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Abstract. For the first time, postbuckling behavior of thick doubly curved panels made of carbon nan-
otube reinforced composite (CNTRC), under preexisting external pressure and subjected to uniform
temperature rise is analyzed in this paper. Carbon nanotubes (CNTs) are reinforced into matrix through
functionally graded (FG) distribution patterns, and effective properties of CNTRC are determined ac-
cording to extended rule of mixture. Formulations are based on a higher order shear deformation
theory including Von Karman-Donnell nonlinearity, initial geometrical imperfection and elasticity of
tangential constraints of boundary edges. Analytical solutions are assumed to satisfy simply supported
boundary conditions and Galerkin method is used to obtain nonlinear load-deflection relation. Tak-
ing into account temperature dependence of material properties, postbuckling temperature-deflection
paths are traced through an iteration process. The effects of preexisting external pressure, CNT volume
fraction, tangential edge constraints, initial geometrical imperfection and curvature ratios on thermal
postbuckling behavior of CNTRC doubly curved panels are analyzed through numerical examples. The
study reveals that thermally loaded panels experiences a quasi-bifurcation response due to the presence
of preexisting external pressure. For the most part, perfect panels are deflected toward convex side at
the onset of undergoing thermal load. Particularly, imperfect panels may exhibit a bifurcation type
buckling response when imperfection size satisfy a special condition.

Keywords: CNT-reinforced composite, thermal postbuckling response, higher order shear deformation
theory, doubly curved panels, tangential edge constraints.

1. INTRODUCTION

Due to unprecedentedly excellent mechanical, thermal and electrical properties, carbon nanotubes
(CNTs) have attracted huge attention of researchers of many fields [1]. These superior properties along
with extremely large aspect ratio make CNTs become ideal fillers into isotropic matrix to form advanced
nanocomposites. Motivated by the concept of functionally graded material (FGM), Shen [2] proposed
functionally graded carbon nanotube reinforced composite (FG-CNTRC) in which CNTs are embedded
into matrix in such a way that their volume fraction is varied in the thickness direction of the structure
according to functional rules. Stimulated by Shen’s proposal, numerous studies of static and dynamic
responses of FG-CNTRC structures in general and FG-CNTRC curved panels and shells in particular
have been performed. Buckling behavior of FG-CNTRC cylindrical panels under mechanical loads is
analyzed in works of Macias et al. [3] and Zghal et al. [4] using finite element methods. Shen [5] stud-
ied the postbuckling of FG-CNTRC cylindrical panels under external pressure in thermal environments.
Analytical investigations on thin and shear deformable FG-CNTRC cylindrical panels subjected to me-
chanical and thermomechanical loads are performed by Trang and Tung [6–8]. Postbuckling behavior
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of FG-CNTRC cylindrical shells subjected to axial compression and external pressure in thermal envi-
ronments are analyzed by Shen [9, 10] employing higher order shear deformation theory (HSDT) and
asymptotic solutions.

Since structural components are frequently exposed to severe temperature conditions, the stability
of these components under thermal loads is a problem of considerable importance. Shen and Zhang [11]
explored thermal buckling and postbuckling responses of higher order shear deformable FG-CNTRC
plates subjected to two types of thermal load. Basing on first order shear deformation theory (FSDT)
and Ritz method with Chebyshev shape functions, Kiani and coauthor [12, 13] dealt with linear buck-
ling problems of FG-CNTRC rectangular and skew plates under uniform temperature rise and various
boundary conditions. Following a similar approach, Kiani [14, 15] also examined the postbuckling of
FG-CNTRC plates and sandwich plates with FG-CNTRC face sheets under uniform temperature rise.
Thermal buckling and postbuckling behaviors of thin and moderately thick FG-CNTRC plates have
been treated in works [16, 17] using an analytical method. Long and Tung [18, 19] investigated thermal
postbuckling of two sandwich plate models comprising isotropic and FG-CNTRC layers subjected to
uniform temperature rise without and with preexisting axial compression. In these works, the FSDT,
Galerkin method and an iteration procedure are utilized. Basing on different theories and approaches,
thermal postbuckling analyses of FG-CNTRC cylindrical shells were carried out in works [20,21]. Using
adjacent equilibrium criterion and a numerical solution, linear buckling problem of FG-CNTRC conical
shells under uniform temperature rise has been treated by Mirzaei and Kiani [22]. Recently, Hieu and
Tung [23] used an analytical approach and the FSDT to deal with linear buckling response of FG-CNTRC
cylindrical shells and toroidal shell segments with elastically restrained edges.

