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Abstract. We develop an asymptotic model for the finite-deformation, small-strain response of thin
laminated shells composed of two perfectly bonded laminae that exhibit reflection symmetry of the
material properties with respect to an interfacial surface. No a priori hypotheses are made concerning
the kinematics of deformation. The asymptotic procedure culminates in a generalization of Koiter’s
well-known shell theory to accommodate the laminated structure, and incorporates a rigorous limit
model for pure bending.
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1. INTRODUCTION

The development of tractable two-dimensional models for laminated plates and shells has been the
focus of significant activity lying at the intersection of continuum mechanics, differential geometry and
mathematics. The achievements of the engineering community toward this objective are summarized
in [1, 2]. This body of work entails through-thickness integration of the three-dimensional equations
combined with a priori hypotheses of the Kirchhoff–Love type, and generalizations thereof, concerning
the variation of the deformation through the thickness of the shell. On the mathematical side, recent
work, summarized in [3], emphasizes asymptotic expansion of the three-dimensional equations and
the related method of gamma convergence, concerned with the limiting variational problem as shell
thickness tends to zero.

In the present work we aim to strike a balance between these schools by deriving a small-thickness
estimate of the (three-dimensional) strain energy of the shell without any a priori kinematical hypothe-
ses apart from the requisite degree of smoothness. This estimate is terminated at order h3, where h is
the uniform shell thickness prior to deformation. The model thus derived accounts for stretching and
leading-order bending effects and reduces to Koiter’s energy [4] if the laminae have identical proper-
ties, and if the interface between them coincides with the midsurface of the shell. We use this energy
in a virtual-power statement to extract the differential equations and boundary conditions of the two-
dimensional theory. Though our attention is directed entirely to the modeling of two-ply laminates, our
procedure is extendable, albeit with substantial effort, to multi-layer shells.

Standard notation is used throughout. Thus boldface is used for vectors and tensors and a dot
between bold symbols is used to denote the standard Euclidean inner product; for example, if A1 and
A2 are second-order tensors, then their inner product is A1 · A2 = tr(A1 At

2), where tr(·) is the trace and
the superscript t is used to denote the transpose. The associated norm is |A| =

√
A · A. The linear

operator Sym(·) yields the symmetric part of its second-order tensor argument, and the notation ⊗
identifies the standard tensor product of vectors. We also use Orth+ to denote the group of rotation
tensors. The notations A−1, A∗ and det A respectively are used to denote the inverse, the cofactor and
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the determinant of a tensor A; they are connected by A∗ = (det A)A−t if A is invertible. For a fourth-
order tensor A, the notation A[B] stands for the second-order tensor resulting from the linear action of
A on the second-order tensor B (see Truesdell and Noll [5]; Eq. (7.10)). Its transpose At is defined by
B · At[A] = A · A[B], and A is said to possess major symmetry if At = A. If A · A[B] = At · A[B] and
A · A[B] = A · A[Bt], then A is said to possess the minor symmetries. Finally, the notation (·)A stands
for the derivative with respect to tensor A.

Superposed tildes or carets are used to identify three-dimensional variables, whereas variables
appearing without these are the restrictions of their three-dimensional counterparts to the surface Ω
forming the interface of the laminae of the thin shell-like body. The body itself occupies the volume
κ = Ω× C, where C is the collection of generators of the shell. Our basic assumption is that the shell
is thin in the sense that its thickness h satisfies h/l � 1, where l is a characteristic length associated
with the geometry of Ω, i.e., its minimum local principal radius of curvature or its smallest spanwise
dimension. For the sake of notational convenience we adopt l as the unit of length, so that h � 1, and
seek a model for the shell valid to order h3, the scaling associated with leading-order bending effects.

In Section, 2 we set the stage for the work by summarizing the relevant aspects of the three-
dimensional theory of nonlinear elasticity. This forms the parent theory for the ensuing dimension-
reduction procedure. This is followed, in Section 3, by an account of the relevant differential geome-
try and associated kinematical formulae [6]. The basic expansion procedure used to derive the two-
dimensional shell energy - based on Leibniz’ Rule combined with Taylor expansions - is described in
Section 4. Following a brief discussion of reflection symmetry in Section 5, in Section 6 we use a virtual-
power statement to derive restrictions on various through-thickness derivatives of the deformations of
the laminae. Solutions to these restrictions in terms of the deformation of the interface lead to a final
expression for the energy in terms of the interfacial deformation field alone. We close, in Section 7,
with a detailed discussion of the relevant differential equations of equilibrium and attendant boundary
conditions.

2. THREE-DIMENSIONAL PARENT THEORY

The Piola stress of three-dimensional elasticity theory is given by

P̃ = Ψ̃F̃ , (1)

the derivative with respect to the deformation gradient F̃ of the strain energy, Ψ̃(F̃; x̃), per unit reference
volume. Here x̃ is the position of a material point in a reference configuration κ. We assume that this
configuration could, in principle, be occupied by the body and thus impose the restriction det F̃ > 0.

