is less than the square of an excitation frequency

R = Prob

(π2

L2

√
EI
ρA

sin2 ( π
2n

)(
π
2n

)2

)2

< ω0
2

 = Prob

[
EI <

ω0
2L4ρA
π4

(
π
2n

)4

sin4 ( π
2n

)] , (38a)

R = FEI

[
ω0

2L4ρA
π4

(
π
2n

)4

sin4 ( π
2n

)] , (38b)

where FEI is the probability distribution function of EI.
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Consider the case when the random variable of Young’s modulus is modelling as
an exponential distribution since exponential distribution is mainly used for the case of
failure. The density function of this exponential distribution is given by

f (EI) =

{
0 EI < 0
µe−µEI EI ≥ 0, µ > 0

(39)

with the expectation M[EI] = 1/µ and the variance Var[EI] = 1/µ2. The distribution
function is given by

F (EI) =

{
0 EI < 0
1− exp (−µEI) EI ≥ 0, µ > 0

(40)

where

Prob {EI ≤ x} = 1− exp
(
− x

M [EI]

)
. (41)

Coupling Eq. (40) with Eq. (38a) and Eq. (38b), the expression of the reliability for a
lattice beam is

Rlattice = 1− exp

[
− 1

M [EI]
ω0

2L4ρA
π4

(
π
2n

)4

sin4 ( π
2n

)] . (42)

In order to learn the scale effect based on n, we compare such stochastic reliability with
that of a continuous local Euler–Bernoulli beam. For a simply supported-simply sup-
ported continuous local Euler–Bernoulli beam, the reliability in this case is

Rlocal = Prob
[

π4

L4
EI
ρA

< ω0
2
]
= 1− exp

[
− 1

M [EI]
ω0

2L4ρA
π4

]
. (43)

Coupling Eq. (42) and Eq. (43), one finds that the only difference between Rlattice and Rlocal

is the factor

(
π
2n

)4

sin4 ( π
2n

) . By setting Rlocal = r0 where r0 is the codified reliability value, the

relationship between Rlattice and r0 is

1− Rlattice = exp

[
− 1

M [EI]
ω0

2L4ρA
π4

(
π
2n

)4

sin4 ( π
2n

)] = (1− Rlocal)

[
π
2n

sin( π
2n )

]4

, (44a)

Rlattice = 1− (1− r0)

[
π
2n

sin( π
2n )

]4

. (44b)
The probability of failure is conceptually opposite to the reliability

Plattice = 1− Rlattice, (45a)

p0 = 1− Rlocal = 1− r0. (45b)
By combining Eq. (44b) along with Eq. (45a) and Eq. (45b), the relationship between Plattice
and p0 is

Plattice = 1− Rlattice = (1− r0)

[
π
2n

sin( π
2n )

]4

= p0

[
π
2n

sin( π
2n )

]4

. (46)
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The ratio of Plattice to p0 can be expressed as a function of n

Plattice

p0
=

p0

[
π
2n

sin( π
2n )

]4

p0
= p0

[
π
2n

sin( π
2n )

]4

−1
. (47)

Variation of Plattice, as a function of n, when p0 fixed at 0.1, 0.01 and 0.001, is portrayed in
Fig. 4. The values of Plattice/p0 can be seen in Fig. 5.
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p0 ∈ {0.1, 0.01, 0.001}
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3.2. For clamped-clamped beam

With Ω2 =
ρAω2L4

EI
, the circular eigenfrequency of the first mode is

ω1 =
Ω1 (n)

L2

√
EI
ρA

. (48)

Similar to the case of simply supported-simply supported beam, the reliability R can be
defined as the probability that the square of the fundamental frequency is less than the
square of an excitation frequency

R = Prob

(Ω1 (n)
L2

√
EI
ρA

)2

< ω0
2

 = Prob
[

EI <
ω0

2L4ρA
Ω2

1 (n)

]
= FEI

[
ω0

2L4ρA
Ω2

1 (n)

]
. (49)

Coupling Eq. (41) with Eq. (49), the expression of the reliability for a lattice beam is

Rlattice = 1− exp
[
− 1

M [EI]
ω0

2L4ρA
Ω2

1 (n)

]
. (50)

For a clamped-clamped continuous local Euler–Bernoulli beam, the reliability in this
case is