The stability of curved panels under external pressure and thermal load is a crucial problem en-
countered in engineering applications. Postbuckling behavior of FG-CNTRC doubly curved panels
with freely movable edges under external pressure is studied by Shen and Xiang [24] making use of
HSDT, asymptotic solutions and a perturbation technique. Trang and Tung [25, 26] presented analytical
investigations on the nonlinear stability of thin and first order shear deformable FG-CNTRC doubly
curved panels under external pressure taking into account the effects of elastic foundations and tangen-
tial constraints of boundary edges. Thermal stability of composite and nanocomposite curved panels
is a complicated problem. Unlike flat plate and circular cylindrical shells, due to curved configuration,
membrane prebuckling state cannot exist. Previous studies [27–29] indicated that thermally loaded FGM
curved panels with perfect geometry and immovable edges are monotonically deflected at the onset of
heating. Linear and nonlinear buckling analyses of FG-CNTRC cylindrical panels under uniform tem-
perature rise have been performed by Mehar et al. [30] and Shen and Xiang [31] employing numerical
and semi-analytical approaches, respectively. Very recently, Trang and Tung [32] carried out a compre-
hensive analysis of possible types of thermal postbuckling response of higher order shear deformable
FG-CNTRC cylindrical panels with initial imperfection and tangentially restrained edges. To the best
of our knowledge, there is no investigation on thermal postbuckling behavior of FG-CNTRC doubly
curved panels in the literature.

As an extension of previous work [32], the present paper aims to analyze the postbuckling be-
havior of thick FG-CNTRC doubly curved panels subjected to uniform temperature rise taking effects
of preexisting external pressure into consideration. The properties of constituents are assumed to be
temperature dependent, and effective properties of CNTRC are estimated by using extended rule of
mixture. The panel is modelled within the framework of a higher order shear deformation theory in-
cluding geometrical nonlinearity and initial imperfection. Analytical solutions are assumed to satisfy
simply supported conditions of boundary edges and Galerkin method is applied to obtain nonlinear
load-deflection relation. By adopting an iteration process, postbuckling paths are determined and inter-
esting remarks are given.
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2. FG-CNTRC DOUBLY CURVED PANELS
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Fig. 1. Configuration and coordinate
system of a doubly curved panel

This study considers shallow doubly curved
panel with curved dimensions a, b and thickness h as
shown in Fig. 1. The panel is defined in a coordinate
system xyz which the origin is located on the middle
surface at one corner, x and y axes are directed to a and
b dimensions, respectively, and z is in the direction of
inward normal to the middle surface. The curvature
radii of the panel in x and y directions are denoted by
Rx and Ry, respectively. The panel is made of CNTRC
and x axis is the aligned direction of CNTs.

In this study, CNTs are reinforced into isotropic
matrix through uniform distribution (UD) or three dif-
ferent types of functionally graded (FG) distributions, namely, FG-X, FG-V and FG-Λ (Fig. 2). The vol-
ume fractions VCNT of CNTs corresponding to these distribution patterns are expressed as follows [2]

VCNT =



V∗CNT (UD)

2
(

2 |z|
h

)
V∗CNT (FG-X)(

1− 2z
h

)
V∗CNT (FG-V)(

1 +
2z
h

)
V∗CNT (FG-Λ)

(1)

in which V∗CNT is total volume fraction of CNTs and its specific expression can be found in many previous
works, e.g. [2, 11].
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In this study, effective elastic moduli E11, E22 and effective shear modulus G12 are determined ac-
cording to extended rule of mixture as [2]