We seek the optimal expression for the term E in the expansion

E = E + o(h3), (2)

of the strain energy

E =
∫

κ
Ψ̃dv. (3)

Galilean invariance imposes the restriction Ψ̃(F̃; x̃) = Ψ̃(Q̃F̃; x̃) for every rotation Q̃. As is well
known, this implies that Ψ̃ depends on F̃ through the strain

Ẽ =
1
2
(F̃t F̃− I), (4)

where I is the (referential) identity for 3-space. Accordingly,

Ψ̃(F̃; x̃) = Ũ(Ẽ; x̃), (5)

say, yielding
P̃ = F̃S̃, (6)

where
S̃ = ŨẼ, (7)

is the (symmetric) 2nd Piola–Kirchhoff stress.
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Application of the chain rule furnishes the useful connection [6]

Ψ̃F̃ F̃ (F̃; x̃)[B] = BS̃ + F̃ŨẼẼ(Ẽ; x̃)[F̃tB], (8)

for any tensor B, where Ψ̃F̃ F̃ enjoys major symmetry and ŨẼẼ possesses major symmetry and both
minor symmetries.

We normalize the energy such that Ψ̃(I; x̃) = 0. Galilean invariance then implies that Ψ̃(F̃; x̃) = 0 if
F̃ ∈ Orth+. We also assume the converse to be true, i.e., Ψ̃(F̃; x̃) = 0 if and only if F̃ ∈ Orth+. We further
suppose that S̃ = 0 if and only if Ẽ = 0, and that ŨẼẼ(0; x̃) - the classical elasticity tensor - is positive
definite in the sense that A · ŨẼẼ(0; x̃)[A] > 0 for all non-zero symmetric A. Then,

S̃ = ŨẼẼ(0; x̃)[Ẽ] + o(
∣∣Ẽ∣∣), (9)

and it follows from (8) that
Ψ̃F̃ F̃ (I; x̃)[B] = ŨẼẼ(0; x̃)[B]. (10)

To accommodate energy-minimizing states we restrict our considerations to deformations satisfy-
ing the strong-ellipticity condition [5]

a⊗ b · Ψ̃F̃ F̃ (F̃; x̃)[a⊗ b] > 0 ∀ a⊗ b 6= 0. (11)

Our assumptions then yield the classical strong-ellipticity condition at zero strain

a⊗ b · ŨẼẼ(0; x̃)[a⊗ b] > 0 ∀ a⊗ b 6= 0, (12)

which play an essential role in this work.

3. GEOMETRIC AND KINEMATIC FORMULAE

We seek a model for the shell in which the primary field to be determined is the deformation of
the surface Ω forming the interface between the two laminae. This is facilitated by use of the standard
normal-coordinate parametrization of 3-space in the vicinity of the interface [6, 7]. Thus, x̃ = x̂(θα, ς),
where

x̂(θα, ς) = x(θα) + ςN(θα), (13)

in which x(θα); α = 1, 2 is the parametrization of Ω with unit-normal field N(θα) and ς is the coordinate
in the direction perpendicular to Ω, the latter corresponding to ς = 0. The lateral surfaces of the thin
three-dimensional body are assumed to correspond to constant values of ς. These are separated by the
small distance h, the thickness of the shell. For the sake of simplicity we assume the thickness to be
uniform.

The orientation of Ω is induced by the assumed right-handedness of the coordinate system (θα, ς);
thus, A1 × A2 · N > 0, where Aα = x,α ≡ ∂x/∂θα span the tangent plane TΩ(p) to Ω at the material
point p with coordinates θα. The curvature tensor B of Ω is the symmetric linear map from TΩ(p) to itself
defined by the Weingarten equation [8]

dN = −Bdx, (14)

where dx = Aαdθα and dN = N ,αdθα. Accordingly,

dx̃ = dx + ςdN + Ndς = G(dx + Ndς), (15)

where
G = µ + N⊗ N, µ = 1− ςB, (16)

and
1 = I− N⊗ N = Aα ⊗ Aα, (17)

is the projection onto - and the identity map for - TΩ(p), on which the basis {Aα} is reciprocal to {Aα}.
We require the volume measure induced by the coordinates. This is [6, 7] dv = µdςda, where da is

the area measure on Ω, and
µ = 1− 2Hς + ς2K, (18)
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is the (two-dimensional) determinant of µ in which

H =
1
2

trB and K = det B, (19)

are the mean and Gaussian curvatures of Ω, respectively. The transformation from (θα, ς) to x̃ is one-to-
one and orientation preserving if and only if µ > 0. Following conventional usage [7], we refer to the
region of space in which this condition holds as shell space.

