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Abstract. In this work our objective is to understand the failure behaviour of unreinforced masonry
under in-plane cyclic loading. For this purpose we proposed a plasticity based interface model consists
of a single yield surface criteria which is a direct extension of Mohr–Coulomb criteria with a tension cut
and compression cap and a back stress vector is introduced as a mixed hardening law variable in the
adopted yield surface to capture the unloading/reloading behaviour of masonry under cyclic loading.
A simplified micromechanical interface modelling approach is adopted to capture all the failure modes
of masonry. The integration of the differential constitutive equation is done by using implicit Euler
backward integration approach and the obtained non-linear set of equations are solved by a combined
local/global Newton solver. The proposed constitutive model is implemented in ABAQUS by writing
UMAT (user-defined subroutine) and the obtained numerical results are compared with experimental
results available in the literature.

Keywords: plasticity interface model, single yield surface, back stress vector, simplified micro model.

1. INTRODUCTION

Unreinforced masonry (URM) structures are very common constructions found in rural parts of
India. Such structures are sensitive and susceptible to damage in the event of any magnitude of seis-
mic action. Understanding the behaviour of such URM structures has therefore become important [1].
Such studies will allow to arrive at efficient designs of such URM constructions. There are different pat-
terns of arrangement of bricks and mortar in an URM construction, that makes them heterogeneous and
anisotropic. In last few decades, there has been several works to model and understand the complex
nonlinear behavior of URM structures under cyclic loads. The study amounts to understand the inter-
face behavior between the brick and mortar [2]. From this perspective several nonlinear interface models
have been developed to model masonry in a finite element numerical setting [3]. Macro- [4], Meso- [5],
Micro- [6], Macro-micro [7] approaches have commonly been used to model the URM structures.

Simplified micro modeling approaches are more appealing and popular because of their ability
to capture true behavior, including the effects of brick and mortar locally and at their contact [8, 9].
In simplified micro modelling bed and head mortar joint interface are modelled as zero-thickness dis-
continuous inelastic interface elements and expanded brick units are modelled with elastic continuum
elements [10]. Such simplified micro models are able to represent all possible modes of failure namely:
masonry unit direct tensile cracking, masonry joint tensile cracking, masonry joint slipping, masonry
unit diagonal tensile cracking and crushing in masonry [9].

There has been several experimental and numerical works in understanding the behaviour of URM
walls under cyclic loading [11, 12]. It is observed from experimental studies that there is a stiffness
a degradation in both tension as well as compression, however no degradation is observed in direct
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shear stiffness [13]. From the experimental study it is noted that since there is a stiffness degradation in
normal loading and no stiffness degradation under shear loading, non-linear and linear elastic material
behaviour must be considered under normal and shear loading respectively. There have been several
models proposed in literature to predict the stiffness degradation in URM using concepts from fracture,
damage mechanics and plasticity theories (see [2, 14–18]). Modified Mohr–Columb failure criteria with
isotropic and kinematic hardening in the frame work of non associative plasticity have been proposed
to understand the failure behaviour under monotonic loading. Distinct criterias for shear compression
[19, 20], and shear tension regions [21] are incorporated in such models.

There has been several works on modelling behavior of URM walls under cyclic loads. Lorenco et
al. [10] used interface multi-surface yield criteria where the three yield functions are used to simulate the
failure of masonry for various loading like tension, compression and shear. The drawback in this model
is the singularity issue at the transition zone from tension to shear and shear to compression. Oliveira et
al. [22] extended the Lorenco et al. [10] model by introducing two unloading yield surfaces (unloading
to tension and compression) to understand failure behaviour of masonry subjected to cyclic loading. In
this model, it is assumed that non-linearity occurs at the interface elements while all the elements in
this model are assumed to remain in elastic region. The model is able to capture the non-linear failure
behaviour of masonry subjected to in-plane monotonic and cyclic loads. To simulate sliding and sepa-
ration of brick under cyclic load a cohesive-friction contact based formulation is implemented obeying
damage plasticity constitutive law in tension and compression. The contact behaviour is governed by
Mohr–Coulomb criteria with tension cutoff [23]. A hybrid numerical method having a combination of
finite elements for brick units and discrete element for interface is proposed in [24]. The failure be-
haviour of masonry wall under reversed cyclic test has been predicted. The model is able to capture
opening and sliding behaviour of masonry elements. The main drawback in this model is that crushing
of masonry as a possible failure mode under cyclic loads is not considered in the analysis. In [5], the
evolution of anisotropic damage tensor coupled with plastic work is introduced to understand the be-
haviour of masonry wall under cyclic loading. The plastic work corresponding to each fracture mode
is calculated to produce the post-peak (softening) behaviour of masonry. Non-local damage plastic-
ity approach is capable to capture stiffness degradation/recovery during loading/unloading has been
proposed in [25]. The model is found to be very useful to predict the behavior of URM walls under
quasi-static and cyclic loads. The effect of multi-layer bed joints on shear behavior of unreinforced
masonry under cyclic loading has been studied in [26]. The elastic and inelastic constitutive material
models have been proposed in [27] to capture linear and non-linear behaviour of masonry subjected
to cyclic loadings. A user defined subroutine for ABAQUS has been developed. From the overview
of literature it is observed that most models are based on multisurface plasticity theories and incorpo-
rating isotropic hardening together with some stiffness degradation function or recovery functions for
loading/unloading or reloading cycles.

