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Abstract. The paper aims to extend the ES-MITC3 element, which is an integration of the
edge-based smoothed finite element method (ES-FEM) with the mixed interpolation of
tensorial components technique for the three-node triangular element (MITC3 element),
for the buckling analysis of the FGM variable-thickness plates subjected to mechanical
loads. The proposed ES-MITC3 element is performed to eliminate the shear locking phe-
nomenon and to enhance the accuracy of the existing MITC3 element. In the ES-MITC3
element, the stiffness matrices are obtained by using the strain smoothing technique over
the smoothing domains formed by two adjacent MITC3 triangular elements sharing the
same edge. The numerical results demonstrated that the proposed method is reliable and
more accurate than some other published solutions in the literature. The influences of
some geometric parameters, material properties on the stability of FGM variable-thickness
plates are examined in detail.

Keywords: buckling analysis, critical load, variable thickness plate, edge-based finite ele-
ment method, ES-MITC3.

1. INTRODUCTION

The functionally graded materials (FGMs) can change the material properties grad-
ually, continuously, and smoothly in different directions. Therefore, the delamination
in laminated composites can be eliminated in these materials. They are made of two
components, mainly metal with high toughness and ceramic with outstanding heat and
corrosive resistance properties. Due to such excellent properties, they are applied in var-
ious high-tech industries such as automotive, nuclear, civil engineering, and aerospace.
There have been many studies on the mechanical behavior of FGM structures including
the buckling problem. Some typical studies can be summarized as follows. Ramu et
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al. [1] studied the stability of FGM under uniaxial and biaxial compression load using
the finite element method (FEM) based on classical plate theory (CPT). Rohit et al. [2]
used third-order shear deformation theories (TSDT) to analyze the buckling of the sim-
ple supported FGM plates under uniaxial load. Wu et al. [3] studied the stability of FGM
plates subjected to thermal and mechanical loads using FSDT. Javaheri et al. [4] based
on the analytical method (AM) for the stability analysis of FGM plates subjected to in-
plane compressive load. Zenkour [5] calculated the free vibration and buckling of FGM
constant-thickness sandwich plates. Shariat et al. [6] studied the buckling of thick FGM
plate by AM. Thai et al. [7] used an efficient and simple refined theory for buckling anal-
ysis of FGM plates. Reddy [8] combined an analytical method and TSDT to analyze the
buckling of the FGM plate. Thinh et al. [9] proposed an eight unknown higher-order
shear deformation theory for vibration and buckling analysis of constant-thickness FGM
plates.

Variable-thickness structures are extensively used in many types of high-
performance surfaces like aircraft, civil engineering, and other engineering fields. Using
these structures will help adjust the weight of structural, and hence help maximize the
capacity of the material. For example, Thang et al. [10] investigated the effects of variable-
thickness on buckling and post-buckling of imperfect sigmoid FGM plates on elastic
foundation (EF) subjected to compressive loading. Eisenberger et al. [11] investigated the
buckling of variable-thickness thin isotropic plates by using the extended Kantorovich
method. Naei et al. [12] analyzed the buckling of the FGM variable-thickness circular-
plate using FEM. Jalali et al. [13] investigated thermal buckling of the FGM nonuniform-
thickness circular sandwich plates employed the pseudo-spectral method. Alipour and
co-workers used semi-analytical to studied buckling of heterogeneous variable-thickness
viscoelastic circular-plates lying on the EF [14], and variable-thickness bi-directional FGM
circular-plates placed on nonuniform-EF [15]. Alinaghizadeh et al. [16] applied the gener-
alized differential quadrature (GDQ) method for buckling analysis of variable-thickness
radially FGM annular sector plates located on two parameters EF. Bouguenina et al. [17]
conducted analyses of FGM variable-thickness plates under thermal loads using finite
difference method. Benlahcen et al. [18] employed an analytical solution to examine
buckling of simply supported FGM plates with parabolic-concave thickness variation.
Minh and Duc [19] investigated the effect of cracks on the stability of the FGM variable-
thickness plates using TSDT and phase-field theory. In addition, Zenkour [20] presented
the hygrothermal mechanical bending of variable-thickness plates using the AM. Allam
et al. [21] investigated thermoelastic stresses in FG variable-thickness rotating annular
disks using infinitesimal theory. Thien et al. [22] developed the isogeometric analysis
(IGA) to analyze the buckling of non-uniform thickness nanoplates resting on the EF.

