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Abstract. In this paper, the nonlocal elasticity theory is applied to study the propaga-
tion of plane wave and Rayleigh-type surface wave in an incompressible, rotating and
transversely isotropic material. The governing equations of motion for an incompressible,
rotating, transversely isotropic and nonlocal elastic medium are specialized for a plane.
The medium is assumed rotating about an axis perpendicular to the plane. The transverse
isotropy axis is taken perpendicular to the surface. The specialized governing equations
are first applied to derive a velocity equation for homogeneous plane wave. The special-
ized governing equations along with traction free boundary conditions are also applied
to derive the secular equation governing the wave speed of Rayleigh wave. The speeds of
plane wave and Rayleigh wave are computed and illustrated graphically to observe the ef-
fects of nonlocality, rotation, anisotropy, frequency and propagation direction. It is noticed
from the theory and numerical results that the speeds of both plane wave and Rayleigh
wave decrease sharply with an increase in nonlocal parameter or rotation parameter. The
speeds of plane wave and Rayleigh wave increase logarithmically with anisotropy mate-
rial parameter. The feasible ranges of nonlocality, rotation or anisotropy parameters for
the existence of plane wave or Rayleigh surface wave are determined for a given wave
speed when the values of other parameters are fixed.
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1. INTRODUCTION

In recent years, the materials and structures have been considered on nano-scale to
meet the requirement of various acoustic devices to have greater sensitivity and storage
within smaller structure. The classical elasticity is unable to predict properly the nature
of such nano-scale materials. For instance, the behaviour of materials with fractures, dis-
location, cracks, singularities and discontinuities can not be treated completely by the
local elasticity theory [1, 2]. Taking material microstructure into account, Eringen [3, 4]
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proposed a nonlocal differential model where the stress at a given reference point is con-
sidered as a function of the strain of all points and included a material parameter repre-
senting the internal length scale into the stress–strain relation.

Peddieson et al. [5] pioneered the applications of nonlocal continuum mechanics to
analyze the size-effects in micro and nanoscale structures. They applied the nonlocal elas-
ticity to study the bending of micro and nanoscale beams and found that the significance
of the size-effects for nano-sized structures largely depends on the value of the nonlocal
parameter which captures the small scale effect on the response of nanostructures. For
verification of nonlocal continuum models, an accurate estimate of small-scale or nonlo-
cal parameter is required. A theoretical procedure to determine the small scale parameter
in nonlocal elasticity is not derived yet. Eringen [3, 4] proposed the small scale parame-
ter as 0.31 nm and 0.39 nm in his studies on plane and Rayleigh surface waves, respec-
tively, by comparing the dispersion curves via lattice dynamics and nonlocal continuum
mechanics. Due to potential applications of carbon nanotubes and graphene sheets in
designs of new sensors, gas detection and composite materials, various models of based
on these nanomaterials were explored. For example, Sudak [6], Zhang et al. [7], Sears
and Batra [8], Wang [9], Wang and Hu [10], Xie et al. [11], Wang and Wang [12], Tounsi,
et al. [13], Arash and Ansari [14], Liang and Han [15], Ghavanloo and Fazelzadeh [16],
Hemadi, et al. [17], Tuna and Kirca [18] and various other researchers contributed to-
wards the estimation of the small scale parameters for carbon nanotubes models. For
graphene sheets models, various researchers including Ansari et al. [19], Huang et al. [20],
Madani et al. [21] and Jalali [22] estimated the nonlocal parameter using different numer-
ical modeling and simulations. Arash and Wang [23] reviewed the possible applications
of the nonlocal continuum theory for carbon nanotubes and graphene sheets models.
According to the predictions of above studies, the crystal structure in lattice dynamics,
boundary conditions, vibrational mode number and mechanical model under investiga-
tion are the deciding factors to obtain an optimum value of nonlocal parameter.