E11 = η1VCNTECNT
11 + VmEm , (2a)

η2

E22
=

VCNT

ECNT
22

+
Vm

Em , (2b)

η3

G12
=

VCNT

GCNT
12

+
Vm

Gm , (2c)
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in which η1, η2, and η3 are CNT efficiency parameters, ECNT
11 , ECNT

22 and GCNT
12 are elastic moduli and

shear modulus of CNTs, respectively, whereas Vm = 1−VCNT , Em and Gm denote the volume fraction,
modulus of elasticity and shear modulus of matrix, respectively. In addition, it is assumed that effective
shear moduli G13 = G12 and G23 = 1.2G12 [9, 11]

Due to weak dependence on position and temperature, effective Poisson ratio is assumed to be
constant and determined according to linear rule of mixture as follows

ν12 = V∗CNTνCNT
12 + (1−V∗CNT)ν

m , (3)

where νCNT
12 and νm are Poisson ratios of CNTs and matrix, respectively.

Effective thermal expansion coefficients α11 and α22 of CNTRC in longitudinal and transverse di-
rections, respectively, are evaluated based on Schapery model as [12, 20]

α11 =
VCNTECNT

11 αCNT
11 + VmEmαm

VCNTECNT
11 + VmEm

, (4a)

α22 =
(

1 + νCNT
12

)
VCNTαCNT

22 + (1 + νm)Vmαm − ν12α11, (4b)

where αCNT
11 , αCNT

22 and αm denote thermal expansion coefficients of CNTs and matrix, respectively.

3. FORMULATIONS

In the present work, mathematical formulations are established within the framework of higher
order shear shell theory (HSDT) developed by Reddy and Liu [33]. Based on the HSDT, in-plane strain
components εx, εy, γxy and transverse shear deformations γxz, γyz at a z distance from the middle surface
are expressed as the following εx

εy
γxy

 =


ε0

x
ε0

y
γ0

xy

+ z


k1

x
k1

y
k1

xy

+ z3


k3

x
k3

y
k3

xy

 ,
{

γxz
γyz

}
=

{
γ0

xz
γ0

yz

}
+ z2

{
k2

xz
k2

yz

}
, (5)

where 
ε0

x
ε0

y
γ0

xy

 =


u,x −

w
Rx

+
1
2

w2
,x

v,y −
w
Ry

+
1
2

w2
,y

u,y + v,x + w,xw,y

 ,


k1

x
k1

y
k1

xy

 =

 φx,x
φy,y

φx,y + φy,x

 ,


k3

x
k3

y
k3

xy

 = −c

 φx,x + w,xx
φy,y + w,yy

φx,y + φy,x + 2w,xy

 ,

{
γ0

xz
γ0

yz

}
=

{
φx + w,x
φy + w,y

}
,

{
k2

xz
k2

yz

}
= −3c

{
φx + w,x
φy + w,y

}
, (6)

in which c = 4/(3h2), u, v and w are in-plane displacements and lateral displacement (i.e. deflection),
respectively, whereas φx and φy are rotations of a normal to the middle surface with respect to y and
x axes, respectively. Herein, subscript comma indicates partial derivative with respect to the followed
variable, e.g. u,x = ∂u/∂x.

In this study, the panel is exposed to elevated temperature T and stress components are determined
according to constitutive relations as

σx
σy
σxy
σxz
σyz

 =


Q11 Q12 0 0 0
Q12 Q22 0 0 0

0 0 Q66 0 0
0 0 0 Q44 0
0 0 0 0 Q55




εx − α11∆T
εy − α22∆T

γxy
γxz
γyz

 , (7)

where

Q11 =
E11

1− ν12ν21
, Q22 =

E22

1− ν12ν21
, Q12 =

ν21E11

1− ν12ν21
, Q44 = G13, Q55 = G23, Q66 = G12, (8)
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and ∆T = T− T0 is uniform temperature rise from initial temperature T0 at which the panel is free from
thermal stresses.