To improve the convergence and accuracy for classical triangular elements, the origin
MITC3 element [23] is proposed to combine with the ES-FEM [24] to give the so-called
ES-MITC3 element [25–30]. In the formulation of the ES-MITC3 element, the system stiff-
ness matrix is employed using strains smoothed over the smoothing domains associated
with the edges of the triangular elements. The numerical results of the present study
demonstrated that the ES-MITC3 element has the following superior properties: (1) the
ES-MITC3 element can avoid the transverse shear locking phenomenon even with the
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ratio of the thickness to the length of the structures reach 10−8 (readers can see detail in
Ref. [25]; (2) the ES-MITC3 element has higher accuracy than the existing triangular ele-
ments such as MITC3 element [23], DSG3 element [31] and CS-DSG3 element [32]; and is
a good competitor with the MITC4 element [33].

According to the best of authors’ knowledge, the stability of FGM variable-thickness
plates using the ES-MITC3 element has not yet been studied. Therefore, this paper aims
to extend the ES-MITC3 element for the buckling analysis of FGM variable-thickness
plates. The formulation is based on the FSDT due to its simplicity and computational
efficiency. The accuracy and reliability of the present approach are verified by comparing
the present numerical results with those of other available methods. Finally, the influence
of geometrical parameters, and material properties on the buckling of FGM plates are
fully studied.

2. THEORETICAL FORMULATION

2.1. FGM material
The FGM is made up of two components: ceramic and metal. The mechanical prop-

erties of FGM are assumed to vary smoothly through the thickness of plates as follows [6]

P (z) = (Pc − Pm)Vc (z) + Pm, (1)

Vc(z) =
(

z
h(x, y)

+ 0.5
)p

with z ∈
[
−h (x, y)

2
;

h (x, y)
2

]
, (2)

in which P (z) represents for Young’s modulus E(z), Poisson’s ratio υ(z); subscripts m
and c denotes the metal and ceramic constituents; Vc(z) is the volume fraction of ceramic
which according to a power-law function with p is the power-law index. The value of p
equals to 0 and +∞ represents a fully ceramic and fully metal plate, respectively. Note
that, the thickness of plate is different at various positions on the plate and depends on
the law of thickness variation (h is the function of x- and y-variables).

2.2. Mindlin’s plate theory
According to Mindlin’s plate theory, the displacement field of the plate is given by [1]

u (x, y, z) = u0 (x, y) + zθx (x, y)
v (x, y, z) = v0 (x, y) + zθy (x, y)
w (x, y, z) = w0 (x, y)

(3)

in which u, v, w, θx, θy are five unknown displacements of the mid-surface of the plate.
The strain field can be expressed as follows

ε =


εx
εy
εxy
γxz
γyz

 =


u,x
v,y

u,y + v,x
w,x + u,z
w,y + v,z

 =


u0,x
v0,y

u0,y + v0,x
v0.x + θx
w0,y + θy

+ z


θx,x
θy,y

θx,y + θy,x
0
0

 . (4)
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Eq. (3) may be written by

=

{
ε1
ε2

}
=

{
εm + zκ

γ

}
. (5)

From Hooke’s law, the linear stress-strain relations can be determined by a formulation
σx
σy
σxy
τxz
τyz

 =


Q11 Q12 0 0 0
Q21 Q22 0 0 0

0 0 Q66 0 0
0 0 0 Q55 0
0 0 0 0 Q44




εx
εy
εxy
γxz
γyz

 , (6)

in which

Q11 = Q22 =
E(z)

1− υ(z)2 , Q12 = Q21 =
υ(z)E(z)
1− υ(z)2 , Q44 = Q55 = Q66 =

E(z)
2(1 + υ(z))