The nonlocal continuum theory was applied in various wave propagation problems.
Based on the nonlocal elasticity, Eringen [3, 4] analyzed the bulk and surface waves and
found that the elastic waves are dispersive in a nonlocal linearly elastic medium. The
nonlocal elasticity was also employed in some other wave propagation problems by var-
ious researchers including Narasimhan and McCay [24], Inan and Eringen [25], Ke et
al. [26], Sapora et al. [27], Roy et al. [28], Tong et al. [29], Singh et al. [30], Kaur et al. [31],
Ma et al. [32], Yan et al. [33], Tung [34], Singh [35] and references therein.

Motivated by the requirements of seismology including prediction of earthquakes,
a time-harmonic surface wave was investigated by Lord Rayleigh [36] on a traction free
boundary of a linearly elastic isotropic half-space. Different geometrical configurations
and physical constants of a material affect the wave attributes. Various important acous-
tic sensors have been investigated due to these geometrical and physical influences of
materials on wave features (White [37], Tiersten et al. [38, 39], Wren and Burdess [40]).
Schoenberg and Censor [41] discovered the rotational effects on bulk and surface waves
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in an elastic solid. Auriault [42] also investigated bulk wave speeds in an isotropic lin-
early elastic solid with rotational effects. Clarke and Burdess [43, 44] recognized a de-
vice for possible use in rotation sensing and analysed the Rayleigh waves over a rotat-
ing isotropic half-plane. Some other linear rotating anisotropic model were investigated
for wave features by various researchers including Fang et al. [45], Destrade [46, 47],
Ting [48], Ogden and Singh [49], Vinh and Hue [50], Singh and Kaur [51, 52] and refer-
ences therein.

The secular equation of the Rayleigh wave is very crucial for computing of wave
speed when material parameters are given. Also, the material parameters may also be
accurately estimated for a given wave speed. Rayleigh-type surface waves have been
applied in various scientific areas including acoustics, geophysics and seismology. To
the best of author’s knowledge, there is no investigation available in the literature which
have considered the propagation of plane waves and Rayleigh-type surface waves in a
rotating and transversely isotropic half-space of a linearly incompressible nonlocal elastic
material. The presence of nonlocality and rotation parameters adds more complexity in
an incompressible transversely isotropic model. Therefore, the main focus of this study
is to illustrate the impact of nonlocal, rotation and anisotropy parameters on the speeds
of both plane and Rayleigh waves. In Section 2, the equations governing the nonlocal
elasticity of a linear, homogeneous, rotating, transversely isotropic and incompressible
material are specialized for a plane. In Sections 3 and 4, a velocity equation of homo-
geneous plane wave and a secular equation governing the speed of Rayleigh wave are
derived by using traditional techniques. In Section 5, some limiting cases of the Rayleigh
wave equation are discussed. The speed dependence of both plane and Rayleigh waves
on rotation, nonlocality and anisotropy (transverse isotropy) is illustrated graphically in
Section 6. The findings based on the theory and numerical simulation are summarized in
the last section.

2. GOVERNING EQUATIONS

Fig. 1. The configuration of the model

We introduce a Cartesian coordinates sys-
tem (x1, x2, x3). A transversely isotropic elastic
half-space is considered with x1-axis along the
surface and the x3-axis normal into the half-
space. In a transversely isotropic medium, the
isotropy plane is taken perpendicular to the
x3-axis. The present problem is confined to
(x1, x3) plane with displacement components
u1 and u3 in x1- and x3-directions, respectively.
The half-space is assumed as rotating with an
angular rate Ω about x2-axis as shown in Fig. 1.
According to Eringen [1, 3, 4] and Schoenberg
and Censor [41], the two-dimensional govern-
ing equations for an incompressible, linear,
homogeneous, rotating, transversely isotropic
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and nonlocal elastic solid in (x1, x3) plane are expressed as

∂τ11

∂x1
+

∂τ13

∂x3
= ρ

(∂2u1

∂t2 −Ω2u1 + 2Ω
∂u3

∂t

)
, (1)