Rlocal = Prob
[

Ω2
1,∞

L4
EI
ρA

< ω0
2
]

, (51a)

Rlocal = 1− exp
[
− 1

M[EI]
ω0

2L4ρA
Ω2

1,∞

]
. (51b)

With the equation of Ω1,∞ which is given in [33]

cos
(√

Ω1,∞

)
cosh

(√
Ω1,∞

)
= 1, (52a)√

Ω1,∞ = 4.7300. (52b)
By setting Rlocal = r0 where r0 is the codified reliability value, the relationship between
Rlattice and r0 is

1− Rlattice = exp
[
− 1

M[EI]
ω0

2L4ρA
Ω2

1(n)

]
= (1− Rlocal)

Ω2
1,∞

Ω2
1(n) , (53a)

Rlattice = 1− (1− r0)

Ω2
1,∞

Ω2
1(n) . (53b)

By coupling Eq. (53b) along with Eq. (45a) and Eq. (45b), the relationship between Plattice
and p0 is

Plattice = 1− Rlattice = (1− r0)

Ω2
1,∞

Ω2
1(n) = p0

Ω2
1,∞

Ω2
1(n) . (54)

The ratio of Plattice to p0 could be expressed as a function of n

Plattice

p0
=

p0

Ω2
1,∞

Ω2
1(n)

p0
= p0

Ω2
1,∞

Ω2
1(n)
−1

. (55)
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With the increase of n, when p0 equals to 0.1, 0.01 and 0.001, the values of Plattice can be
seen in Fig. 6. The values of Plattice/p0 can be seen in Fig. 7.
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Fig. 7. Ratio of probability of failure of clamped-clamped lattice beam to probability of failure
of a corresponding clamped-clamped Euler–Bernoulli beam p0 ∈ {0.1, 0.01, 0.001}

3.3. For clamped-free beam
For a clamped-free beam, the relationship between Plattice and p0 is also given by

Eq. (45a) and Eq. (45b), with the equation of Ω1,∞ given in [33]

cos
(√

Ω1,∞

)
cosh

(√
Ω1,∞

)
+ 1 = 0, (56a)
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Ω1,∞ = 1.8751. (56b)

With the increase of n, when p0 equals to 0.1, 0.01 and 0.001, the values of Plattice can be
seen in Fig. 8. The values of Plattice/p0 can be seen in Fig. 9.
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Fig. 9. Ratio of probability of failure of clamped-free lattice beam to probability of failure
of a corresponding clamped-free Euler–Bernoulli beam p0 ∈ {0.1, 0.01, 0.001}

3.4. For clamped-simply supported beam
For a clamped-free beam, the relationship between Plattice and p0 is also given by

Eq. (45a) and Eq. (45b), with the equation of Ω1,∞ given in [33]

sin
(√

Ω1,∞

)
cosh

(√
Ω1,∞

)
− cos

(√
Ω1,∞

)
sinh

(√
Ω1,∞

)
= 0, (57a)
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Ω1,∞ = 3.9266. (57b)

With the increase of n, when p0 equals to 0.1, 0.01 and 0.001, the values of Plattice can be
seen in Fig. 10. The values of Plattice/p0 can be seen in Fig. 11.
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Fig. 10. Probability of failure of a clamped-simply supported lattice beam with an increasing n
when the probability of failure of a corresponding clamped-simply supported Euler–Bernoulli

beam p0 ∈ {0.1, 0.01, 0.001}
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Fig. 11. Ratio of probability of failure of clamped-simply supported lattice beam to probability
of failure of a corresponding clamped-simply supported Euler–Bernoulli beam

p0 ∈ {0.1, 0.01, 0.001}

4. NONLOCAL BEAM MECHANICS

Eq. (3) is the finite difference equation for a continuous Euler–Bernoulli beam. Hence
the discrete micro-structured system is mathematically equivalent to the finite difference
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format of the so-called “local” continuous system. The discrete equation is extended
to an equivalent continuous one via a “continualization” method. The relationship be-
tween the discrete system and the equivalent continuous system vi = v(x = ia) has a
sufficiently smooth deflection function as

w (x + a) = w (x) + aw′ (x) +
a2

2
w′′ (x) +

a3

6
w′′′ (x) + . . . =

∞

∑
k=0

ak∂k
x

k!
w (x) = ea∂x w (x) .