Our development requires expressions for the three-dimensional deformation gradient and its
through-thickness derivatives. Let χ̃(x̃) be the three-dimensional deformation with gradient F̃(x̃). We
define

χ̂(θα, ς) = χ̃(x(θα)+ ςN(θα)) and F̂(θα, ς) = F̃(x(θα)+ ςN(θα)). (20)

Then,
F̂(µdx + Ndς) = dχ̂ = χ̂,αdθα + χ̂′dς = (∇χ̂)dx + χ̂′dς, (21)

where dθα = Aα · dx, χ̂,α = ∂χ̂/∂θα, χ̂′ = ∂χ̂/∂ς and

∇χ̂ = χ̂,α ⊗ Aα, (22)

is the surfacial deformation gradient. Thus,

F̂1µ =∇χ̂ and F̂N = χ̂
′, (23)

in which the orthogonal decomposition F̂ = F̂1 + F̂N⊗ N has been used. If the configuration κ is
contained in shell space, as we assume, then µ−1 exists and

F̂ = (∇χ̂)µ−1 + χ̂′ ⊗ N. (24)

The interfacial value of F̂, and those of its through-thickness derivatives F̂ ′ and F̂ ′′, are needed in
Section 4. These, and other variables defined on the interface, are identified by the absence of super-
posed carets. The required expressions are [6]

F =∇r + d⊗ N, F ′ =∇d + (∇r)B + g⊗ N, (25)

and
F ′′ =∇g + 2(∇d)B + 2(∇r)B2 + h⊗ N, (26)

where
r = χ, d = χ′, g = χ′′ and h = χ′′′, (27)

are mutually independent functions of θα and the operation∇(·) is defined by (22). Together they furnish
the coefficient vectors in the expansion

χ̂ = r + ςd +
1
2

ς2g +
1
6

ς3h + . . . (28)

of the three-dimensional deformation. Evidently r(θα) = χ̂(x(θα)) is the position of a material point on
the deformed image ω of the interface Ω; its gradient

∇r = aα ⊗ Aα, where aα = r,α, (29)

maps TΩ(p) to the tangent plane Tω(p) to ω at the material point p.

4. EXPANSION OF THE THREE-DIMENSIONAL ENERGY

4.1. Preliminaries

We are concerned with a two-ply laminate consisting of upper (+) and lower (−) laminae. Con-
sider a function

F(ς) = {F+; ς ∈ (0, ηh)F−; ς ∈ (−(1− η)h, 0)} , (30)

where η ∈ [0, 1] if fixed. Thus ηh and (1− η)h are the fractions of the total thickness apportioned to the
upper and lower laminae, respectively. The integral of F over κ is then given by∫

κ
Fdv =

∫
Ω

Ida, with I =
∫

C
Gdς, G = µF and C = [−(1− η)h, ηh]. (31)
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We wish to estimate the integral I for small h. To this end we write

I = I+(h) + I−(h), where

I+(h) =
∫ ηh

0
G+(ς)dς and I−(h) =

∫ 0

−(1−η)h
G−(ς)dς, with G± = µF±. (32)

For example,

I+(h) = I+(0) + hI′+(0) +
1
2

h2 I′′+(0) +
1
6

h3 I′′′+ (0) + o(h3), (33)

where I+(0) = 0 and, by Leibniz’ Rule, I′+(h) = ηG+(ηh). Accordingly, I′′+(h) = η2G′+(ηh), I′′′+ (h) =

η3G′′+(ηh) and

I+(h) = ηh(G+)0 +
1
2

η2h2(G′+)0 +
1
6

η3h3(G′′+)0 + o(h3), (34)

where the subscript 0 refers to function values at ς = 0. In the same way we derive

I−(h) = (1− η)h(G−)0 −
1
2
(1− η)2h2(G′−)0 +

1
6
(1− η)3h3(G′′−)0 + o(h3), (35)

and conclude that

I = h[η(G+)0 + (1− η)(G−)0] +
1
2

h2[η2(G′+)0 − (1− η)2(G′−)0]

+
1
6

h3[η3(G′′+)0 + (1− η)3(G′′−)0] + o(h3), (36)

where, in view of (18) and (32)3,

(G±)0 = (F±)0, (G′±)0 = (F′±)0 − 2H(F±)0 and (G′′±)0 = (F′′±)0 − 4H(F′±)0 + 2K(F±)0. (37)

4.2. Small-thickness estimate of the strain energy

The strain energy of the shell is

E =
∫

κ
Ψ̃dv =

∫
Ω

Sda, (38)

where
S =

∫
C

µΨ̃(F̂; x̂)dς, (39)

is the areal strain-energy density on Ω. Here Ψ̃ plays the role of F(ς) of the previous subsection, in which
the functional dependence on the through-thickness coordinate ς arises implicitly, via F̂, or explicitly,
via x̂ (see (13)).