∂τ13

∂x1
+

∂τ33

∂x3
= ρ

(∂2u3

∂t2 −Ω2u3 − 2Ω
∂u1

∂t

)
, (2)

where

(1− ε2∇2)τ11 = −P + B11
∂u1

∂x1
+ B13

∂u3

∂x3
,

(1− ε2∇2)τ33 = −P + B13
∂u1

∂x1
+ B33

∂u3

∂x3
,

(1− ε2∇2)τ13 = B44

(∂u1

∂x3
+

∂u3

∂x1

)
,

(3)

and∇2 is Laplacian operator and is given by∇2 = (∂/∂x1)
2 +(∂/∂x3)

2, ε is a nonlocality
parameter (ε = ε0h/L) which captures the small scale effect in nano-size structures, ε0 is
a material coefficient, h an internal characteristic length (granular size, lattice parameter,
distance between C−C bonds), L is an external characteristics length (wave length, crack
length), ρ is the mass density of material, P = P(x1, x2, t) is the hydrostatic pressure
due to incompressibility and B11, B13, B33 and B44 are the positive elastic constants which
satisfy inequalities B11 + B33 − 2B13 > 0.

The condition of incompressibility is written as

∂u1
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+

∂u3

∂x3
= 0. (4)

From Eq. (4), there exists a scalar function ψ(x1, x2, t) such that
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∂ψ

∂x3
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∂x1
. (5)

Using Eqs. (3) and (5) in Eqs. (1) and (2) and eliminating P, an equation in scalar ψ is
derived as
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3. PLANE WAVES

For plane wave propagation in an incompressible, rotating, transversely isotropic
and nonlocal elastic material, the solution ψ of Eq. (6) can be expressed as

ψ = g
(

ik(s1x1 + s3x3 − vt)
)

, (7)

where v is the wave speed, k is the wave number, t is time and g is function of the specified
argument and s1, s3 with s2 = 0, are components of a unit vector s along the co-ordinate
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axes. Here (s1, s3) = (cos θ, sin θ) are the direction cosines of propagation direction in
(x1, x3) plane such that

s1
2 + s3

2 = 1, (8)

where θ is the angle of propagation measured from normal to the surface.
Substituting (7) and (8) in Eq. (6), a velocity equation in non-dimensional wave speed

of homogeneous plane wave is derived as

V2 =
1 + (δ− 4)s1

2s3
2

Ω∗
− e, (9)

where V2 = ρv2/B44, δ = (B11 + B33 − 2B13)/B44, e = ρω2ε2/B44, Ω∗ = 1 + Ω2
0, Ω0 =

Ω/ω, ω = kv is the wave circular frequency. For real and positive V, the following
necessary condition is required

e <
1 + (δ− 4)s1

2s3
2

Ω∗
. (10)

The possible ranges of circular frequency ω or nonlocal parameter ε or rotation param-
eter Ω or anisotropy parameter δ for plane wave propagation in the considered model
can be determined by using inequality (10) when other parameters are fixed. The non-
dimensional nonlocality parameter e in Eq. (9) is directly proportional to dimensional
nonlocal parameter ε and circular frequency ω. Therefore, the speed decreases when ε
or ω or both increases. From Eq. (9), it can also be predicted that the speed decreases
by increasing the rotation parameter Ω. In limit of low frequency (ω → 0), the non-
dimensional parameter e tends to zero and the rotation parameter Ω∗ tends to infinity.
Then according to Eq. (9), the speed of plane wave tends to zero. In limit of high fre-
quency (ω → ∞), it is also seen from Eq. (9) that the speed of plane wave decreases
first as ω increases and tends to zero at a cutoff frequency. Beyond this critical value of
frequency, the speed reduces to a purely imaginary value.