Force and moment resultants per a unit length are calculated through stress components as

(
Nx, Ny, Nxy

)
=

h/2∫
−h/2

(
σx, σy, σxy

)
dz,

(
Qx, Qy

)
=

h/2∫
−h/2

(
σxz, σyz

)
dz,

(
Hx, Hy

)
=

h/2∫
−h/2

(
σxz, σyz

)
z2dz,

(
Mx, My, Mxy

)
=

h/2∫
−h/2

(
σx, σy, σxy

)
zdz,

(
Px, Py, Pxy

)
=

h/2∫
−h/2

(
σx, σy, σxy

)
z3dz,

(9)

and, from Eqs. (5) and (7), these resultants are expressed in the form

Nx
Ny
Nxy
Mx
My
Mxy
Px
Py
Pxy


=



e11 ν21e11 0 e12 ν21e12 0 e14 ν21e14 0
ν12e21 e21 0 ν12e22 e22 0 ν12e24 e24 0

0 0 e31 0 0 e32 0 0 e34
e12 ν21e12 0 e13 ν21e13 0 e15 ν21e15 0

ν12e22 e22 0 ν12e23 e23 0 ν12e25 e25 0
0 0 e32 0 0 e33 0 0 e35

e14 ν21e14 0 e15 ν21e15 0 e17 ν21e17 0
ν12e24 e24 0 ν12e25 e25 0 ν12e27 e27 0

0 0 e34 0 0 e35 0 0 e37
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γ0
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k1
y

k1
xy

k3
x

k3
y

k3
xy


−



e11T
e21T

0
e12T
e22T

0
e14T
e24T

0


∆T,

(10)
Qx
Qy
Hx
Hy

 =


e41 0 e43 0
0 e51 0 e53

e43 0 e45 0
0 e53 0 e55




γ0
xz

γ0
yz

k2
xz

k2
yz

 , (11)

where the detailed definitions of components eij and eklT can be found in the work [32].
Based on the HSDT, system of five nonlinear equilibrium equations of geometrically perfect doubly

curved panels is expressed as follows [33]

Nx,x + Nxy,y = 0, (12a)

Nxy,x + Ny,y = 0, (12b)

Qx,x + Qy,y − 3c
(

Hx,x + Hy,y
)
+ c

(
Px,xx + 2Pxy,xy + Py,yy

)
+ Nxw,xx + 2Nxyw,xy + Nyw,yy +

Nx

Rx
+

Ny

Ry
+ q = 0,

(12c)

Mx,x + Mxy,y −Qx + 3cHx − c
(

Px,x + Pxy,y
)
= 0, (12d)

Mxy,x + My,y −Qy + 3cHy − c
(

Pxy,x + Py,y
)
= 0, (12e)

where q is external pressure uniformly distributed on the top surface of the panel.
By introducing a stress function f (x, y) defined as Nx = f,yy, Ny = f,xx, Nxy = − f,xy and following

mathematical transformations as described in previous works [26, 27], nonlinear equilibrium equation
of geometrically imperfect FG-CNTRC doubly curved panels is written in the form

a11φx,xxx + a21φx,xyy + a31φy,xxy + a41φy,yyy + a51 f,xxyy + a61w,xxxx + a71w,xxyy + a81w,yyyy

+ f,yy
(
w,xx + w∗,xx

)
− 2 f,xy

(
w,xy + w∗,xy

)
+ f,xx

(
w,yy + w∗,yy

)
+

f,yy

Rx
+

f,xx

Ry
+ q = 0,

(13)

where w∗(x, y) is a known function representing initial geometrical imperfection and coefficients ai1
(i = 1÷ 8) are given in the work [32].
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From Eq. (6), strain compatibility equation of a doubly curved panel has the form

ε0
x,yy + ε0

y,xx − γ0
xy,xy = w2

,xy − w,xxw,yy −
w,xx

Ry
−

w,yy

Rx
. (14)