Henceforth we assume the materials of which both laminae are made to be such that the associated
energy densities do not depend explicitly on ς, i.e., Ψ̃(F̂; x̂) = Ψ̃(F̂; x). Accordingly, for the two laminae
we have

(F±)0 = Ψ±(F±; x), (F′±)0 = P±(F±; x) · F ′± and (F′′±)0 = P±(F±; x) · F ′′± + F ′± ·M±(F±; x)[F ′±],
(40)

where, in each lamina,

Ψ(F; x) = Ψ̃0, P(F; x) = P̃0 and M(F; x) = (Ψ̃F̃ F̃ )0, (41)

with subscripts ± appended as appropriate. Alternatively, we may use the strain energy expressed as a
function of the strain to derive

(F±)0 = U±(E±; x), (F′±)0 = S±(E±; x) · E′± and (F′′±)0 = S±(E±; x) · E′′± + E′± · C±(E±; x)[E′±],
(42)

where
U(E; x) = Ũ0, S(E; x) = S̃0 and C(E; x) = (ŨẼẼ)0, (43)

and E, E′ and E′′ are evaluated at ς = 0.
We assume the laminae to be perfectly bonded, and hence to deform without sliding or delaminat-

ing. They therefore share a common interfacial deformation field r(x), implying (cf. (25), (26)) that

F± =∇r + d± ⊗ N, F ′± =∇d±+(∇r)B + g±⊗N, (44)
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and
F ′′± =∇g± + 2(∇d±)B + 2(∇r)B2 + h± ⊗ N. (45)

4.3. Small-strain approximation

Fiber-reinforced composites of interest in engineering applications typically withstand small elastic
strains before yielding or fracturing. In view of the intended application to such materials we simplify
our further development by assuming a priori that

∣∣Ẽ∣∣ is small in κ. This implies that |E| is small on
Ω, but of course this does not imply that E′ and E′′ are small. We assume the latter to be bounded and
estimate the various terms in (42) to leading order in |E|. For example, with reference to (9), in each
lamina we have, on suppressing the subscripts ± and using the notation ' to identify expressions valid
to leading order in |E|,

U(E; x) ' 1
2

E · C∗(x)[E] and S(E; x) ' C∗(x)[E], where C∗(x) = C(0; x). (46)

Using (42) in (37) we then find

(G±)0 '
1
2

E± · C∗±(x)[E±], (G′±)0 ' C∗±(x)[E±] · E
′
± and (G′′±)0 ' E′± · C∗±(x)[E′±]. (47)

Accordingly, with the areal strain energy S playing the role of G in the expansion (36), we obtain the
estimate

S = W + o(h3), (48)

where

W ' 1
2

h{ηE+ · C∗+(x)[E+]+ (1− η)E− · C∗−(x)[E−]}

+
1
2

h2{η2C∗+(x)[E+] · E
′
+ − (1− η)2C∗−(x)[E−] · E

′
−}

+
1
6

h3{η3E′+ · C∗+(x)[E′+]+ (1− η)3E′− · C∗−(x)[E′−]}, (49)

and conclude, with the aid of (2), (38) and (48), that the shell strain energy, accurate to order h3, is given
by

E =
∫

Ω
Wda. (50)

In each lamina we have

E =
1
2
{c + (∇r)td⊗ N + N ⊗ (∇r)td + (d · d)N⊗ N− I}, (51)

with d = d±, as appropriate, where

c = (∇r)t∇r = aαβ Aα ⊗ Aβ, (52)

is the interfacial Cauchy–Green deformation tensor, and

aαβ = r,α · r,β, (53)

is the metric induced by the convected coordinates on the deformed interface.
It proves advantageous to introduce a two-vector e ∈ TΩ(p) such that

d = λn + (∇r)e, (54)

where n =
a1 × a2

| a1 × a2 |
is the unit normal to Tω(p), λ = n · d and (∇r)e = eαaα with eα = Aα · e; thus, eα

are the contravariant components of d on Tω(p). With this we have

E = ε + Sym(γ⊗ N)+ εN⊗ N, (55)

where
ε =

1
2
(c− 1), (56)

is the interface strain,
γ = ce, (57)
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is the transverse shear strain, and

ε =
1
2
(λ2 + e · ce− 1), (58)

is the normal strain.
The restriction det F > 0, together with det F = F∗N · FN, where F∗ is the cofactor of F, combined

with (44)1 and the Piola–Nanson formula F∗N = |F∗N| n [9], implies that λ > 0.
Further, by differentiating (4) with respect to ς and evaluating the result at ς = 0, we obtain

E′ = Sym(FtF ′). (59)

Observing that F and the rotation factor R in its polar decomposition differ by terms of order |E| , we
find that to the order of approximation consistent with the development leading to (49),

E′ ' Sym(RtF ′). (60)

In particular, the decomposition (cf. (17))

R = R1 + RN⊗ N, (61)

implies, with reference to (25)1, that

R1 ' ∇r and RN ' d, (62)

and hence, because ∇r maps TΩ(p) to Tω(p), that

d ' n, (63)

the unit normal to Tω(p). This, however, does not imply that ∇d ' ∇n.