(58)
Eq. (58) can be expressed as

w (x + a) = ea∂x w (x) . (59)

The pseudo-differential operators may be introduced

wi+1 − 2wi + wi−1 =
(

ea∂x + e−a∂x − 2
)

w (x) = 4 sinh2
(

a∂x

2

)
w(x), (60a)

wi+2 − 4wi+1 + 6wi − 4wi−1 + wi−2 =
(

e2a∂x − 4ea∂x + 6− 4e−a∂x + e−2a∂x
)

w (x)

=
(

ea∂x + e−a∂x − 2
)2

w (x)

= 16 sinh4
(

a∂x

2

)
w(x).

(60b)

Coupling with Eq. (60b), Eq. (3) is reexpressed as

16EI sinh4
(

a∂x
2

)
a4 w + ρAẅ = 0. (61)

It is possible to approximate the pseudo-differential operators through Padé’s approxi-
mation

4 sinh2
(

a∂x
2

)
a2 =

12∂x
2

− (a∂x)
2 + 12

=
∂x

2

1− lc
2∂x

2 + . . . with lc
2 =

a2

12
. (62)

Eq. (62) has been practiced in [37]. With Eqs. (62), (61) can be approximated by the linear
differential equation

EI

(
∂x

2

1− lc
2∂x

2

)2

w + ρAẅ = 0, (63a)

EI∂x
4w + ρA∂t

2(1− 2lc
2∂x

2 + lc
4∂x

4)w = 0. (63b)

As the part of partial derivatives of six order can be ignored, Eq. (63b) turns to be

EI∂x
4w + ρA∂t

2
(

1− 2lc
2∂x

2
)

w = 0. (64)

For harmonic motion, w(x, t) = v(x)ejωt with j2 = −1, Eq. (64) turns into

EI∂x
4v + ρAω2

(
2lc

2∂x
2 − 1

)
v = 0. (65)
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Adopting the non-dimensional terms

v =
v
L

, x =
x
L

, Ω2 =
ρAω2L4

EI
. (66)

With Eqs. (66), (65) turns to be

∂x
4v +

2lc
2Ω2

L2 ∂x
2v−Ω2v = 0. (67)

The characteristic equation of Eq. (67) is given

r4 +
2lc

2Ω2

L2 r2 −Ω2 = 0, (68)

with lc
2 =

a2

12

r2 = − Ω2

12n2 ±

√(
Ω2

12n2

)2

+ Ω2. (69)

The roots r of the characteristic equation are given by

r1,2 = ±

√√√√− Ω2

12n2 +

√(
Ω2

12n2

)2

+ Ω2, (70a)

r3,4 = ±j

√√√√ Ω2

12n2 +

√(
Ω2

12n2

)2

+ Ω2 with j2 = −1. (70b)

The general solution of Eq. (67) is

v (x) = D1cos(βx) + D2sin (βx) + D3cosh (ηx) + D4sinh (ηx) , (71a)

β =

√√√√ Ω2

12n2 +

√(
Ω2

12n2

)2

+ Ω2, (71b)

with

η =

√√√√− Ω2

12n2 +

√(
Ω2

12n2

)2

+ Ω2. (71c)

4.1. For simply supported-simply supported beam
The mode shape of a simply supported-simply supported beam is a sinusoidal form

given by

v = v0sin
(

kπx
L

)
. (72)

By coupling Eq. (67) and Eq. (72), one gets

EI
(

kπ

L

)4

v0sin
(

kπx
L

)
− 2ρAω2lc

2
(

kπ

L

)2

v0sin
(

kπx
L

)
− ρAω2v0sin

(
kπx

L

)
= 0,

(73a)
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EI
(

kπ

L

)4

− 2ρAω2lc
2
(

kπ

L

)2

− ρAω2 = 0. (73b)

The eigen circular frequency is

ω2 =
EI
(

kπ
L

)4

ρA
[

2lc
2
(

kπ
L

)2
+ 1
] , (74)

with lc
2 =

a2

12
, one obtains

ω2 =
EI
(

kπ
L

)4

ρA
[

a2

6

(
kπ
L

)2
+ 1
] =

EI
(

kπ
L

)4

ρA
[

1
6

(
kπ
n

)2
+ 1
] . (75)