. (7)

The force and moment resultants are obtained as follows [30]{
Nx Ny Nxy

}T
= Aεm + Bκ, (8a){

Mx My Mxy
}T

= Bεm + Cκ, (8b){
Qxz Qyz

}T
= Asγ, (8c)

with

(A, B, C) =
∫ h(x,y)/2

−h(x,y)/2

 Q11 Q12 0
Q21 Q22 0

0 0 Q66

 (1, z, z2)dz, (9)

As =
∫ h(x,y)/2

−h(x,y)/2

[
Q55 0

0 Q44

]
dz. (10)

It should be noted that compared to uniform thickness plates, all the matrices in Eqs. (9)
and (10) depend on the law of thickness variation and thus the limits of integrations also
depend on the position of points on plates.

2.3. Finite element formulation for buckling analysis of FGM variable-thickness plates
The bounded domain Ω of the FGM plate is discretized into ne three-node triangular

elements with nn nodes such that ψ ≈
ne

∑
e=1

ψe and ψi ∩ ψj = ∅, i 6= j. Then the gen-

eralized displacements at any point ue =
[
ue

j , ve
j , we

j , θe
xj, θe

yj

]T
of the element ψe can be

approximated as [23]

ue (x) =
nne

∑
j=1


NI (x) 0 0 0 0

0 NI (x) 0 0 0
0 0 NI (x) 0 0
0 0 0 NI (x) 0
0 0 0 0 NI (x)

 de
j =

nne

∑
j=1

N (x) de
j , (11)
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where nne is the number of nodes of ψe; N (x) is the shape function matrix; and de
j =[

ue
j , ve

j , we
j , θe

xj, θe
yj

]T
are the nodal degrees of freedom (DOF) associated with the jth node

of ψe.
The membrane bending strains of MITC3 element can be expressed in the matrix

form as follows [23]

εe
m =

[
Be

m1 Be
m2 Be

m3
]

de = Be
mde, (12a)

κe =
[

Be
b1 Be

b2 Be
b3
]

de = Be
bde. (12b)

The smoothing domains ψk is constructed based on the edges of the triangular el-
ements such that ψ = ∪nk

k=1ψk and ψk
i ∩ ψk

j = ∅ for i 6= j. An edge-based smoothing
domain ψk for the inner edge k is formed by connecting two end-nodes of the edge to the
centroids of adjacent triangular MITC3 elements as shown in Fig. 1.
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Fig. 1. The smoothing domain •¶	is formed by triangular elements. 
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where	M,, [	and	\	the compatible membrane, bending and the shear strains,	respectively;	™û(x) is a 
given smoothing function that satisfies at least the unity property∫ ™û(x)dψ = 1´† . 

In this study, we use the constant smoothing function [24]: 

™û(x) = E
1
≠û 			x ∈ ψ

û

0							x ∉ ψû
	 (14) 

in which ≠û is the area of the smoothing domain ψû and is given by 

≠û = y dψ = 1
3´†
∞ ≠â

Éá†

âàX
	 (15) 

where	ÅÇû is the number of the adjacent triangular elements in the smoothing domain ψû; and ≠â is the 
area of the çth triangular element attached to the edge §. 

The stiffness matrix of the FGM plate using the ES-MITC3 is assembled by [24]: 

≥¥8 =∞ ≥¥Çû
Éµ∂†

ûàX
	 (16) 

where	≥¥ Çû	is the ES-MITC3 stiffness matrix of the smoothing domain ψûand given by 

Fig. 1. The smoothing domain ψk is formed by triangular elements

Applying the edge-based smooth technique [24], the smoothed membrane, bending
and shear strain ε̃k

m, κ̃k, γ̃k over the smoothing domain ψk can be created by

ε̃k
m =

∫
ψk

εmΦk (x)dψ, (13a)

κ̃k =
∫

ψk
κΦk (x)dψ, (13b)

γ̃k =
∫

ψk
γΦk (x)dψ, (13c)

where εm, κ and γ the compatible membrane, bending and the shear strains, respectively;

Φk(x) is a given smoothing function that satisfies at least the unity property
∫

ψk
Φk (x)dψ

= 1.
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In this study, we use the constant smoothing function [24]

Φk (x) =


1

Ak , x ∈ ψk

0, x /∈ ψk
(14)

in which Ak is the area of the smoothing domain ψk and is given by

Ak =
∫

ψk
dψ =

1
3

nek

∑
i=1

Ai, (15)

where nek is the number of the adjacent triangular elements in the smoothing domain ψk;
and Ai is the area of the ith triangular element attached to the edge k.