In this work we present a simplified micromodeling approach for modeling the URM walls sub-
jected to cyclic loads. A plasticity based composite interface model is proposed and formulated. The
proposed plasticity models incorporates (i) a single surface yield criteria devoid of any singularities at
the corners and representing all modes of failure, (ii) a mixed hardening law that accounts for stiffness
and strength degradation/recovery during unloading/reloading and (iii) a set of internal hardening
variables whose evolution is based on energy based hardening parameters corresponding to particular
modes of failure. The mixed hardening is introduced via a mixed hardening parameter that accounts
for the proportions of isotropic and kinematic hardening at any stage of loading. A back stress vector
is defined to incorporate the change in origin of the yield surface because of kinematic hardening and
it introduces yield surface with combined hardening. The proposed single surface criterion was earlier
tested for performance under monotonic loads and isotropic hardening [9] and has been extended to
cyclic loads with mixed hardening in the present work.

This paper is organized as follows. In Section 2, the proposed plasticity based composite inter-
face model for URM wall subjected to cyclic loading is presented. Various components of model like
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single surface yield function, hardening parameters, mixed hardening rule, derivation of elasto-plastic
tangent moduli and elastic plastic constitutive relations are discussed. In Section 3 the numerical imple-
mentation and algorithm implementation for the proposed model is proposed. In Section 4 numerical
examples are presented to demonstrate the effectiveness of the proposed model. In the last section we
present the summary and conclusions.

2. PROPOSED PLASTICITY BASED COMPOSITE INTERFACE MODEL

In this section we present the proposed plasticity based composite interface model for URM wall
subjected to cyclic loading. In simplified micro modeling bed and head mortar joint interface are mod-
elled as zero-thickness discontinuous inelastic interface elements and expanded brick units are modelled
with elastic continuum elements [10]. Various components of model are discussed below:

Elastic stress-strain relationship

The elastic stress and strain at the interface are related as σ = Kε, where σ = [σnn, σtt]
T , and per

unit displacements are given by ε = [unn, utt]
T . nn and tt represent the normal and tangential terms.

The effect of Poisson’s ratio for the interface is assumed to be negligible. The stiffness matrix is given by
K = diag[knn, ktt], where knn and ktt represents normal and tangent stiffness. The units are assumed to
be linear elastic due to large difference in the thickness of unit and mortar. The elastic stiffness matrix

components (knn, ktt) are represented as
1

Knn
=

1
hm

(
1

Eu
+

1
Em

)
and

1
Ktt

=
1

hm

(
1

Gu
+

1
Gm

)
. Where

Eu, Em and Gu, Gm represent the Young’s modulus and the Shear modulus of the brick units and mortar
respectively.

Rate independent plasticity
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Fig. 1. Mixed hardening

In the present study a rate independent compos-
ite interface model, defined by hyperbolic function
(Eq. (1)) has been proposed (see Fig. 1). The proposed
model is a simple extension of the Mohr–Coulomb cri-
teria with cut-off in tension and cap-off in compression,
which result in the single surface yield criteria capa-
ble of representing pressure-dependent friction shear
failure and cracking by cut-off in-tension and crush-
ing by cap-off in compression under combined normal
and tangential stresses. The model includes all fail-
ure mechanisms of masonry and it also overcomes the
problem of the singularity that occurs in multi-surfaces
yield criteria. The proposed model is for a case of com-
bined hardening and includes both the isotropic and
kinematic hardening parts. The kinematic hardening
part is specifically introduced in the present formulation through the definition of a kinematic harden-
ing variable, that allows to define inelastic unloading/reloading behavior and helps in defining the back
stress vector (a). The single surface hyperbolic function for the mixed hardening case is given by