This result can be found again from the following non-dimensional boundary conditions,
expressed as 

v (0) = 0
v (1) = 0

M (0) = 0⇒ v
(

1
n

)
+ v

(
− 1

n

)
= 0

M (1) = 0⇒ v
(

1 +
1
n

)
+ v

(
1− 1

n

)
= 0

(76)

Coupling Eq. (71a) with Eq. (76) and setting the determinant of homogeneous coefficient
matrix to zero in order to make the expression of vi meaningful, one gets

1 0 1 0
cos (β) sin (β) cosh (η) sinh (η)

2cos
(

β

n

)
0 2cosh

(η

n

)
0

2cos (β) cos
(

β

n

)
2sin (β) cos

(
β

n

)
2cosh (η) cosh

(η

n

)
2sinh (η) cosh

(η

n

)

 = 0,

(77)

with lc
2 =

a2

12
, by solving Eq. (77), one obtains

4sin (β) sinh (η)

[
cosh

(η

n

)
− cos

(
β

n

)]2

= 0, (78a)

sin (β) = 0 or sinh (η) = 0 or cosh
(η

n

)
− cos

(
β

n

)
= 0. (78b)

Therefore

β = kπ or η = 0 or cosh
(η

n

)
= cos

(
β

n

)
. (79)
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With Eqs. (71) above, only β = kπ leads to a non-trivial solution. ω can be expressed as

ω2 =
EI
(

kπ
L

)4

ρA
[

a2

6

(
kπ
L

)2
+ 1
] =

EI
(

kπ
L

)4

ρA
[

1
6

(
kπ
n

)2
+ 1
] , (80)

which is identical to Eq. (75). k is set to 1 which corresponds to the first mode. With
the increase of n, the values of Ω1 of the first mode of lattice beam and the nonlocal
approximation when k = 1 can be seen in Fig. 12. When n equals to 20, Ω1 = 9.8512 for
the nonlocal approximation which is close to that of a continuous Euler–Bernoulli beam
whose Ω1,∞ = π2 = 9.8696 given in [32, 33].
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4.2. For clamped-clamped beam
For a clamped-clamped nonlocal beam, the non-dimensional boundary conditions

can be expressed as

v (0) = 0
v (1) = 0

θ

(
1

2n

)
+ θ

(
− 1

2n

)
= 0⇒ v

(
1
n

)
= v

(
− 1

n

)
θ

(
1 +

1
2n

)
+ θ

(
1− 1

2n

)
= 0⇒ v

(
1 +

1
n

)
= v

(
1− 1

n

) (81)
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Coupling Eq. (71a) with Eq. (81) and setting the determinant of homogeneous coefficient
matrix to zero in order to make the expression of vi meaningful, one gets


1 0 1 0

cos (β) sin (β) cosh (η) sinh (η)

0 2sin
(

β

n

)
0 2sinh

(η

n

)
−2sin (β) sin

(
β

n

)
2cos (β) sin

(
β

n

)
2sinh (η) sinh

(η

n

)
2cosh (η) sinh

(η

n

)

 = 0.

(82)
Eq. (82) can be simplified as

[2− 2cos (β) cosh (η)] sin
(

β

n

)
sinh

(η

n

)
+

[
sinh2

(η

n

)
− sin2

(
β

n

)]
sinh (η) sin (β) = 0.

(83)
By coupling Eqs. (71) with Eq. (83), one can find the Ω value by a function of k and n.

k is set to 1 which corresponds to the first mode. With the increase of n, the values of
Ω1 of the first mode of lattice beam and the nonlocal approximation when k = 1 can be
seen in Fig. 12. When n equals to 20, Ω1 = 22.1669 for the nonlocal approximation is close
to that of a continuous Euler–Bernoulli beam whose Ω1,∞ = 22.3729 given in [32, 33].