In absence of nonlocality parameter (ε→ 0), the non-dimensional parameter e tends
to zero and the velocity equation (9) can be reduced as

V =

√
1 + (δ− 4)s1

2s3
2

Ω∗
. (11)

4. RAYLEIGH WAVE

Now, we consider a Rayleigh-type wave propagating with positive speed c and pos-
itive wave number k along the x1-axis and decaying with the x3-axis, that is

ui → 0 (i = 1, 3) as x3 → +∞. (12)

The following traction free boundary conditions are applied on the surface x3 = 0

τ13 = 0, τ33 = 0 at x3 = 0. (13)
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With the use of Eqs. (1), (3) and (5), the boundary conditions (13) are expressed in terms
scalar function ψ as
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From Eqs. (5) and (12), the decay condition becomes

ψ(x1, x3, t)→ 0 as x3 → +∞. (16)

For Rayleigh waves propagation in x1-direction, the scalar function ψ(x1, x3, t) is writ-
ten as

ψ(x1, x3, t) = φ(y)eik(x1−ct), y = kx3. (17)

Substituting (17) in Eq. (6), a differential equation in φ is obtained as

[(1− eΩ∗)D4 − {δ− 2−Ω∗(2e + V∗2)}D2 + {1−Ω∗(e + V∗2)}]φ(y) = 0, (18)

where V∗2 = ρc2/B44 and the operator D denotes differentiation with respect to y.
With the help of Eq. (17), the boundary conditions (14) and (15) are expressed as

(D2 + 1)φ(0) = 0, (19)

[(1− eΩ∗)D3 − 2eΩ0D2 + {1− δ + Ω∗(e + V∗2)}D + 2Ω0(e + V∗2)]φ(0) = 0. (20)

From Eqs. (16) and (17), it follows that

φ(x3)→ 0 as x3 → +∞. (21)

The general solution φ(y) of Eq. (18) satisfying the decay condition (21) is expressed as

φ(y) = Ae−m1y + Be−m2y, (22)

where A and B are constants and m1 and m2 are solutions of

(1− eΩ∗)m4 − {δ− 2−Ω∗(2e + V∗2)}m2 + {1−Ω∗(e + V∗2)} = 0, (23)

with positive real parts, i.e. Re(mk) > 0 (k = 1, 2). From the latter, it follows that
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The necessary condition for a Rayleigh wave to exist in the present model is m2
1m2

2 > 0,
which implies that

0 < V∗2 <
1

Ω∗
− e, eΩ∗ < 1. (26)

Substituting the solution (22) in the boundary conditions (19) and (20), a homogeneous
system of two equations in two unknowns A and B is obtained as

(m2
1 + 1)A + (m2

2 + 1)B = 0, (27)

(a1m3
1 + a2m2
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where a1 = eΩ∗ − 1, a2 = −2eΩ0, a3 = δ− 1−Ω∗(e + V∗2), a4 = 2Ω0(e + V∗2).
For a non-trivial solution of above system of equations, the determinant of the co-

efficients of A and B in Eqs. (27) and (28) vanishes. After leaving the non-zero factor
(m2 −m1), we obtain the secular equation of Rayleigh wave as

a1(m2
1 + m2

2 + m2
1m2

2 + m1m2) + (a2 − a4)(m1 + m2) + a3(1−m1m2) = 0. (29)

Eq. (29) is required dimensionless secular equation governing the speed of Rayleigh-type
surface wave in an incompressible, rotating, transversely isotropic, nonlocal elastic half-
space whose surface is subjected to the traction free boundary conditions.

5. LIMITING CASES

5.1. Nonlocal transversely isotropic elastic solid
In absence of rotation i.e. for (Ω→ 0), the rotation parameters Ω0 → 0 and Ω∗ → 1.

Then, the secular equation (29) reduces to an equation with m2
1 + m2

2 = (δ − 2 − 2e −
V∗2)/(1− e), m2

1m2
2 = (1− e−V∗2)/(1− e), a1 = e− 1, a3 = δ− 1− e−V∗2, a2 = a4 =

0.

5.2. Local rotating transversely isotropic elastic solid
In absence of nonlocality (ε → 0), the non-dimensional nonlocality parameter e →

0. Then, the secular equation (29) reduces to an equation with m2
1 + m2

2 = δ − 2 −
Ω∗V∗2, m2

1m2
2 = 1−Ω∗V2, a1 = −1, a2 = 0, a3 = δ− 1−Ω∗V∗2 a4 = 2Ω0V∗2.