The stiffness matrix of the FGM plate using the ES-MITC3 element is assembled by
[24]

K̃p =
nk

sh

∑
k=1

K̃k
e , (16)

where K̃k
e is the ES-MITC3 element stiffness matrix of the smoothing domain ψk and given

by

K̃k
e =

∫
ψk

(
B̃kT

[
A B
B C

]
B̃k + B̃kT

s AsB̃k
s

)
dψ = B̃kT

[
A B
B C

]
B̃k Ak + B̃kT

s AsB̃k
s Ak , (17)

in which
B̃kT =

[
B̃k

mj B̃k
bj

]
, (18)

and the strain-displacement matrices are presented in detail in [30].
The geometric stiffness matrix of the FGM plate using the ES-MITC3 element is de-

termined by [28]

K̃g =
nk

sh

∑
k=1

K̃ek
g with K̃e

g =
∫

ψk

(
ỸT

i N̄Ỹi

)
dψ, (19)

where

N =

[
Nx Nxy
Nxy Ny

]
, (20)

with (
Nx, Ny, Nxy

)
=
∫ h(x,y)

−h(x,y)

(
σx, σy, σxy

)
dz, (21)

and Ỹi is presented in [28]. It is noted that the integrations in Eq. (21) also depend on the
law of thickness variation, therefore the limits of integrations will depend on the position
of points on plates.

Apply the principle of minimum total potential energy, the stability problem in-
volves the solution of the following eigen problem in which Pcr is the critical load∣∣K̃p + PcrK̃g

∣∣ = 0. (22)
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3. CONVERGENCE AND ACCURACY OF THE PROPOSED METHOD

In order to evaluate the convergence and accuracy of the proposed method, the au-
thors consider the following two examples:

Example 1. Firstly, we consider a fully clamped (CCCC) FGM constant-thickness
plate with material properties given by the metal (Al) Em = 70 GPa, υm = 0.3 and ce-
ramic (Al2O3) Ec = 380 GPa, υc = 0.3. The non-dimensional critical load P∗cr of FGM
plates with different mesh-size are listed in Table 1. It can be seen that, in all cases, the
results by the ES-MITC3 element converge faster and are more accurate than those by
the MITC3 element. Specifically, at the 18×18 mesh-size, the ES-MITC3 element gives

Table 1. The convergence of mesh-size of non-dimensional critical load P∗cr = Pcrb2/Ech3
0

of CCCC square FGM plates

a/h p Mesh size ES-MITC3 Error (%) MITC3 Error (%) Wu [3]

100 1

12×12 4.6212 0.12 4.6265 0.23

4.6158
14×14 4.6185 0.06 4.6210 0.11
16×16 4.6167 0.02 4.6194 0.08
18×18 4.6160 0.01 4.6180 0.05
20×20 4.6160 0.01 4.6176 0.04

40 5

12×12 3.0041 0.15 3.0055 0.20

2.9996
14×14 3.0020 0.08 3.0030 0.11
16×16 3.0006 0.03 3.0016 0.07
18×18 2.9998 0.01 3.0005 0.03
20×20 2.9998 0.01 3.0001 0.02
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(a) The FGM plate with a/h = 100 and p = 1

An edge-based smoothed finite element for buckling analysis  
 of functionally graded material variable-thickness plates 

Table 1. The convergence of mesh-size of non-dimensional critical load	%*ø∗ = %*øŒ;/?*ℎIõ of CCCC 
square FGM plates. 

a/h p Mesh size ES-MITC3 Error (%) MITC3 Error (%) Wu [3] 
100 1 12x12 4.6212 0.12 4.6265 0.23 