F(σ, q, a) := −[C− σ̃nn tan(φ)]2 fc(σ, q, a) ft(σ, q, a) + σ̃2
tt, (1)

where fc(σ, q, a) :=
2
π

arctan
(

σ̃nn − ζ

αc

)
and ft(σ, q, a) =

2
π

arctan
(

ξ − σ̃nn

αt

)
. The reduced stress is

defined as σ̃ = σ − a. ft(σ, q, a) and fc(σ, q, a) defines the tension cut-off and compression cap-off
functions respectively. Function ft(σ, q, a) and fc(σ, q, a) become zero at tension cut (ξ) and compres-
sion cap (ζ) respectively. For all other stress states, the functions ft(σ, q, a) and fc(σ, q, a) are approxi-
mately equal to one. The curvature of the compression cap and tension cut-off at transition region are
controlled by the parameter αc and αt respectively. The hardening parameter (q = q(C, Cq, φ, ψ, ξ, ζ))
is a function of cohesion C, apparent cohesion CQ, dilation angle φ, friction angle ψ, tensile strength ξ
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and compressive strength ζ. Following an non associative flow rule, the plastic potential is defined in
a non-associative formulation which consists of apparent cohesion (Cq) and dilation angle (ψ) that are
having different values from cohesion (C) and friction angle (φ) but having the same compressive (ζ)
and tensile strength (ξ). The potential function is expressed as

Q(σ, q, a) := −[Cq − σ̃nn tan(ψ)]2 fc(σ, q, a) ft(σ, q, a) + σ̃2
tt. (2)

Evolution laws

The evolution laws describe the hardening and softening behaviour of the URM walls. The evolu-
tion laws are defined in terms of rate of plastic work per unit volume. This plastic work has different
components depending upon the mode of failure it represents and is expressed in terms of internal vari-
ables which influence the yield function during plastic loading. These internal variables have been ex-
pressed as i.e. Ẇp := Ẇp(ẇp

1 , ẇp
2 , ẇp

3 , ẇp
4 ) where ẇp

1 , ẇp
2 governs the tensile strength degradation, ẇp

2 , ẇp
3

governs the frictional strength degradation and ẇp
4 shows the variation in the compression strength.

ẇp
1 := 〈σ̃nn〉u̇p

nn, (3)

ẇp
2 := (σ̃tt − σ̃ttr1 sign(σ̃tt))u̇

p
tt, (4)

ẇp
3 := (σ̃ttr1 − σ̃ttr2)sign(σ̃tt)u̇

p
tt, (5)

ẇp
4 := 〈〈σ̃nn〉〉u̇p

nn. (6)

Symbols 〈〉 and 〈〈〉〉 denotes Macaulay bracket and are written as 〈〉 = (x + |x|)/2 and 〈〈x〉〉 = (x −
|x|)/2. ζc denotes the transient point from compression cap to Mohr–Coulomb friction envelope. σ̃ttr1

is the tangential strength when there is no tensile strength. σ̃ttr2 is the minimum tangential strength for
the new contracted yield surface. In tension-shear region σ̃ttr1 and σ̃ttr2 this functions is assumed to zero
while in compression-shear it is expressed as

σ̃2
ttr1

= −2Crtan(φ) fc ft, (7)

σ̃2
ttr2

= −2Crtan(ψ) fc ft. (8)

These internal variables are used to calculate hardening variables (q) and the relation is adopted from
[9]. Relationship between hardening parameter q = q(C, CQ, φ, ψ, ξ, ζ) and internal variables is de-
fined as:

- Cohesion

C := Cr + (Co − Cr)e
−βC

(
wp

1
GI

f
+

wp
2

GII
f

)
(9)

- Apparent Cohesion

CQ := CQr + (CQo − CQr )e
−βCQ

(
wp

1
GI

f
+

wp
2

GII
f

)
, (10)

- Friction angle

φ := φr + (φo − φr)βφe−βφwp
3 , (11)

- Dilation angle

ψ := ψr + (ψo − ψr)βψe−βψwp
3 , (12)

- Tensile strength

ξ := ξoe
−βξ

(
wp

1
GI

f
+

wp
2

GII
f

)
, (13)
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- Compressive strength

ζ =



ζo + (ζp − ζo)

√√√√√
2wp

4
wP
−
(

wp
4

wp

)2
, if wp

4 ≤ wp

ζo + (ζm − ζp)

(
wp

4 − wp

wm − wp

)2

, if wp ≤ wp
4 ≤ wm

ζr + (ζm − ζr)e
−βζ

(
wp

4−wp
ζm−ζr

)
, if wp

4 > wm

(14)

here GI
f and GI I

f represents the mode I and mode II fracture energy and softening of the internal variable
are controlled by these parameters. Subscript o refers to initial value and r refers to residual value. The
intermediate values are represented by subscript p and m. The equation for hardening is written as
Ẇp = Hε̇p.

Mixed hardening law

URM walls subjected to cyclic loading shows both kinematic and isotropic hardening behaviour
during the loading, unloading and reloading cycles. The failure surface or potential function includes
these hardening parameters to account for the shifts from its center and enlargements in size (see Fig. 1).
Back stress vector (a) is introduced in compression cap-off ( fc) and tensile cut-off ( ft) functions to repre-
sent unloading/reloading behaviour. The evolution of the back stress (ȧ) is defined by Ziegler’s rule to
understand the behaviour of masonry under cyclic load.