By solving Eq. (10) for ε0
x, ε0

y, γ0
xy and including initial imperfection, Eq. (14) can be rewritten in the

following form

a12 f,xxxx + a22 f,xxyy + a32 f,yyyy + a42φx,xxx + a52φy,xxy + a62φy,yyy + a72φx,xyy + a82w,xxxx

+ a92w,xxyy + a02w,yyyy − w2
,xy + w,xxw,yy − 2w,xyw∗,xy + w,xxw∗,yy + w,yyw∗,xx +

w,xx

Ry
+

w,yy

Rx
= 0, (15)

in which coefficients aj2 (j = 0÷ 9) can be found in the work [32].
In the present work, all edges of panel are assumed to be simply supported and elastically re-

strained in tangential displacements. The associated boundary conditions are expressed as

w = Nxy = φy = Mx = Px = 0, Nx = Nx0 at x = 0, a (16a)

w = Nxy = φx = My = Py = 0, Ny = Ny0 at y = 0, b (16b)

in which Nx0 and Ny0 are fictitious compressive force resultants at edges x = 0, a and y = 0, b, respec-
tively, and related to average end-shortening displacements as follows [26, 32]

Nx0 = − c1

ab

a∫
0

b∫
0

∂u
∂x

dydx, Ny0 = − c2

ab

a∫
0

b∫
0

∂v
∂y

dydx, (17)

where c1 and c2 are average tangential stiffness parameters at opposite edges x = 0, a and y = 0, b,
respectively.

To satisfy boundary conditions (16) approximately, the following analytical solutions are assumed

w = W sin βmx sin δny, w∗ = µh sin βmx sin δny, (18a)

f = A1 cos 2βmx + A2 cos 2δny + A3 sin βmx sin δny +
1
2

Nx0y2 +
1
2

Ny0x2, (18b)

φx = B1 cos βmx sin δny, φy = B2 sin βmx cos δny, (18c)

where βm = mπ/a, δn = nπ/b (m, n = 1, 2, . . .), W is amplitude of the deflection and µ is size of imper-
fection. In addition, in the Eqs. (18), Ai (i = 1÷ 3) and Bj (j = 1, 2) are coefficients to be determined.

Introduction of Eqs. (18a)–(18b) into compatibility equation (15) gives the results

A1 =
δ2

n
32a12β2

m

(
W2 + 2Wµh

)
, A2 =

β2
m

32a32δ2
n

(
W2 + 2Wµh

)
, (19a)(

a12β4
m + a22β2

mδ2
n + a32δ4

n

)
A3 +

(
a42β3

m + a72βmδ2
n

)
B1 +

(
a52β2

mδn + a62δ3
n

)
B2

+

(
a82β4

m + a92β2
mδ2

n + a02δ4
n −

δ2
n

Rx
− β2

m
Ry

)
W = 0.

(19b)

Subsequently, substituting the Eqs. (6) and (10) into the last two equilibrium equations (12d)–(12e)
and putting the solutions (18a), (18c) into the obtained partial differential equations, we receive a system
of two algebraic equations in terms of A3, B1 and B2. Then, solving two these equations in combination
with Eq. (19b) yields the following coefficients

A3 = A∗3W, B1 = B∗1W, B2 = B∗2W, (20)

where

A∗3 =
1

b14

[(
δ2

n
Rx

+
β2

m
Ry

)
b24 − b34

]
, B∗1 =

b13b32 − b12b33

b22b33 − b23b32
A∗3 +

b33b42 − b32b43

b22b33 − b23b32
,

B∗2 =
b12b23 − b13b22

b22b33 − b23b32
A∗3 +

b22b43 − b23b42

b22b33 − b23b32
, (21)

in which bij (i = 1÷ 4, j = 1÷ 4) are given in the work [32].
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Now, introducing the solutions (18) into the equilibrium equation (13) and applying Galerkin
method to the resulting equation, we obtain

a13W̄ + a23W̄ (W̄ + µ) + a33W̄ (W̄ + 2µ) + a43W̄ (W̄ + µ) (W̄ + 2µ)