4.6158 
14x14 4.6185 0.06 4.6210 0.11 
16x16 4.6167 0.02 4.6194 0.08 
18x18 4.6160 0.01 4.6180 0.05 
20x20 4.6160 0.01 4.6176 0.04 

40 5 12x12 3.0041 0.15 3.0055 0.20 

2.9996 
14x14 3.0020 0.08 3.0030 0.11 
16x16 3.0006 0.03 3.0016 0.07 
18x18 2.9998 0.01 3.0005 0.03 
20x20 2.9998 0.01 3.0001 0.02 

 

 
a) The FGM plate with a/h=100 and p=1. 

 
b) The FGM plate with a/h=40 and p=5. 

Fig. 2. The convergence of mesh-size to non-dimensional critical load	%*ø∗ = %*øŒ;/?*ℎIõ of square 
FGM plate. 

Table 2. Comparison of nondimensional critical load %*ø∗ = %*øŒ;/?*ℎIõ of rectangular FGM plates. 
(h=a/40; a=1 is fixed). 

b/a p Wu [3] MITC3 Error (%) Present Error (%) 
1.5 0 11.8516 11.8913 0.33 11.8633 0.10 
2 0 17.5299 17.5686 0.22 17.5481 0.10 
3 0 35.1239 35.2168 0.26 35.1530 0.08 

1.5 2 4.6400 4.6334 0.14 4.6430 0.06 
2 2 6.85810 6.8446 0.20 6.8498 0.12 
3 2 13.7697 13.7203 0.36 13.7538 0.12 

 

(b) The FGM plate with a/h = 40 and p = 5

Fig. 2. The convergence of mesh-size to non-dimensional critical load
P∗cr = Pcrb2/Ech3

0 of square FGM plate



228 Tran Trung Thanh, Tran Van Ke, Pham Quoc Hoa, Tran The Van, Nguyen Thoi Trung

the converging results with the maximum error of 0.01% compared to those by Wu et
al. [3] using the analytical method (AM). In contrast, the MITC3 element at the18x18
mesh-size has not yet converged as shown in Fig. 2. Furthermore, the obtained results
by the ES-MITC3 element are compared to those of other published results as shown
in Table 2. It should be noted that the error is determined by the following formula:

Error (%) = 100× |Present− [3]|
|[3]| and types of boundary conditions are defined as fol-

lows: 1) Simply supported edge boundary condition (S): u0 = w = ϕx = 0 at y = 0,
y = b or v0 = w = ϕy = 0 at x = 0, x = a; and 2) Clamped edge boundary condition
(C): at y = 0, y = b or v0 = w = ϕx = ϕy = 0 at x = 0, x = a.

Table 2. Comparison of non-dimensional critical load P∗cr = Pcrb2/Ech3
0 of rectangular FGM plates.

(h = a/40; a = 1 is fixed)

b/a p Wu [3] MITC3 Error (%) Present Error (%)

1.5 0 11.8516 11.8913 0.33 11.8633 0.10
2 0 17.5299 17.5686 0.22 17.5481 0.10
3 0 35.1239 35.2168 0.26 35.1530 0.08

1.5 2 4.6400 4.6334 0.14 4.6430 0.06
2 2 6.8581 6.8446 0.20 6.8498 0.12
3 2 13.7697 13.7203 0.36 13.7538 0.12

Example 2. Secondly, a simply supported (SSSS) isotropic plate with linearly variable

thickness h = h0(1 + α
y
b
) is considered. The non-dimensional critical load is calculated

by P∗cr = Pcrb2/(π2D) with D = Eh3
0/12. The obtained results of the present work are

Table 3. Comparison of non-dimensional critical load P∗cr of SSSS isotropic plates
with variable thickness

a/b Method
α

0.125 0.25 0.5 0.75 1

IGA-FSDT [22] 7.4621 8.7531 11.5687 14.6953 18.1368
0.5 Kantorovich method [11] 7.4645 8.7633 11.6112 14.7942 18.3175