ȧ =
2
3

λ̇Hua, (15)

where λ̇ is the rate of plastic multiplier, H is the kinematic hardening modulus, ua is the unit vector of
a. During an unloading process, whenever the stress point reaches the monotonic single yield surface
then the loading surface is being controlled by the monotonic single yield surface. Whenever a reversal
of stress takes place during unloading, a new unloading surface will be renewed every time. It is not
activated unless the unloading surface moves and touches the monotonic yield surface or a subsequent
new reversal of stress occurs. In above two cases, reversal of stress can take place before reaching
the monotonic envelope, which can lead to reloading in both tension (this is similar to unloading to
tension curve) and compression (this is similar to unloading to compression curve). The hardening
laws presented require material parameters, which we get from experimental results of uniaxial cyclic
tension and compression loading. These material parameters define the ratio between the plastic strain
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expected at some special points of the uniaxial stress-strain curve and the monotonic plastic strain.
k1t and k1c are the points representing the plastic strain corresponding to zero stress while unloading
from monotonic tensile (see Fig. 2) and compressive envelope (see Fig. 2) respectively. k2c is the point
which represent the plastic strain correspond to monotonic tensile envelope while unloading from the
monotonic compressive envelope (see Fig. 2) and ∆kc is the plastic strain increment originated by a
reloading or unloading movement i.e stiffness degradation between cycles.

Derivation of elasto-plastic tangent modulus

The additive decomposition of total strain is written as

ε = εe + εp, (16)

where εe and εp are the elastic strain and plastic strain respectively. The direction of plastic flow is
defined by flow rule.

ε̇p = λ̇m. (17)
Kuhn Tucker conditions (F ≤ 0, λ̇ ≥ 0, Fλ̇ = 0) provides loading and unloading conditions for plasticity
based model. Plastic multiplier is determined from consistency conditions (Ḟλ̇ = 0) together with
Kuhn–Tucker loading-unloading conditions. From consistency conditions, we get Ḟ = 0 and by solving
explicitly we get plastic multiplier as follows

Ḟ =
∂F
∂σ

σ̇ +
∂F
∂q

q̇ +
∂F
∂a

ȧ = 0.

Plastic multiplier is defined as follows

λ̇ =
nKε

nTkm + pTvu +
2
3 sHua

, (18)

where some of the terms in Eq. (18) are expressed as,
∂F
∂σ

= n;
∂Q
∂a

= s;
∂Q
∂σ

= m;
∂Q
∂q

= p; vu =(
∂qu

∂Wp

)(
∂Wp

∂εp

)(
∂εp

∂λ

)
. The elasto-plastic tangent modulus is obtained by substituting the plastic

multiplier in the stress-strain relation

σ̇ = K (ε̇− ε̇p) = K(ε̇− λ̇m) = Kep ε̇.

The elasto-plastic tangent moduli is given by

Kep =


K if λ < 0

K− Km⊗ nk
nTkm + pTv + 2

3 sHua
if λ > 0 (19)

3. NUMERICAL IMPLEMENTATION

The proposed constitutive model is implemented in a finite element framework, which leads to
a non-linear set of algebraic differential equations. These non-linear equations are solved by using
Newton–Raphson method which leads to combination of local and global solvers to complete the nu-
merical solution. Local solvers gives new internal state variable corresponding to relative displacement
(constitutive level), subsequently global solver provides the solution for the unbalanced force to ac-
commodate stress distribution within the finite load increments. In this section, numerical strategy is
presented at both local (constitutive level) and global level (structural level).

Elastic predictor-plastic corrector

Implicit Euler backward strategy is applied to integrate differential constitutive equations . The
Euler backward method is a single step method which has local truncation error of order O(h2) and it
is unconditionally stable. These incremental equations are split into elastic predictor-plastic corrector
step. Plastic corrector is applied if the current stress state violates the yield condition. Non-linear set
of equations are solved by using Newton–Raphson method. The present problem is discretized in time
interval [0, T]. Prescribed increment in the strain for the preceding time step tn+1 = tn + ∆t is given as



Plasticity based interface model for failure modelling of unreinforced masonry under cyclic loading 327

εn+1 = εn + ∆ε, where ∆ε = ∆εe + ∆εp. In current time step t = tn, obtained stress state must satisfy
the equilibrium equations. In elastic predictor-plastic corrector step, stress and internal variables are
written in incremental form.

σn+1 = σn + K∆εe = σn + K(∆ε− ∆εp),

σn+1 = σtrial
n+1 − ∆λn+1Kmn+1,

qn+1 = qn + ∆λn+1vn+1,

an+1 = an +
2
3

∆λn+1Hua,n+1,

κu,n+1 = κu,n + ∆λn+1,

F(σn+1, qn+1, an+1, κu,n+1) = 0.