−
(

N̄x0m2B2
a + N̄y0n2

) π2

B2
h
(W̄ + µ) +

(
N̄x0BaRax + N̄y0Rby

) 16γmγn

mnπ2Bh
+

16γmγn

mnπ2 q = 0,
(22)

where

Ba =
b
a

, Bh =
b
h

, Rax =
a

Rx
, Rby =

b
Ry

,

(
N̄x0, N̄y0, W̄

)
=

1
h
(

Nx0, Ny0, W
)

, γk =
1
2

[
1− (−1)k

]
, (k = m, n)

(23)

and coefficients ak3(k = 1÷ 4) are displayed in Eq. (A1) in Appendix A.
In what follows, fictitious force resultants N̄x0 and N̄y0 will be determined. From Eqs. (6) and (10),

the expressions of u,x and v,y can be obtained. Afterwards, substituting the solutions (18) into the u,x
and v,y and placing the received expressions into Eq. (17) lead to the following expressions

N̄x0 = a16W̄ + a26W̄ (W̄ + 2µ) + a36∆T, (24a)

N̄y0 = a17W̄ + a27W̄ (W̄ + 2µ) + a37∆T, (24b)

where the detailed definitions of coefficients ai6 and ai7 (i = 1÷ 3) are given in Eq. (B1) in Appendix B.
Now, introduction of the Eqs. (24) into the Eq. (22) gives the following relation

∆T=
1

a58

[
a18W̄+a28W̄ (W̄ + µ)+a38W̄ (W̄ + 2µ)+a48W̄ (W̄ + µ) (W̄+2µ)+

16γmγn

mnπ2 q
]

, (25)

where

a18 = a13 +
16γmγn

mnπ2Bh

(
a16BaRax + a17Rby

)
, a28 = a23 − a16m2π2 B2

a

B2
h
− a17

n2π2

B2
h

,

a38 = a33 +
16γmγn

mnπ2Bh

(
a26BaRax + a27Rby

)
, a48 = a43 − a26B2

a
m2π2

B2
h
− a27

n2π2

B2
h

,

a58 =

(
a36B2

a
m2π2

B2
h

+ a37
n2π2

B2
h

)
(W̄ + µ)− 16γmγn

mnπ2Bh

(
a36BaRax + a37Rby

)
.

(26)

Eq. (25) expresses nonlinear load-deflection relation of FG-CNTRC doubly curved panels under
preexisting external pressure and subjected to uniform temperature rise. It is recognized from Eqs.
(25) and (26) that if q = 0 the thermally loaded panels will be deflected at the onset of heating and,
in general, no bifurcation buckling occurs. Especially, bifurcation buckling response may occurs for
imperfect panels when imperfection size µ satisfies a special condition predicted from Eq. (26) as follows

µ = µb = 16γmγnBh
a36BaRax + a37Rby

mnπ4 (a36m2B2
a + a37n2)

. (27)

It is obvious from Eq. (27) that µb = 0 when Rax = Rby = 0. This implies that, as expected, perfectly
flat plate will be buckled in bifurcation type under thermal loads.

Due to temperature dependence of material properties, temperature-deflection paths will be deter-
mined through an iteration process.

4. RESULTS AND DISCUSSION

This section graphically presents numerical results for thermal postbuckling analysis of shallow
doubly curved panels with square planform (a = b) made of Poly (methyl methacrylate) matrix mate-
rial, referred to as PMMA, and reinforced by (10, 10) single-walled carbon nanotubes (SWCNTs). Tem-
perature dependent properties of PMMA and SWCNTs have been given in many previous works, for ex-
amples [5,9,12,20], and omitted here for the sake of brevity. In numerical results, CNT efficiency param-
eters are chosen as those given in the works [5, 9, 11], specifically, (η1, η2, η3) = (0.137, 1.022, 0.715) for
the case of V∗CNT = 0.12, (η1, η2, η3) = (0.142, 1.626, 1.138) for the case of V∗CNT = 0.17, and (η1, η2, η3) =
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(0.141, 1.585, 1.109) for the case of V∗CNT = 0.28. To measure degree of tangential edge constraints more
conveniently, non-dimensional tangential stiffness parameters are defined as follows [16, 17, 26, 32]