5.3. Local transversely isotropic elastic solid
In absence of rotation (Ω → 0) and nonlocality (ε → 0), the parameters Ω0 →

0, Ω∗ → 1 and e → 0. Then, the secular equation (29) reduces to an equation with
m2

1 + m2
2 = δ− 2−V∗2, m2

1m2
2 = 1−V∗2, a1 = −1, a3 = δ− 1−V∗2, a2 = a4 = 0. Using

the above relations, the secular equation (29) becomes

V∗2 − (δ−V∗2)
√

1−V∗2 = 0, (30)

which is analogous to the secular equation derived by Ogden and Vinh [53] for an incom-
pressible orthotropic material.
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6. NUMERICAL RESULTS AND DISCUSSION

Using velocity equation (9), the dependence of non-dimensional speed V of plane
waves on the angle of propagation θ, rotation-frequency ratio Ω0, non-dimensional ma-
terial constant (anisotropy parameter) δ and non-dimensional nonlocal or small scale pa-
rameter e is illustrated graphically in Figs. 2 to 5.

In Fig. 2, the non-dimensional speed V of plane wave is plotted against the an-
isotropy parameter δ for θ = 45◦, Ω0 = 2 and e = 0, 0.05 and 0.1. For θ = 45◦, the
inequality (10) reduces to the following inequality

δ > 4e(1 + Ω0
2). (31)

Using this inequality, the feasible ranges of δ in which the plane wave exists can be de-
termined when other parameters e and Ω0 are fixed. For e = 0, 0.05 and 0.1, the feasi-
ble ranges of δ are found as (0, ∞), (1, ∞) and (2, ∞), respectively, when Ω0 = 2. For
each value of e, the speed increases logarithmically in the respective feasible range of
anisotropy parameter δ. The speed at each value of δ remains always higher in absence
of small scale parameter. The nonlocality or small scale effect on the speed reduces at
higher values of δ. For e = 0, 0.05 and 0.1, the speed at δ = 4 in Fig. 2 correspond to the
isotropic case.

Fig. 2. Variations of non-dimensional speed V of plane wave against the
non-dimensional anisotropy material parameter δ, when θ = 45◦, Ω0 = 2

and for (a) e = 0 (b) e = 0.05 (c) e = 0.1

For e = 0.05, Ω0 = 2 and δ = 2, 4 and 6, the non-dimensional speed V of plane
wave is illustrated graphically in Fig. 3(i) against the propagation angle θ varying from
0◦ to 90◦. For δ = 2, the speed first decreases monotonically in range 0◦ ≤ θ ≤ 45◦ and
thereafter it increases monotonically for the remaining range of the propagation angle.
For δ = 6, the speed variation against θ is found to be opposite to that for δ = 2. For
δ = 4 (isotropic case), the speed is independent of propagation angle θ. Comparing the
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speed variations for different values of δ in Fig. 3(i) shows the effect of anisotropy on
the plane wave speed at each angle θ. For angles θ0 = 0◦ and θ0 = 90◦, there is no
anisotropy effect on the wave speed. The anisotropy effect is found maximum at angle
θ = 45◦. The non-dimensional speed V of plane wave is also plotted in Fig. 3(ii) against
the propagation angle θ for δ = 6, Ω0 = 2 and e = 0, 0.05 and 0.1. The small scale or
nonlocality effect on the wave speed is observed at each angle of propagation and the
speed remains always higher in absence of nonlocal parameter.

Fig. 3. Variations of non-dimensional speed V of plane wave against the angle of propagation θ
when Ω0 = 2; (i) is plotted for e = 0.05 and for (a) δ = 2 (b) δ = 4 (c) δ = 6; (ii) is plotted for δ = 6

and for (a) e = 0 (b) e = 0.05 (c) e = 0.1

In Fig. 4(i), the non-dimensional speed V of plane wave is also plotted against the
rotation parameter Ω0 when θ = 45◦, δ = 6 and e = 0, 0.05 and 0.1. The feasible ranges