(20)

Elastic trial step (σn+1 = σtrial
n+1 − ∆λn+1Kmn+1) is considered over a finite step by freezing plastic

step. In an elastic predictor step when the trial stress point goes outside the failure surface the plastic
corrector step projects the stress at a point after the yield surface is contracted or expanded due to
change in internal variable during plastic step. Therefore it is important to find a contact point at which
the yield function becomes zero for the current elastic predictor step. The plastic corrector step changes
the internal variables and stress. Mathematical expression for finding the contact point is expressed as

F(σn + γ∆σ, qn, an, κu,n) = 0, (21)

where σn, qn, are obtained from the previously converged plastic or elastic step, and γ is an unknown
integer which varies from 0 to 1, it converges the stress to the contact point.

Local iteration strategy

To calculate actual stress state at every load step, we need to solve the system of non-linear equa-
tions using Newton–Raphson method. The asymptotic quadratic convergence at the global level for
structural equilibrium is ensured with initial root sufficiently close. The strategy is highly influenced by
the choice of the independent variables and sequence of the numerical operations. It can be written as

r(σn+1, qn+1, an+1, κn+1, ∆λn+1) =



σn+1 − σtrail
n+1 + ∆λn+1Kmn+1

qn+1 − qn − ∆λn+1vn+1

an+1 − an −
2
3

∆λn+1Hua,n+1

κu,n+1 − κu,n − ∆λn+1

F(σn+1, qn+1, an+1) = 0

(22)

The nonlinear system of equations are solved by linearizing the residual as follows

r(σ + δσ, q + δq, a + δa, κ + δκ, ∆λ + δλ) = r(σ, q, a, κ, ∆λ) +
r(σ, q, a, κ, ∆λ)

∂(σ, q, a, κ, ∆λ)


δσ
δq
δa
δκ
δλ

+ O(δ2).

In the above equation truncation after first order term is zero O(δ2) = 0 and
r(σ, q, a, κ, ∆λ)

∂(σ, q, a, κ, ∆λ)
is

gradient of residual term with respect to the dependent variable like σ, q, a, κ, λ generally known as
Jacobian. Jacobian matrix for the preceding time step (n + 1) is written as follows

J(σn+1, qn+1, an+1, κu,n+1, ∆λn+1) =
r(σ, q, a, κ, ∆λ)

∂(σ, q, a, κ, ∆λ)
,
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J(σn+1, qn+1, an+1, κu,n+1, ∆λn+1) =



I−0+∆λK
∂m
∂σ

∆λK
∂m
∂q

∆λK
∂m
∂a

∆λK
∂m
∂κ

Km

−∆λ
∂v

∂σ
−∆λ

∂v

∂q
−∆λ

∂v

∂a
−∆λ

∂v

∂κ
−v

0 0 1 0 −
2
3

∆λn+1 Hua,n+1

0 0 0 1 1
∂F
∂σ

∂F
∂q

∂F
∂a

∂F
∂κ

0


. (23)

In order to get the actual solution for the current time step during plastic loading residual must be equal
to zero and it is achieved by performing multiple iterations. This iteration will continue till the residual
reaches the tolerance value.

0 = r(σk
n+1, qk

n+1, ak
n+1, κk

u,n+1, ∆λk
n+1) + J(σk

n+1, qk
n+1, ak

n+1, κk
u,n+1∆λk

n+1)



δσk+1
n+1

δqk+1
n+1

δak+1
n+1

δκk
u,n+1

δλk+1
n+1


,



δσk+1
n+1

δqk+1
n+1

δak+1
n+1

δκk+1
u,n+1

δλk+1
n+1


= −J−1(σk

n+1, qk
n+1, ak

n+1, κk
u,n+1, ∆λk

n+1)r(σ
k
n+1, qk

n+1, ak
n+1, κk

u,n+1, ∆λk
n+1), (24)



σk+1
n+1

qk+1
n+1

ak+1
n+1

κk+1
u,n+1
λk+1

n+1


=



σk
n+1

qk
n+1

ak
n+1

κk
u,n+1

∆λk
n+1


+



δσk+1
n+1

δqk+1
n+1

δak+1
n+1

δκk+1
u,n+1

δλk+1
n+1


. (25)

In the beginning of an iteration, initial solution has to be sufficiently close to achieve the convergence of
local iteration as it depends up on the initial root. Thus initial solution is chosen to be the elastic solution
at the contact point.

σ0
n+1 = σtrail

n+1 + (1− γ)∆σ; q0
n+1 = qn; a0

n+1 = an; κ0
u,n+1 = κu,n; ∆λ0

n+1 = 0.