λ1 =
c1

e11 + c1
, λ2 =

c2

e11 + c2
. (28)

According to this definition, movable (c1 = 0), immovable (c1 → ∞) and partially movable
(0 < c1 < ∞) edges x = 0, a are characterized by λ1 = 0, λ1 = 1 and 0 < λ1 < 1, respectively.
Similarly, values of λ2 = 0 (i.e. c2 = 0), λ2 = 1 (i.e. c2 → ∞) and 0 < λ2 < 1 (i.e. 0 < c2 < ∞)
represent movable, immovable and partially movable edges y = 0, b, respectively. For the sake of brief
expressions, CNTRC doubly curved panels are assumed to be geometrically perfect (µ = 0), with im-
movable edges (λ1 = λ2 = 1), and with temperature dependent properties, unless otherwise specified.
Furthermore, temperature independent and temperature dependent properties will be referred to here
as T-ID and T-D properties, respectively, and T-ID properties are those evaluated at room temperature
(T0 = 300 K).

There is no investigation on thermal postbuckling of FG-CNTRC doubly curved panels in the lit-
erature for direct comparison. Comparative studies for particular cases of panel geometry, namely, flat
panel (Rx → ∞, Ry → ∞) and cylindrical panel (Rx → ∞, Ry < ∞), have been performed in previous
work [32]. The mentioned comparisons achieved good agreements and verified the proposed approach.

4.1. Thermal postbuckling of panels without external pressure

Numerical results for thermal postbuckling behavior of CNTRC doubly curved panels only sub-
jected to uniform temperature rise are shown in Figs. 3–8. The effects of CNT distribution on thermal
postbuckling of shallow CNTRC panels are depicted in Fig. 3. Unlike flat panels, due to curved config-
uration, thermally loaded doubly curved panels have no prebuckling membrane state and are deflected
towards convex side (i.e. negative deflection) at the onset of heating. Generally, among three types of
CNT reinforcement, FG-X and FG-Λ panels have the strongest and weakest load carrying capacities,
respectively, in small region of deflection. Particularly, in the deep region of deflection, load-deflection
path of FG-V panel is slightly higher than that of FG-X panel. In the remainder of numerical examples,
only panels with FG-X type of CNT distribution are considered.
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Next, Fig. 4 assesses the effects of total volume fraction V∗CNT of CNTs on thermal postbuckling of
FG-CNTRC panels. As shown, postbuckling path corresponding to V∗CNT = 0.28 is the highest, while
postbuckling paths corresponding to V∗CNT = 0.12 and V∗CNT = 0.17 are almost coincided. Figs. 3 and
4 also demonstrate that load carrying capability of CNTRC panels are pronouncedly dropped when
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temperature dependence of material properties are taken into consideration. The effects of curvature on
thermal postbuckling response of FG-CNTRC panels are shown in Fig. 5 plotted with five different pairs
of (a/Rx, b/Ry) ratios. While flat panel (i.e. a/Rx = b/Ry = 0) exhibits a bifurcation type buckling re-
sponse and a symmetric postbuckling path, curved panels have no bifurcation buckling response when
edges are immovable and geometry is perfect. Moreover, in the deep region of deflection (i.e. large de-
flection region), more curved panels (i.e. larger values of (a/Rx, b/Ry) ratios) have higher equilibrium
paths.
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As a subsequent illustration, the effects of various degrees of tangential edge constraints on thermal
postbuckling of FG-CNTRC doubly curved panels are analyzed in Fig. 6 plotted with six different pairs
of (λ1, λ2) parameters. It is clear that postbuckling strength of panels is significantly reduced when
(λ1, λ2) parameters become larger, i.e., edges are more severely restrained. In addition, it is recognized
from Fig. 6 that constraints of x = 0, a and y = 0, b edges have remarkable and slight influences on
postbuckling response of the panel, respectively. This fact reflects the high anisotropy of CNT which its
longitudinal elastic modulus ECNT