4.3. For clamped-free beam
For a clamped-free nonlocal beam, the non-dimensional boundary conditions can be

expressed as



v (0) = 0

θ

(
1

2n

)
+ θ

(
− 1

2n

)
= 0⇒ v

(
1
n

)
= v

(
− 1

n

)
M (1) = 0⇒ v

(
1 +

1
n

)
− 2v (1) + v

(
1− 1

n

)
= 0

M
(

1+
1
n

)
−M

(
1− 1

n

)
=0⇒ v

(
1+

2
n

)
−2v

(
1+

1
n

)
+2v

(
1− 1

n

)
−v
(

1− 2
n

)
=0

(84)

Coupling Eq. (71a) with Eq. (84) and setting the determinant of homogeneous coefficient
matrix to zero in order to make the expression of vi meaningful, one gets



1 0 1 0

0 2sin
(

β

n

)
0 2sinh
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n

)
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(
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(
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(
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(
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− 1
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(
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− 1
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2sinh (η)
(
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( η
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− 1
)

G1 G2 G3 G4


= 0,
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G1 = 4sinβsin
(

β

n

)(
1− cos

(
β

n

))
,

G2 = 4cosβsin
(

β

n

)(
cos

(
β
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− 1
)

,

G3 = 4sinhηsinh
(η
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) (
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(η
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)
− 1
)

,

G4 = 4coshηsinh
(η

n

) (
cosh

(η

n

)
− 1
)

.

(85)

By coupling Eqs. (71) with Eq. (85), one can find the Ω value by a function of k and n.
k is set to 1 which corresponds to the first mode. With the increase of n, the values

of Ω1 of the first mode of lattice beam and the nonlocal approximation when k = 1 can
be seen in Fig. 12. When n equals to 20, Ω1 = 3.5093 for the nonlocal approximation is
close to that of a continuous Euler–Bernoulli beam whose Ω1,∞ = 3.5156 given in [32,33].
Challamel et al. [14] also found the values of Ω1 between 3.50 and 3.52.

4.4. For clamped-simply supported beam
For a clamped-simply supported nonlocal beam, the non-dimensional boundary

conditions can be expressed as

v (0) = 0
v (1) = 0

θ

(
1

2n

)
+ θ

(
− 1

2n

)
= 0⇒ v

(
1
n

)
= v

(
− 1

n

)
M (1) = 0⇒ v

(
1 +

1
n

)
+ v

(
1− 1

n

)
= 0

(86)

Coupling Eq. (71a) with Eq. (86) and setting the determinant of homogeneous coefficient
matrix to zero in order to make the expression of vi meaningful, one gets

1 0 1 0
cos (β) sin (β) cosh (η) sinh (η)

0 2sin
(

β

n

)
0 2sinh
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n

)
2cos (β) cos
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n
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n

)
2cosh (η) cosh

(η

n

)
2sinh (η) cosh

(η

n

)

 = 0.

(87)
Eq. (87) can be simplified as

4
[

sin
(

β

n

)
cos (β) sinh (η)− 4sinh

(η

n

)
cosh (η) sin (β)

] [
cosh

(η

n

)
− cos

(
β

n

)]
= 0.

(88)
By coupling Eqs. (71) with Eq. (88), one can find the Ω value by a function of k and n.

k is set to 1 which corresponds to the first mode. With the increase of n, the values
of Ω1 of the first mode of lattice beam and the nonlocal approximation when k = 1 can
be seen in Fig. 12. When n equals to 20, Ω1 = 15.3395 for the nonlocal approximation is
close to that of a continuous Euler–Bernoulli beam whose Ω1,∞ = 15.4182 given in [32,
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33]. Exact formula of eigenfrequencies of continualized nonlocal Euler-Bernoulli beams
under various nonlocal boundary conditions (including the hinge-hinge, clamped-free,
clamped-clamped and clamped-hinge boundary conditions) are available in Wang et al
(2017). [34].

5. STOCHASTICS ANALYSIS OF NONLOCAL BEAMS

The idea of the stochastics analysis for nonlocal beam are similar to those of the
stochastics analysis of lattice beams.