Fig. 4. Variations of non-dimensional speed V of plane wave against the rotation rate Ω0(Ω/ω),
when θ = 45◦; (i) is plotted for δ = 6 and for (a) e = 0 (b) e = 0.05 (c) e = 0.1; (ii) is plotted for

e = 0.05 and for (a) δ = 2 (b) δ = 4 (c) δ = 6
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of rotation parameter Ω0 for existence of plane wave are determined by using inequal-
ity (31). For e = 0, 0.05 and 0.1, the feasible ranges of Ω0 are determined as (−∞, ∞),
(−
√

29,
√

29) and (−
√

14,
√

14), respectively, when δ = 6. For e ≥ 1.5, the feasible range
of Ω0 for existence of plane wave can not be determined. For each value of e, the speed
decreases monotonically in the positive feasible range of rotation parameter Ω0. Compar-
ing the speed variations for different e in Fig. 4(i) shows the small scale effect on the wave
speed at different values of Ω0. In Fig. 4(ii), the non-dimensional speed V of plane wave
is illustrated graphically against the rotation parameter Ω0 when e = 0.05, θ = 45◦ and
δ = 2, 4 and 6. The feasible ranges of Ω0 for δ = 2, 4 and 6 are determined as (−

√
3,
√

3),
(−
√

19,
√

19) and (−
√

29,
√

29), respectively, when e = 0.05. Comparing the speed vari-
ations for different values of δ in Fig. 4(ii) shows the anisotropy effect on the wave speed
at different values of Ω0.

In Fig. 5(i), the non-dimensional speed V of plane wave is illustrated graphically
against the nonlocality parameter e when θ0 = 45◦, Ω0 = 5 and δ = 2, 4 and 6. The feasi-
ble ranges of nonlocal parameter e for δ = 2, 4 and 6 are determined as [0, 1/52), [0, 1/26)
and [0, 3/52), respectively, when Ω0 = 5. Therefore, the range of nonlocal parameter e
expands as δ increases when Ω0 is fixed. For each value of δ, the speed decreases at an
increasing rate in the respective feasible range of nonlocal parameter e. The comparison
of speed variations in Fig. 5(i) for different values of δ shows the anisotropy effect on
wave speed at different values of e. Similar speed variations are also obtained in Fig. 5(ii)
against nonlocality parameter e for different values of Ω0 when θ0 = 45◦ and δ = 2. For
Ω0 = 0, 1 and 2, the feasible ranges of nonlocal parameter e are determined as [0, 0.5),
[0, 0.25) and [0, 0.1), respectively, when δ = 2. Therefore, the range of nonlocal parameter
e for existence of plane wave diminishes as Ω0 increases. For each value of Ω0, the speed
also decreases at an increasing rate in the respective feasible range of nonlocal parameter
e. The comparison of speed variations in Fig. 5(ii) for different values of Ω0 shows the
rotational effect on the wave speed at different values of e.

Using the secular equation (29), the dependence of non-dimensional speed of
Rayleigh surface wave on rotation-frequency ratio Ω0, non-dimensional material con-
stant (anisotropy parameter) δ and non-dimensional nonlocality parameter e is shown
graphically in Figs. 6 to 8.

In Fig. 6(i), the speed V∗ of Rayleigh wave is plotted against δ for different values
of nonlocal parameter e when Ω0 = 4. For each value of e, the speed increases logarith-
mically in respective feasible range of anisotropy parameter δ. The comparison of speed
variations in Fig. 6(i) for different e shows the small scale effect on wave speed at different
values of δ and the effect diminishes at larger values of δ. Fig. 6(ii) shows the rotational
effect on wave speed at different values of δ and this effect becomes more prominent at
larger values of δ.