11 is much higher than transverse elastic modulus ECNT
22 .
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To examine the effects of initial geometrical imperfection on thermal postbuckling response of FG-
CNTRC doubly curved panels, Fig. 7 depicts postbuckling paths corresponding to six different values
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of imperfection size µ. As can be observed, for smaller values of µ, the panel is deflected towards
convex side, and temperature-deflection paths are higher and lower in small and larger regions of neg-
ative deflection when µ is increased, respectively. When µ reaches a special value predicted by Eq. (27)
(µ = µb = 0.328 for this specific example), the panel exhibits a bifurcation type buckling response with
asymmetric postbuckling path. As µ exceeds special value µb, the panel will be deflected toward con-
cave side (i.e. positive deflection) at the onset of applying thermal load. Next example is shown in Fig. 8
considering interactive effects of curvature and initial imperfection on bifurcation buckling and thermal
postbuckling responses of geometrically imperfect FG-CNTRC doubly curved panels. Obviously, more
curved panels may be buckled in bifurcation type when imperfection size µ reaches larger values of
µb. This, on practical point of view, implies that relatively curved panels seldom experience bifurcation
buckling response.

4.2. Thermal postbuckling of panels under preexisting external pressure
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phenomenon can be interpreted that external pressure makes the panel deflected inwards and 
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thermal loads, high volume percentage of CNTs has deteriorative influences on the loading carrying
capability of the panels.

Finally, the effects of curvature ratios on thermal postbuckling behavior of FG-CNTRC doubly
curved panels under preexisting external pressure are assessed in Fig. 11. This figure indicates that
“bifurcation-point” pressure is higher for more shallow panel. This means that more shallow panels
are more deflected inwards prior to application of thermal load. However, in deep region of negative
deflection, postbuckling path is higher as the panel is more curved. Fig. 11 also explores that curvature
in the x direction (i.e. the longitudinal direction of CNTs) has more significant influence than curvature
in the y direction.

5. CONCLUDING REMARKS

For the first time, an analytical investigation on thermal postbuckling behavior of thick FG-CNTRC
doubly curved panels with and without preexisting external pressure has been presented. To reflect
more practical situations, both temperature dependent properties and elasticity of tangential edge con-
strains are taken into consideration. The panels are modelled within the framework of a higher order
shear deformation shell theory including initial geometrical imperfection. The study reveals that ther-
mally loaded curved panels can exhibit a quasi-bifurcation buckling response due to presence of preex-
isting external pressure. For the most part, geometrically perfect curved panels are deflected outwards
at the onset of heating. This results from curved geometry and moment-related prebuckling state. In
some special situations in which imperfection size satisfies particular conditions, geometrically imper-
fect curved panels may experience a bifurcation type buckling response. The results also indicate that
thermal postbuckling response of doubly curved panels are strongly influenced by tangential edge con-
straints and curvature ratios, especially constraint and curvature in longitudinal direction of CNTs. It is
hoped that this study has contribution for a better understanding of thermal postbuckling behavior of
composite and nanocomposite doubly curved panels.
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APPENDIX A

The details of the coefficients ak3 (k = 1÷ 4) in the Eq. (22) are the following

a13 =
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(A1)

in which
(ā11, ā21, ā31, ā41, ā61, ā71, ā81) =

1
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(A2)

APPENDIX B

The detailed definitions of coefficients ai6 and ai7 (i = 1÷ 3) in the Eqs. (24) are
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in which
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4ν21nπ

3Bh

(
B̄∗2 +

nπ

Bh

)
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(ē14, ē24) =
1
h4 (e14, e24) .

(B3)


	1. INTRODUCTION
	2. FG-CNTRC DOUBLY CURVED PANELS
	3. FORMULATIONS
	4. RESULTS AND DISCUSSION
	4.1. Thermal postbuckling of panels without external pressure
	4.2. Thermal postbuckling of panels under preexisting external pressure

	5. CONCLUDING REMARKS
	ACKNOWLEDGMENT
	REFERENCES
	APPENDIX A
	APPENDIX B