5. REFLECTION SYMMETRY

In most applications the laminate is constructed in such a way that the material properties of the
individual laminae exhibit reflection symmetry with respect to the tangent plane TΩ(p) at the material
point p. That is, the strain-energy functions U± of the laminae satisfy

U(E; x) = U(QtEQ; x), (64)

where
Q = I − 2N⊗ N, (65)

is the reflection through TΩ(p). We obtain

QtEQ = ε− Sym(γ⊗ N)+ εN⊗ N, (66)

and conclude, with (55) and (57), that the strain energy is then an even function of e.
Let Γ(eα) = U(E(eα)), in which all variables other than e are fixed and eα = Aα · e. Reflection

symmetry implies that the function Γ(eα) is even: Γ(eα) = Γ(−eα). Using superposed dots to denote
variations, we derive

(∂Γ/∂eα)ėα = U̇

= S · Ė = ė · {c1SN + (S · N⊗ N)γ}, (67)

yielding
∂Γ/∂eα = Aα · {c1SN + (S · N⊗ N)γ}, (68)

in which we have inserted the factor 1 to account for the fact that c maps TΩ(p) to itself. Because Γ is
even, these derivatives vanish at eα = 0, and hence at γ = 0. Thus, Aα · c1SN = 0, which reduce, at
leading order in strain, to

0 = Aα · SN = Aα · (C∗[E])N, (69)

whenever the strain is of the form

E = ε +
1
2
(λ2 − 1)N⊗ N. (70)
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Because (69) is an identity for strains within this restricted class, we have Aα · (C∗[Ė])N = 0, i.e.,

ε̇βλ Aα · (C∗[Aβ ⊗ Aλ])N + λ̇Aα · (C∗[N ⊗ N])N = 0, (71)

where we have replaced λ by unity to secure an expression valid to leading order in strain. This holds
for all λ̇ and all (symmetric) ε̇βλ. Accordingly, identifying N with the ’3-direction’, we conclude that

C∗α3βλ = 0 and C∗α333 = 0, (72)

which, because of the major and minor symmetries of C∗, implies, as is well known [10], that all moduli
with an odd number of indices equal to 3 vanish. Because these moduli are fixed, independent of
strain, these restrictions apply in general to materials possessing reflection symmetry, with important
consequences for the further development of the model.

6. REDUCTION

In this work we identify equilibria of the shell with states that satisfy the virtual-power equality

Ė = P, (73)

where the superposed dot is again used to denote a variational derivative and P is the virtual power
of the loads acting on the shell, the form of which is made explicit below. Here E is a functional of the
interfacial deformation r together with the lamina fields λ±, e± and g±. We compute the variations of
the energy with respect to the latter fields in the present section. These yield restrictions which are used
to effect a final reduction of the energy to a functional of the interfacial deformation.

6.1. Variation with respect to λ± and e±
For fixed r and g± we have

Ė =
∫

Ω
Ẇda, (74)

where, from (49),
Ẇ = h{ηC∗+[E+] · Ė+ + (1− η)C∗−[E−] · Ė−}+ O(h2), (75)

with
Ė = Sym(γ̇⊗ N)+ ε̇N⊗ N; γ̇ = cė, ε̇ = λλ̇ + γ · ė, (76)

in each lamina, in which the variations λ̇ and ė are independent and use has been made of the major
symmetry of the moduli.

We assume the virtual power P to be insensitive to λ̇ and ė; in other words, that there are no power-
conjugate actions associated with these variations. Taking ė = 0 first, we conclude, on dividing (75) by
h, that λλ̇C∗[E] · N⊗ N + O(h) vanishes, and hence, on passing to the limit, that

N · (C∗[E])N = 0, (77)

at leading order. Taking this into account, in the same way we find that variation with respect to e yields

1(C∗[E])N = 0, (78)

again at leading order in h. Together these furnish the restriction

(C∗[E])N = 0, (79)

on the equilibrium lamina strain E. This implies that that the laminae are in a state of plane stress at the
interface. In the case of reflection symmetry, the restrictions (72) on the moduli may be used to reduce
this to

(C∗33βλεβλ + Cε)N + C∗α3β3γβ Aα = 0, where C = C∗3333. (80)
In view of the strong-ellipticity condition (12), the symmetric tensorA, defined by

Av = (C∗[v⊗ N])N, (81)

satisfies v · Av > 0 for all non-zero v and is accordingly positive definite. Reflection symmetry reduces
this to

A = C∗α3β3 Aα ⊗ Aβ + CN⊗ N, (82)
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from which we conclude that the submatrix (C∗α3β3) is positive definite and that C > 0. Then, (80) yields
the restrictions

γ = 0, e = 0 and ε = ε̄(ε) = −C−1C∗33βλεβλ, (83)

and hence the strain
E = ε + ε̄(ε)N⊗ N. (84)

It follows from (54) and (58) that

d = λn, where
1
2
(λ2 − 1) = ε̄(ε), (85)

corresponding to classical Kirchhoff–Love kinematics with thickness distension. In contrast to conven-
tional treatments [7], however, where such kinematics are typically assumed at the outset, here we have
derived this result as the leading-order thin-shell approximation for laminae exhibiting reflection sym-
metry.

After some algebra we then find, on making use of (72) and (84), that

E · C∗(x)[E] = ε · D(x)[ε], (86)

with
D = Dαβλµ Aα ⊗ Aβ ⊗ Aλ ⊗ Aµ, (87)

where
Dαβλµ = C∗αβλµ − C−1C∗33αβC∗33λµ, (88)

are the plane-stress moduli, possessing major symmetry and both minor symmetries. We note that the
positive-definiteness of D on the space of symmetric 2-tensors follows, via (86), from that of C∗ on the
space of symmetric 3-tensors.