For given value of δ, the small scale effect on Rayleigh wave speed V∗ is illus-
trated graphically in Fig. 7(i) at different values rotation parameter Ω0. In Fig. 7(ii), the
anisotropy effect on wave speed is shown graphically at different rotation parameter Ω0
when e = 0.02.
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Fig. 5. Variations of non-dimensional speed V of plane wave against the non-dimensional nonlo-
cality parameter e, when θ = 45◦; (i) is plotted for Ω0 = 5 and for (a) δ = 2 (b) δ = 4 (c) δ = 6;

(ii) is plotted for δ = 2 and for (a) Ω0 = 0 (b) Ω0 = 1 (c) Ω0 = 2

Fig. 6. Variations of non-dimensional speed V∗ of Rayleigh wave against the non-dimensional
constant δ; (i) is plotted for Ω0 = 4 and for (a) e = 0 (b) e = 0.01 (c) e = 0.02; (ii) is plotted for

e = 0.02 and for (a) Ω0 = 2 (b) Ω0 = 3 (c) Ω0 = 4

The non-dimensional speed V∗ of Rayleigh wave is also shown graphically against
nonlocal parameter e in Fig. 8(i) for different values of δ. For each value of δ, the speed de-
creases at an increasing rate in the respective feasible range of nonlocal parameter e. The
comparison of speed variations in figure 8(i) shows the anisotropy effect at a given value
of e. Fig. 8(ii) shows the rotational effect on Rayleigh wave speed at a given nonlocal
parameter. The range of nonlocal parameter e for existence of Rayleigh wave diminishes
as Ω0 increases.
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Fig. 7. Variations of non-dimensional speed V∗ of Rayleigh wave against the rotation rate Ω0;
(i) is plotted for δ = 2 and for (a) e = 0 (b) e = 0.01 (c) e = 0.02; (ii) is plotted for (a) δ = 1

(b) δ = 1.5 (c) δ = 2

Fig. 8. Variations of non-dimensional speed V∗ of Rayleigh wave against the non-dimensional
nonlocality parameter e; (i) is plotted for Ω0 = 2 and for (a) δ = 1 (b) δ = 2 (c) δ = 3; (ii) is plotted

for δ = 2 and for (a) Ω0 = 0(b) Ω0 = 1 (c) Ω0 = 2

7. CONCLUSIONS

A rotating and transversely isotropic half-space of an incompressible linearly nonlo-
cal elastic material is considered for the propagation of plane wave and Rayleigh surface
wave. Dispersive relations for plane wave and Rayleigh surface wave are derived. For
different combinations of nonlocal parameter e, anisotropy parameter δ and rotation pa-
rameter Ω0 which satisfy the inequalities (10) and (26), the speeds of plane wave and
Rayleigh surface wave are computed and illustrated graphically. The graphical illustra-
tions provide an interesting and new information on the behaviour of plane wave and
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Rayleigh wave speeds in presence of nonlocality. Some important physical meanings
from the theory and numerical simulations are derived as:

1. For all values of δ except δ = 4 (isotropic case), the speed of plane wave varies
with the propagation angle. The effect of anisotropy (transverse isotropy) on wave speed
is observed maximum at θ = 45◦ and minimum at angles θ = 0◦ and 90◦. The small scale
effect on the wave speed is observed at each angle of propagation and the speed remains
always higher in absence of nonlocal parameter.

2. Using inequalities (10) and (26), the ranges of anisotropy parameter δ or nonlocal
parameter e or rotation parameter Ω0 for existence of plane wave and Rayleigh wave can
be estimated when values of other parameters are given.

3. The range of nonlocal parameter e for existence of plane wave or Rayleigh surface
wave as estimated from the present numerical results is found in agreement with those
proposed by Eringen [1, 3, 4].

4. The speeds of both plane wave and Rayleigh surface wave increase logarithmi-
cally in respective range of anisotropy material parameter δ for given values of nonlocal
parameter e and rotation parameter Ω0.

5. The speeds of both plane wave and Rayleigh surface wave decrease at increasing
rate in the respective range of nonlocal parameter e for given values of δ and Ω0.

6. The speeds of both plane wave and Rayleigh surface wave decrease monotonically
in respective range of rotation parameter Ω0 for given values of δ and e.

Therefore, the nonlocal elasticity theory predict the wave propagation phenomenon
more accurately as compared to classical theory. The present theoretical and numerical
results may help in predicting the behaviour of nanostructures which include the mate-
rials with dislocation, fractures, cracks, discontinuities and singularities.
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