5.1. For simply supported-simply supported beam
Based on Eq. (79), the circular eigenfrequency of the first mode is

ω1
2 =

EI
(

π
n

)4

ρA
[

1
6

(
π
n

)2
+ 1
] . (89)

The reliability R of the beam can be defined as the probability that the square of this
fundamental frequency is less than the square of an excitation frequency

R = Prob

 EI
(

π
n

)4

ρA
[

1
6

(
π
n

)2
+ 1
] < ω0

2

 = Prob

EI <
ω0

2L4ρA
[

1
6

(
π
n

)2
+ 1
]

π4

 , (90a)

R = FEI

ω0
2L4ρA

[
1
6

(
π
n

)2
+ 1
]

π4

 , (90b)

where FEI is the probability distribution function of EI.
Coupling Eq. (46) with Eq. (90a) and Eq. (90b), the expression of the reliability for a

nonlocal beam is

Rnonlocal = 1− exp

− 1
M [EI]

ω0
2L4ρA

[
1
6

(
π
n

)2
+ 1
]

π4

 . (91)

Coupling Eq. (43) and Eq. (91), we find that the only difference between Rnonlocal and

Rlocal is the factor
1
6

(π

n

)2
+ 1. By setting Rlocal = r0 where r0 is the codified reliability

value, the relationship between Rnonlocal and r0 is

Rnonlocal = 1− (1− r0)

[
1
6 (

π
n )

2
+1
]

. (92)

The probability of failure is conceptually opposite to the reliability

Pnonlocal = 1− Rnonlocal. (93)

By coupling Eq. (92) along with Eq. (93), the relationship between Pnonlocal and p0 is

Pnonlocal = 1− Rnonlocal = p0

[
1
6 (

π
n )

2
+1
]
. (94)
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The ratio of Pnonlocal to p0 can be expressed as a function of n

Pnonlocal

p0
=

p0

[
1
6 (

π
n )

2
+1
]

p0
= p0

1
6 (

π
n )

2

. (95)

With the increase of n, when p0 equals to 0.1, 0.01 and 0.001, the values of Pnonlocal can be
seen in Fig. 13. And the values of Pnonlocal/p0 could be seen in Fig. 14.
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Fig. 13. Ratio of probability of failure of simply supported-simply supported nonlocal beam to
probability of failure of a corresponding simply supported-simply supported Euler–Bernoulli

beam p0 ∈ {0.1, 0.01, 0.001}
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Fig. 14. Ratio of probability of failure of simply supported-simply supported nonlocal beam to
probability of failure of a corresponding simply supported-simply supported Euler–Bernoulli

beam p0 ∈ {0.1, 0.01, 0.001}

When p0 = 0.01, we compare the probabilities of failure of lattice beam and nonlocal
beam with an increasing number of segments n shown in Fig. 15.
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Fig. 15. Comparison between probability of failure for simply supported-simply supported non-
local/lattice beams with an increasing n when the probability of failure of a corresponding simply

supported-simply supported Euler–Bernoulli beam p0 = 0.01

5.2. For clamped-clamped beam
The expression of the reliability for a nonlocal beam is

Rnonlocal = 1− exp
[
− 1

M [EI]
ω0

2L4ρA
Ω2

1 (n)

]
. (96)

By setting Rlocal = r0 where r0 is the codified reliability value and by coupling Eq. (96)
with Eq. (53a) and Eq. (53b), the relationship between Rnonlocal and r0 is

1− Rnonlocal = exp
[
− 1

M[EI]
ω0

2L4ρA
Ω2

1(n)

]
= (1− Rlocal)

Ω2
1,∞

Ω2
1(n) , (97a)

Rnonlocal = 1− (1− r0)

Ω2
1,∞

Ω2
1(n) . (97b)

By coupling Eq. (97b) along with Eq. (54), the relationship between Pnonlocal and p0 is

Pnonlocal = 1− Rnonlocal = p0

Ω2
1,∞

Ω2
1(n) . (98)

The ratio of Pnonlocal to p0 can be expressed as a function of n

Pnonlocal

p0
=

p0

Ω2
1,∞

Ω2
1(n)

p0
= p0

Ω2
1,∞

Ω2
1(n)
−1

. (99)

With the increase of n, when p0 equals to 0.1, 0.01 and 0.001, the values of Pnonlocal can be
seen in Fig. 16. The values of Pnonlocal/p0 can be seen in Fig. 17.
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Fig. 18. Comparison between probability of failure for clamped-clamped nonlocal/lattice beams
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When p0 = 0.01, we compare the probabilities of failure of lattice beam and nonlocal
beam with an increasing the number of segments n in Fig. 18.