6.2. Variation with respect to g±
Using (85)1, we reduce (25)2 to

F ′ ' ∇n + (∇r)B + g⊗ N + n⊗∇λ, (89)

where we have replaced λ by unity, again to secure an estimate valid to consistent order in strain. With
(61)–(63) we then obtain

RtF ′ ' (∇r)t∇n + N ⊗ (∇n)tn + cB + N ⊗ B(∇r)tn + Rtg ⊗ N + (∇r)tn⊗∇λ + N ⊗∇λ. (90)

This cumbersome expression is substantially simplified by noting that (cf. (14))

(∇n)dx = dn = −bdr = −b(∇r)dx, (91)

where b = bαβaα ⊗ aβ - a symmetric linear map from Tω(p) to itself - is the curvature tensor on the
deformed surface ω. Thus, ∇n = −b(∇r) and

(∇r)t∇n = κ, (92)

where
κ = −(∇r)tb(∇r) = −bαβ Aα ⊗ Aβ, (93)

is the symmetric pullback of the deformed curvature, mapping TΩ(p) to itself. Further, (∇n)tn =

−(∇r)tbn and (∇r)tn = Aα(aα · n), which both vanish identically, whereas c = 2ε + 1 ' 1. We thus
obtain

RtF ′ ' −ρ + Rtg ⊗ N + N ⊗∇λ, (94)

where
ρ = −(κ + B) = ραβ Aα ⊗ Aβ, with ραβ = bαβ − Bαβ, (95)

is the bending strain of the interface. Accordingly (cf. (60)),

E′± ' −ρ + Sym(µ±⊗N), (96)

in the laminae, where
µ± = Rtg± +∇λ±. (97)
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Before proceeding we use (96), finding that

C∗[E] · E′ = −C∗[E] · ρ + (C∗[E])N · µ, (98)

in each lamina, in which the second term vanishes by (79). Eqs. (72) and (88) also give

C∗[E] · ρ = ραβ(C∗αβλµελµ + C∗αβ33 ε̄) = Dαβλµραβελµ, (99)

where we have used (83). Thus,

C∗[E] · E′ = −ρ · D[ε] = −ε · D[ρ]. (100)

Accordingly, the order - h2 coupling terms in (49) do not involve g±; the latter therefore occur only
in the order - h3 terms. Proceeding with the variation of the energy with respect to g in each lamina
separately, and assuming there are no corresponding virtual power terms, with reference to (49) we
derive

0 = (C∗[E′])N · µ̇ = R(C∗[E′])N · ġ, (101)

in either lamina, at leading order in h. This furnishes the restriction

(C∗[E′])N = 0, (102)

on the interfacial value of E′. This in turn implies that S′N vanishes, and thus, with SN = 0 (cf. (79)),
that the Piola traction P̃N on the interface vanishes through order O(ς).

Substituting (96), we reduce (102) to

Aµ = (C∗[ρ])N, (103)

where (cf. (82))
Aµ = C∗α3β3µβ Aα + Cµ3N, (104)

and
(C∗[ρ])N = C∗33αβραβN. (105)

Consequently, µβ = 0, i.e.,
1Rtg = −∇λ, (106)

while µ3 = N · Rtg reduces to
N · Rtg = C−1C∗33αβραβ. (107)

We obtain
E′ ' −ρ + (N · Rtg)N⊗ N, (108)

and conclude, as in the derivation of (86), that

E′ · C∗[E′] = ρ · D[ρ], (109)

in each lamina.

6.3. The energy as a functional of the interfacial deformation

We are finally in a position to express the strain energy as a functional of the interfacial deformation
alone. Collecting (49), (86), (100) and (109), we have

W =
1
2

hε · {ηD+(x)+ (1− η)D−(x)}[ε]

−1
2

h2ε · {η2D+(x)− (1− η)2D−(x)}[ρ]

+
1
6

h3ρ · {η3D+(x)+ (1− η)3D−(x)}[ρ]. (110)

In the case of pure bending, defined by the condition ε ≡ 0 on Ω, the various small-strain estimates
adopted in the foregoing become exact, and (110) reduces to

W =
1
6

h3ρ · {η3D+(x)+ (1− η)3D−(x)}[ρ]. (111)
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The two- and three-dimensional energies, E and E respectively, are then related by

E/h3 = E/h3 + o(h3)/h3, (112)

and passage to the limit h→ 0 yields E as the rigorous leading-order energy for small h.
However, because of Gauss’ Theorema Egregium [8], the constraint on ε limits the applicability of

this model to deformations for which the Gaussian curvature of ω coincides pointwise with that of Ω,
as in the bending of a plane to a cylinder, for example. Despite its status as a rigorous limit, the model
for pure bending is therefore of limited utility and we do not consider it further.