ES-MITC3 7.4625 8.7601 11.5989 16.6987 18.2981

IGA-FSDT [22] 5.4194 6.3869 8.5627 11.0657 13.9017
0.7 Kantorovich method [11] 5.4199 6.3891 8.5741 11.0979 13.9730

ES-MITC3 5.4198 6.3885 8.5738 11.0889 13.9865

IGA-FSDT [22] 4.8428 5.7224 7.7327 10.0858 12.7877
0.9 Kantorovich method [11] 4.8413 5.7165 7.7111 10.0460 12.7381

ES-MITC3 4.8418 5.7203 7.7198 10.0683 12.7524
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compared to those by Thien et al. [22] using the IGA based on FSDT and Eisenberger et
al. [11] employed Kantorovich method. These results are listed in Table 3. It is observed
that the obtained results by the proposed method are in a good agreement with those
published in the literature. From the above two examples, it can be concluded that the
proposed method is reliable for further analyses.

4. BUCKLING ANALYSIS OF FGM VARIABLE-THICKNESS PLATES

In this section, we consider the FGM variable-thickness plate (
a
h0

= 100, a is fixed)

as shown in Fig. 3. The plate thickness varies along the x-direction following the law

h = h (x) = h0(1 +
x
a
). The material parameters of the FGM plate are given by: metal

(Al) Em = 70 GPa, υm = 0.3 and ceramic (Al2O3) Ec = 380 GPa, υc = 0.3. The non-

dimensional critical load is introduced by P∗cr =
Pcrb2

Ech3
0

.
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Fig. 3. The FGM variable-thickness plate under in-plane force along the x-direction

4.1. Effect of power-law index p
In order to study the effect of the power-law index p on buckling of FGM plates, we

consider a square FGM plate with different boundary conditions (BCs), and the power-
law index p is changed from 0 to 100. The non-dimensional critical load of the FGM
plates is listed in Table 4 and displayed in Fig. 4. It can be seen that the critical force of
the plate depends not only on the BC but also on the power-law index p. The rich ceramic
FGM plates have a higher hardness than the rich metal FGM plates, so the critical force
is higher. The critical force decreases when the power-law index p increases, and the rate
decreases faster when the index p increases from 0 to 1, and slower when p > 1.
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Table 4. The critical load of the square FGM variable-thickness plate

p
Non-dimensional critical load P∗cr

SSSS SCSC CSCS CCCC

0 5.3508 10.2158 9.2422 13.7967
0.5 3.4769 6.6299 6.0142 8.9559
1 2.6790 5.1048 4.6375 6.8965
2 2.0941 3.9872 3.6267 5.3866
5 1.7712 3.3705 3.0662 4.5523
10 1.6119 3.0683 2.7881 4.1432
20 1.4231 2.7110 2.4598 3.6605
50 1.2109 2.3091 2.0921 3.1180

100 1.1115 2.1208 1.9202 2.8639
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4.2. Effect of length to width ratio b/a 
Next, a rectangular FGM plate with the power-law index p=2 and different BC is considered. The 

length to width ratio b/a is taken from 0.5 to 5 while the width of the plate a is assumed to be constant. 
The non-dimensional critical loads are provided in Table 5 and presented in Fig. 5. It can be seen that 
the length to width ratio b/a strongly alters the critical load of the FGM variable-thickness plate. 
Specifically, as ratio b/a increases, the critical load decreases rapidly. Moreover, Tables 4, 5 and 
Figures 4, 5 show that the fully clamped FGM plate has the greatest critical force, while the critical 
force is smallest in the case of the fully simple support. This is easy to understand because the fully 
clamped plate leads to an increase in the stiffness of the FGM plate. 
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4.2. Effect of length to width ratio b/a
Next, a rectangular FGM plate with the power-law index p = 2 and different BCs