5.3. For clamped-free beam
For a clamped-free beam, the relationship between Pnonlocal and p0 is also given by

Eq. (99), with the equations of Ω1,∞ given by Eq. (56a) and Eq. (56b). With the increase of
n, when p0 equals to 0.1, 0.01 and 0.001, the values of Pnonlocal can be seen in Fig. 19. The
values of Pnonlocal/p0 can be seen in Fig. 20.
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Fig. 19. Ratio of probability of failure of clamped-free nonlocal beam to probability of failure of a
corresponding clamped-free Euler–Bernoulli beam p0 ∈ {0.1, 0.01, 0.001}
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Fig. 20. Ratio of probability of failure of clamped-free nonlocal beam to probability of failure of a
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When p0 = 0.01, we compare the probabilities of failure of lattice beam and nonlocal
beam with an increasing number of segments n in Fig. 21.



166 Yuchen Li, Noël Challamel, Isaac Elishakoff

34 
� 

�822 
Figure 20: Ratio of probability of failure of clamped-free nonlocal beam to probability 823 

of failure of a corresponding clamped-free Euler-Bernoulli beam ®o ∈824 
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Figure 21: Comparison between probability of failure for clamped-free 829 
nonlocal/lattice beams with an increasing n when the probability of failure of a 830 

corresponding clamped-free Euler-Bernoulli beam ®o = 0.01 831 
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Fig. 21. Comparison between probability of failure for clamped-free nonlocal/lattice beams with
an increasing n when the probability of failure of a corresponding clamped-free Euler–Bernoulli

beam p0 = 0.01

5.4. For clamped-simply supported beam
For a clamped-simply supported beam, the relationship between Pnonlocal and p0 is

also given by Eq. (99), with the equations of Ω1,∞ given by Eq. (57a) and Eq. (57b). With
the increase of n, when p0 equals to 0.1, 0.01 and 0.001, the values of Pnonlocal can be seen
in Fig. 22. And the values of Pnonlocal/p0 can be seen in Fig. 23.
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Figure 22: Ratio of probability of failure of clamped-simply supported nonlocal beam 835 
to probability of failure of a corresponding clamped-simply supported Euler-Bernoulli 836 

beam ®o ∈ {0.1, 0.01, 0.001} 837 
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Figure 23: Ratio of probability of failure of clamped-simply supported nonlocal beam 839 
to probability of failure of a corresponding clamped-simply supported Euler-Bernoulli 840 

beam ®o ∈ {0.1, 0.01, 0.001} 841 
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Fig. 22. Ratio of probability of failure of clamped-simply supported nonlocal beam to prob-
ability of failure of a corresponding clamped-simply supported Euler–Bernoulli beam p0 ∈

{0.1, 0.01, 0.001}
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Figure 22: Ratio of probability of failure of clamped-simply supported nonlocal beam 835 
to probability of failure of a corresponding clamped-simply supported Euler-Bernoulli 836 

beam ®o ∈ {0.1, 0.01, 0.001} 837 
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Fig. 23. Ratio of probability of failure of clamped-simply supported nonlocal beam to prob-
ability of failure of a corresponding clamped-simply supported Euler–Bernoulli beam p0 ∈

{0.1, 0.01, 0.001}

When p0 = 0.01, we compare the probabilities of failure of lattice beam and nonlocal
beam with an increasing number of segments n in Fig. 24.
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Figure 24: Comparison between probability of failure for clamped-simply supported�846 

nonlocal/lattice beams with an increasing n when the probability of failure of a 847 
corresponding clamped-simply supported�Euler-Bernoulli beam ®o = 0.01 848 
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Fig. 24. Comparison between probability of failure for clamped-simply supported nonlocal/lat-
tice beams with an increasing n when the probability of failure of a corresponding clamped-

simply supported Euler–Bernoulli beam p0 = 0.01

6. CONCLUSION

This paper studies the structural reliability for Hencky bar-chain model under free
vibration with its nonlocal approximations. It is shown that the accuracy strongly de-
pends on the number of segments. With an increasing number of segments, the eigen-
values and the probabilities of failure of elastic Hencky bar-chain models and elastic
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Eringen’s nonlocal approximation models both approach to those of continuous Euler–
Bernoulli beams at the same rate. The nonlocal Euler–Bernoulli beam model is an effi-
cient continuous model for investigating lattice beam problems in both deterministic and
non-deterministic frame work.
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