In the case of laminae with equal moduli (D± = D) having an interface located at the midsurface

(η =
1
2
), (110) reduces to Koiter’s decoupled energy [4]

W =
1
2

hε · D(x)[ε]+
1

24
h3ρ · D(x)[ρ], (113)

which has been justified by careful asymptotic analysis of the three-dimensional theory for small h (see
[3]; Sec. 4.1, and [6]).

7. EQUILIBRIUM

Our derivation of the equilibrium and boundary conditions proceeds, as is customary [4], from
the virtual power statement (73). We use this statement to extract expressions for the actions acting
on the shell that contribute to the virtual power P, i.e., that are compatible with the expressions (50)
and (110) for the strain energy. Naturally we could proceed in an alternative fashion to specify these
actions in the three-dimensional setting and derive the virtual power in the two-dimensional theory via
asymptotic analysis, as we have done for the strain energy [6]. In practice, however, this procedure
serves merely to provide interpretations of the actions occurring in the two-dimensional theory in terms
of their three-dimensional antecedents, while playing no substantive role in the specification of two-
dimensional boundary-value problems.

7.1. Variational derivatives and response functions

As the shell deforms the strain-energy function (110) evolves in response to variations ȧαβ and ḃαβ

of the metric and curvature of the deforming surface ω. This follows from the structure of (110) and the
definition (56) (with (52)) of the surface strain ε, and the definition (95) of the bending strain ρ. Thus we
have (74), where Ẇ is given by

Ẇ =
1
2

Nαβ ȧαβ + Mαβ ḃαβ, (114)

where, by abuse of notation,

Nαβ =
∂W
∂aαβ

+
∂W
∂aβα

, Mαβ =
1
2
(

∂W
∂bαβ

+
∂W
∂bβα

), (115)

in which we have exploited the symmetries ȧαβ = ȧβα and ḃαβ = ḃβα and the factor
1
2

is included in (114)
rather than (115)1 for the sake of later convenience.

Explicit expressions for the response functions Nαβ and Mαβ may be derived by computing Ẇ from
(110) and comparing the result with (114). Using

ε̇ =
1
2

ȧαβ Aα ⊗ Aβ and ρ̇ = −ḃαβ Aα ⊗ Aβ, (116)

together with the major symmetries of D±, we obtain

Nαβ = h{ηDαβλµ
+ (x)+ (1− η)Dαβλµ

− (x)}ελµ −
1
2

h2{η2Dαβλµ
+ (x)− (1− η)2Dαβλµ

− (x)}ρλµ, (117)

and

Mαβ =
1
2

h2{η2Dαβλµ
+ (x)− (1− η)2Dαβλµ

− (x)}ελµ −
1
3

h3{η3Dαβλµ
+ (x)+ (1− η)3Dαβλµ

− (x)}ρλµ. (118)
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We proceed to express (114) in terms of the variation u(x) = ṙ of the interfacial position field. To
this end we use

ȧαβ = aα · u,β + aβ · u,α, (119)

together with
u;αβ = u,αβ − Γλ

αβu,λ, (120)

in which Γλ
αβ are the Christoffel symbols on the equilibrium surface ω and subscripts preceded by semi-

colons identify covariant derivatives. By varying the Gauss equations [8]

r,αβ = Γλ
αβaλ + bαβn, (121)

and using ȧλ = u,λ, we reduce (110) to

u;αβ = Γ̇λ
αβaλ + bαβṅ + ḃαβn, (122)

and conclude that
ḃαβ = n · u;αβ. (123)

However, for our present purposes it is more appropriate to express ḃαβ in terms of u,α and u|αβ,
where

u|αβ = u,αβ − Γ̄λ
αβu,λ, (124)

is the referential covariant derivative, in which Γ̄λ
αβ are the Christoffel symbols on Ω. To achieve this we

solve for u,αβ and substitute into (120), obtaining

u;αβ = u|αβ − Sµ
αβu,µ, (125)

where
Sµ

αβ = Γλ
αβ − Γ̄λ

αβ. (126)

Thus,
ḃαβ = n · (u|αβ − Sλ

αβu,λ). (127)

It then follows from (114) that

Ẇ = Nα · u,α + Mαβ · u|αβ, (128)

with
Nα = Nαβaβ + Nαn, Mαβ = Mαβn, (129)

in which
Nα = −MβλSα

βλ. (130)

The non-standard terms Nα are due to the use of covariant derivatives on Ω, whereas standard
shell theory is typically developed in terms of covariant derivatives on ω [3, 4].