During first iteration of every new load step ∆λ0
n+1 is equal to zero because the plastic multiplier cap-

tures the plastic process incrementally. The initial hardening parameter values q0
n+1 are taken from the

previously converged hardening parameter values.

Global iteration strategy

The consistent tangent operator
∆σ

∆ε
is obtained from the converged solution form of local itera-

tion strategy for the current time step. To compute the tangent operator using Jacobian, we need to
differentiate the residual with respect to strain by applying chain rule as shown below

∂

∂ε


σn+1 − σtrail

n+1 + ∆λn+1Kmn+1
qn+1 − qn − ∆λn+1vn+1

an+1 − an −
2
3

∆λn+1Hua,n+1

κu,n+1 − κu,n − ∆λn+1
F(σn+1, qn+1, an+1) = 0

 = 0,

[
∂

∂σ

∂

∂q
∂

∂a
∂

∂κu

∂

∂λ

]
n+1



σ + ∆λKm
q− ∆λv

a− 2
3 ∆λn+1 Hua,n+1

κu − ∆λ
F(σ, q, a)


n+1

[
∂σ

∂ε

∂q
∂ε

∂a
∂ε

∂κu

∂ε

∂λ

∂ε

]T

n+1

= ∂
∂ε



σ + K∆ε
q
a
κu
0


n

,
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J(σk
n+1, qk

n+1, ak
n+1, κk

u,n+1, ∆λk
n+1)

[
∂σ

∂ε

∂q
∂ε

∂a
∂ε

∂κu

∂ε

∂λ

∂ε

]T

n+1
=


K
0
0
0
0

 ,



[
∂σ

∂ε

]
2×2[

∂qu

∂ε

]
6×2[

∂a
∂ε

]
1×2[

∂κ

∂ε

]
1×2[

∂λ

∂ε

]
1×2


11×2

= J−1(σn+1, qn+1, an+1, κu,n+1, ∆λn+1)11×2


K
0
0
0
0


11×2

.

Consistent tangent operator is defined from the above equation as follows:

[
∂σ

∂ε

]
2×2

= O2×2

J−1(σn+1, qn+1, an+1, ∆λn+1)11×11


K
0
0
0


11×2

 .

Algorithm

The set of non-linear equations are solved by using Newton–Raphson method by a combined local
and global approach. The numerical model has been implemented in ABAQUS [28] by writing a UMAT
subroutine, which allows user to define the material constitutive model. During analysis UMAT will be
called at all integration points of the element and it will update internal state variables, elasto-plastic
tangent operator and stress increment at the end of the increment. The algorithm used to implement the
proposed constitutive model in UMAT is presented as follows:

Algorithm 1 Algorithm used in UMAT for combined hardening yield surface to solve non-linear set of
equations using Newton Raphson method

Require: The Solution Dependent Variables from the last converged iteration for loading and unloading
(σn+1, qn, an, κn, W p

n , ε
p
n)

Elastic strain increment is applied at the beginning of every step, εn+1 = εn + ∆εe

Compute trial elastic stress, σtrial
n+1 = K(εn+1 − ε

p
n)

Compute combine hardening yield function F(σ, q, a, κ) from Eq. (1)
if F(σ, q, a, κ)<0 then

Elastic predictor step
Update:
σn+1 = σtrial

n+1 , qn+1 = qn, Wp
n+1 = Wp

n, ε
p
n+1 = ε

p
n , an+1 = an, κn+1 = κn

Compute elasto-plastic tangent moduli (Kep)k

else
Go to plastic corrector step
Find contact point (21)
Compute residual equations (22)
while ‖r(σn, qn, an, ∆λn)‖ > tolerance do

Compute jacobian matrix from (23)
Compute (δσk+1

n , δqk+1
n , δak+1

n , δκk+1
u,n , δλk+1

n ) from (24)
Compute (σk+1

n , qk+1
n , ak+1

n , κk+1
n ) (25)

Update:
σn+1 = σk+1

n , qn+1 = qk+1
n , Wp

n+1 = (Wp
n)

k+1, an+1 = ak+1
n , κn+1 = κk+1

n from (19)
Compute elasto-plastic tangent moduli (Kep)k+1
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4. NUMERICAL EXAMPLES

4.1. Two-brick-mortar interface subjected to cyclic loading

Two-brick lay up with a mortar interface is considered for the analysis. The modelling of the
two-brick model with interface element is done in ABAQUS and the proposed constitutive model is
implemented by using user defined material (UMAT) for simulating the behaviour under monotonic
and cyclic loading in both tension and compression. The expanded units are modelled using bilin-
ear quadrilateral plane stress element (CPS4R) elements and brick-mortar interface is modelled as zero
thickness cohesive element (COH2D4). Experimental results on masonry wall [29, 30] show that crack
either passes through mortar or through the middle of the brick, therefore bed and head mortar joint
interface are modelled as zero-thickness interface elements and each brick is divided into two parts with
an interface element in the middle.