are considered. The length to width ratio b/a is taken from 0.5 to 5 while the width of
the plate a is assumed to be constant. The non-dimensional critical loads are provided in
Table 5 and presented in Fig. 5. It can be seen that the length to width ratio b/a strongly
alters the critical load of the FGM variable-thickness plate. Specifically, as ratio b/a in-
creases, the critical load decreases rapidly. Moreover, Tables 4, 5 and Figs. 4, 5 show
that the fully clamped FGM plate has the greatest critical force, while the critical force is
smallest in the case of the fully simple support. This is easy to understand because the
fully clamped plate leads to an increase in the stiffness of the FGM plate.
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Table 5. The critical load of the rectangular FGM variable-thickness plate

b/a
Non-dimensional critical load P∗cr

SSSS SCSC CSCS CCCC

0.5 4.6069 5.9284 9.9667 12.7251
0.75 2.8052 4.3575 5.4623 7.3740

1 2.0941 3.9872 3.6267 5.3866
1.25 1.7405 3.9128 2.6550 4.5983
1.5 1.5390 3.9177 2.1039 4.2724
2 1.3298 3.9678 1.5757 4.0732

2.5 1.2291 3.9242 1.3547 4.0396
3 1.1731 3.9275 1.2459 4.0361

3.5 1.1389 3.9495 1.1854 4.0006
4 1.1165 3.9389 1.1485 3.9941

4.5 1.1010 3.9441 1.1243 3.9976
5 1.0899 3.9576 1.1077 3.9947

4.3. Buckling of FGM plates with different kinds of variable-thickness
Finally, a square FGM plate with three cases of variable-thickness and power-law

index p = 2 is considered. The plate is subjected to the in-plane compression load in the
x-direction.

Case 1: linear variable-thickness h = h (x) = h0

(
1 +

x
a

)
.

Case 2: parabolic variable-thickness h = h (x) = h0

(
1 +

( x
a

)2
)

.

Case 3: exponential variable-thickness h = h (x) = h02x/a.
The non-dimensional critical load of the FGM plate for 3 cases are shown in Table 6.

Table 6. The non-dimensional critical load of the FGM variable-thickness plate

h
Non-dimensional critical load P∗cr

SSSS SCSC CSCS CCCC

h = h0

(
1 +

x
a

)
2.0941 3.9872 3.6267 5.3866

h = h0

(
1 +

( x
a

)2
)

1.4054 2.7527 2.3635 3.5510

h = h02x/a 1.8426 3.5406 3.1694 4.7162

The first six buckling mode-shapes of fully clamped FGM variable-thickness plates
are shown in Figs. 6, 7, and 8. It can be seen that the law of thickness variation has a
significant influence on the critical force and the buckling mode-shapes of plates. In these
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figures, the mode-shape of buckling of the FGM variable-thickness plate is not symmetric
because the thickness at each position on the plate is different. The maximum values of
mode-shapes are traveled toward a smaller thickness.
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Fig. 8. The first six buckling mode-shapes of the plate with exponential variable thickness. 
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5. CONCLUSIONS

The paper aims to extend the ES-MITC3 element for the buckling analysis of the FGM
variable-thickness plates subjected to mechanical loads. The formulation is based on
the FSDT due to its simplicity and computational efficiency. In the numerical examples,
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the effect of geometrical parameters, material properties, boundary conditions, and the
law of thickness variation to buckling of FGM plates are also examined. Through the
formulation and numerical results, some main conclusions are drawn as follows:

- The results by the ES-MITC3 element are in a good agreement compared to the
results in the references.

- The results by the ES-MITC3 element are more accurate and converge faster than
those of the MITC3 element for analyzing variable-thickness plates. It is because the
strain domains of ES-MITC3 element are smoothed and continuous over the smoothing
domains, while the strain of MITC3 element on the same domains are discontinuous
along the edges of elements.

- The increase of power-law index p leads to the reduction of the stiffness of FGM
plates.

- Geometric parameters, boundary conditions significantly affect the buckling of the
FGM variable-thickness plates.

- Using the ES-MITC3 element based on the FSDT is only suitable for thin and
medium plate analysis. For thick plates, the ES-MITC3 element in the combination with
the HSDT is recommended.

- The obtained numerical results are expected to be useful for the calculation and
design of FGM variable-thickness plates in the future.
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