7.2. Equilibrium equations and boundary conditions

Proceeding with the reduction of (73), we define

ϕα = Tα · u + Mαβ · u,β, (131)

with
Tα = Nα −Mαβ

|β , (132)

where
Mαβ

|β = Mαβ

|β n−Mαλbβ
λaβ, (133)

in which use has been made of the Weingarten equation [8]

n,β = −bλ
β aλ, (134)

where bλ
β = aλαbαβ are the mixed curvature components and (aαβ) = (aαβ)

−1 is the reciprocal metric.
With this we have

Ẇ = ϕα
|α − u · Tα

|α, (135)
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and Stokes’ theorem may then be used to reduce (74) to

Ė =
∫

∂Ω
ϕαναds−

∫
Ω

u · Tα
|αda, (136)

wherein ν = να Aα is the rightward unit normal to ∂Ω.
The virtual power statement (73) thus accommodates a distributed load g, per unit area of Ω, which

contributes
∫

Ω
g · uda to the virtual power. It follows immediately from the Fundamental Lemma of the

Calculus of Variations that the equilibrium equation, holding in Ω, is

Tα
|α + g = 0. (137)

Turning to the boundary terms, a standard integration-by-parts procedure may be used to recast
the first integral in (136) as∫

∂Ω
ϕαναds =

∫
∂Ω
{(Tανα − (Mαβνατβ)

′) · u + Mαβνανβ · uν}ds−∑[Mαβνατβ]i · ui, (138)

where τ = τα Aα = N× ν is the unit tangent to ∂Ω, uν = ναu,α is the normal derivative of u, (·)′ =
d(·)/ds and the square bracket refers to the forward jump as a corner of the boundary is traversed.
Thus, [·] = (·)+ − (·)−, where the subscripts ± identify the limits as a corner located at arclength station
s is approached through larger and smaller values of arclength, respectively. The sum accounts for the
contributions from all corners. Here we admit piecewise smooth boundaries having a finite number of
jumps in the unit tangent τ.

From (73) and (136), it follows that the virtual power assumes the form

P =
∫

Ω
g · uda +

∫
∂Ωt

t · uds +
∫

∂Ωm
m · uνds + ∑

∗
f i · ui, (139)

and the Fundamental Lemma furnishes

t = Tανα − (Qn)′, m = Mn and f i = −[Qn]i, (140)

with
Q = Mαβνατβ and M = Mαβνατβ, (141)

where t, m and f i are the edge traction, edge double force density [11] and the corner force at the ith

corner, respectively. Here, ∂Ωt and ∂Ωm respectively are parts of ∂Ω where r and rν are not assigned,
and the starred sum includes only the corners where position is not assigned.

We suppose that r and rν are assigned on ∂Ω \ ∂Ωt and ∂Ω \ ∂Ωm, respectively, and position is
assigned at corners that are not included in the starred sum.

7.3. Overall equilibrium

To interpret the double force in familiar terms, we consider the case in which no kinematical data
are assigned anywhere on ∂Ω, so that ∂Ωt = ∂Ωm = ∂Ω and rigid-body variations of the deforma-
tion are kinematically admissible. The variational derivative of such a deformation is expressible as
u = ω× r + a, where a and ω are arbitrary spatially uniform vectors. Because the strain-energy func-
tion is invariant under such variations, we have Ė = 0 and (73) reduces to P = 0, i.e.,

a · (
∫

Ω
gda +

∫
∂Ω

tds + ∑ f i) + ω · {
∫

Ω
r× gda +

∫
∂Ω

(r× t + c)ds + ∑ ri × f i} = 0, (142)

where
c = rν ×m. (143)

The arbitrariness of a and ω then yield the overall force and moment balances∫
Ω

gda +
∫

∂Ω
tds + ∑ f i = 0 and

∫
Ω

r× gda +
∫

∂Ω
(r× t + c)ds + ∑ ri × f i = 0, (144)

and hence the interpretation of c as the couple traction.
With a little effort we can show that

c = Mναaα × n = −JMταaα, (145)
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where J =
√

a/A, with a = det(aαβ) and A = det(Aαβ). Using dθα = ταds = τ∗αds∗, where s∗ measures
arclength on ∂ω with unit tangent τ∗ = τ∗αaα, together with ds ' ds∗ at leading order in strain, we
infer that τα = Aαβτβ ' aαβτβ ' aαβτ∗β = τ∗α , and hence that

c ' −Mτ∗, (146)

a pure bending couple on ∂ω.
However, from the variational point of view it is not consistent to specify the couple traction in a

boundary-value problem. Rather, it is the double force that may be specified, and the couple traction
can then be computed from (143), if desired, once the deformation is known.

8. CONCLUSIONS

In keeping with recent developments in shell theory in the mathematical community [3], in this
work we have developed an asymptotic procedure to derive a small-thickness estimate of the strain
energy of a laminated two-ply shell. This furnishes an alternative to conventional derivations of shell
theories based on thickness-wise integration of the three-dimensional equilibrium equations, which do
not yield information about their asymptotic structure. The interfacial plane-stress condition and con-
sequent restrictions on the through-thickness variation of the deformation were derived, in contrast to
conventional treatments based on a priori hypotheses. The model thus obtained furnishes a natural ex-
tension of Koiter’s nonlinear shell energy [4] when specialized to small strains of laminae possessing
reflection symmetry of the material properties with respect to the interfacial surface. This was used in
the setting of a virtual-power statement to obtain the relevant equilibrium equations and boundary con-
ditions. Suggestions for further work include extensions of the present framework to multi-layer shells
and the consideration of large lamina strains, of particular relevance in biomechanics.
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