Gopalaratnam and Shah [31] have conducted experiments on concrete specimens under cyclic ten-
sion. Material parameters adopted for the present model are obtained indirectly from calibration process
as shown in Tabs. 1, 2 and 3. The obtained numerical results from the proposed model for a two-brick
model under cyclic tension are compared with the experimental results as shown in Fig. 3. The numer-
ical results obtained from the present model is found to match well with experimental results in terms
of strength and stiffness degradation.

Table 1. Elastic properties of the bricks and joints (tensile loading)

E (N/mm2) γ knn (N/mm3) ktt (N/mm3)

16,700 0.15 82 36

Table 2. Monotonic inelastic properties of the joints (tension loading)

Tension Shear

ξo (N/mm2) G1
f (Nmm/mm2) Co\Cr Cqo\Cqr φo\φr ψo\ψr G2

f (Nmm/mm2)

2 5
ξ2

o
2 ∗ Knn

2.8\0.28 2.2 \0.22 0.7\0.6 0.3\0.2 10*G1
f

Table 3. Monotonic inelastic properties of the joints (tensile loading)

Cap

ζo\ζp (N/mm2) ζm\ζ f (N/mm2) βc\βcq βφ\βpsi βζ\βζ1 α1\α2

−20\−30 −22\−5 0.12\0.12 0.02\0.02 0.12\5 4.5\4.5

0.2

0.4

0.6

0.8

1.0

0

Present Model

 Experiment [31]

3.5 4.5 5.52.51.50.5

Normalised  displacement ratio
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o
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st
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ss
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at

io

Fig. 3. Comparision of the present model with experimental results under cyclic tensile load
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Similarly for cyclic compression loading the results are compared with the experimental results.
The present model is able to simulate the behaviour of two-brick model under cyclic compression load-
ing. Material parameters adopted for this example are shown in Tabs. 4, 5 and 6. The obtained numer-
ical results of the present model is compared with the experimental results conducted by Karsan and
Jirsa [32] (see Fig. 4). The obtained numerical results is in good agreement with the experimental values
in terms of stiffness and strength degradation. The present constitutive model is able to capture the
stiffness and strength degradation during each unloading/reloading cycle and between the cycles for
tensile and compression cyclic loading.

Table 4. Elastic properties of the bricks and joints (compression loading)

E (N/mm2) γ knn (N/mm3) ktt (N/mm3)

16,700 0.15 110 50

Table 5. Inelastic properties of the joints (compression loading)

Tension Shear

ξo (N/mm2) G1
f (Nmm/mm2) Co\Cr Cqo\Cqr φo\φr ψo\ψr G2

f (Nmm/mm2)

2 5
ξ2

o
2 ∗ Knn

2.8\0.28 2.2 \0.22 0.7\0.6 0.3\0.2 10*G1
f

Table 6. Inelastic properties of the joints (compression loading)

Cap

ζo\ζp (N/mm2) ζm\ζ f (N/mm2) βc\βcq βφ\βpsi βζ\βζ1 α1\α2

−20\−30 −22\−5 0.12\0.12 0.02\0.02 0.12\5 4.5\4.5

-0.2

-0.4

0.6

-0.8

-1.0

-0.5 -1.0 -1.5 -2.0 -2.5 -3.0

0.0

Present Model

 Experiment [32]

 N
o
rm

al
is

ed
  
st

re
ss

 r
at

io

Normalised  displacement ratio

Fig. 4. Comparison of the present model with experimental results under cyclic compression load

The two brick lay up is subjected to cyclic shear loads. The obtained numerical results of the pro-
posed model is able to describe the behavior of two brick model subjected to cyclic shear loading by
assuming elastic unloading/reloading behaviour. Atkinson et al. [11] conducted direct shear test on
mortar joints to capture shear behaviour of mortar subjected to cyclic shear loading. The numerical
results from the present study are validated by comparing with the experimental results (see Fig. 5).
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Fig. 5. Comparison of the present model with experimental results under cyclic shear load

Table 7. Cylic material properties for two-brick model

Numerical simulation
κ1

κt

κ1

κc

κ2

κc

∆κc

κc

Gopalaratnam and Shah [31] 0.76 - - -
Karsan and Jirsa [32] - 0.56 0.28 0.13

Reinhardt [33] 0.73 - - -

The two brick lay up is subjected to cyclic tension-compression loading. The obtained numerical
results of the proposed model is able to describe the behavior of two brick model under six cycles of
load reversal. Reinhardt [33] performed experiments on concrete specimens under tension-compression
loading. The obtained numerical results is matching well with the experimental results in terms of
strength and stiffness degradation associated with reopening and closing of cracks (see Fig. 6) between
the cycles. Tab. 7 shows the cyclic material parameters adopted in the present model to numerically
simulate the two-brick for various cyclic loading cases.

Present Model

 Experiment [33]

Fig. 6. Comparison of the present model with experimental results under cyclic tension-compression load



Plasticity based interface model for failure modelling of unreinforced masonry under cyclic loading 333

4.2. URM shear wall subjected to cyclic loading

1140 mm

52 mm

Steel Beam

RL  LR

990 mm

10 mm thick mortar

1.21 MPa

70 mm

Fig. 7. Geometry of tested TUE unreinforced
masonry wall

Vermeltfoort and Raijmakers [29, 30] conducted
experiments on masonry shear wall subjected to mono-
tonic loading. The same experimental setup is used for
the numerical modelling of the URM shear wall (see
Fig. 7) in ABAQUS, where brick units are modelled us-
ing bilinear quadrilateral plane stress element (CPS4R)
with four degrees of freedom at each node and brick-
mortar interface are modelled as zero thickness cohe-
sive element (COH2D4). Elastic properties of URM
wall for brick and joints are shown in Tab. 8. Tab. 9
shows cyclic inelastic properties of the joints for URM
wall. These properties are adopted from Oliveria et
al. [22]. A vertical uniform stress of 1.21 MPa is ap-
plied on the wall panel along with varying in-plane cyclic horizontal displacement of 1 mm, 2 mm,
3 mm and 4 mm applied on the wall panel consecutively and unloading is performed till it attains zero
horizontal force.

Table 8. Elastic properties of the bricks and joints (TUE wall)

E (N/mm2) γ knn (N/mm3) ktt (N/mm3)

16700 0.15 110 50

Table 9. Cylic inelastic properties of the joints (TUE wall)

Tension Tension-compression Compression

κ1

κt

κ1

κc

κ2

κc

∆κc

κc

0.60 0.75 0.50 0.0

In each cycle, unloading is done in a linear fashion to capture the stiffness degradation. While ini-
tially reloading, it will show high stiffness due to closing of diagonal shear cracks and then the stiffness
decreases progressively for subsequent cycles. Fig. 8 show the numerical horizontal load-displacement

Present Model

Monotonic Experiment [30]
 Cylic Numerical Results [22]

(a)

Present Model

Monotonic Experiment [32]
 Cylic Numerical Results [22]

(b)

Fig. 8. URM wall (a) Comparison of the cyclic full compression horizontal load-displacement graph of the present
model with monotonic experiment and cyclic numerical results of Oliveria et al. [22] (b) Total energy evolution
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graph and total energy dissipated-accumulated displacement graph of the URM wall subjected to cyclic
compression loading. The principal compressive stress corresponding to 4 mm and unloading from
4 mm to zero force are shown in Fig. 9. Two compressive struts are developed (see Fig. 9) due to
evolution of diagonal crack that characterizes the structural behaviour. Fig. 10 shows the numerical
horizontal load-displacement graph and energy dissipation for the masonry wall subjected to cyclic
tension-compression loading. The obtained numerical results (see Figs. 8 and 10) are validated with
monotonic experimental results [29,30] and with Oliveria et al. [22] model available in the literature. As
an indication shown in the experimental studies, the diagonal shear cracks are formed and thereupon
reduces the stiffness and strength. The failure in the URM wall is shear dominating, which primarily ac-
counts for decrease in strength. While unloading cracked head joints are closing partially and bed joints
slide in the opposite direction. Softening behaviour of masonry wall is due to compression crushing
failure at lower toe of the wall which leads to failure.

(a) (b)

Fig. 9. Principal compressive stress [N/mm2] for a horizontal displacement (a) 4 mm (b) unloading
from 4 mm to zero horizontal force

Present Model

    Monotonic Experiment [30] 
Cylic Numerical Results [22]

(a)

Present Model

    Monotonic Experiment [32]
Cylic Numerical Results [22]

(b)

Fig. 10. URM wall (a) Comparison of the cyclic tension-compression horizontal load-displacement graph
of the present model with monotonic experiment and cyclic numerical results of Oliveria et al. [22]

(b) Total energy evolution
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5. SUMMARY AND CONCLUSIONS

The proposed plasticity based interface model is able to describe the failure behaviour of URM
under cyclic loading. This is achieved by introducing a back stress vector as a mixed hardening law
variable in the single yield surface to capture unloading-reloading behaviour of masonry under cyclic
loading. In this model, linear unloading is assumed for shear component whereas non-linear form
is assumed for normal component of stress.The present plasticity based interface model is applied to
two-brick model and URM subjected to various loading. The present modification of numerical model
captures the non-linear behaviour of URM which is able to reproduce opening-closure and shear sliding
of joints, energy dissipation, stiffness/strength degradation and diagonal shear failure patterns similar
to experimental results reported in the literature.
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